ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Molecular-Based Equations of State for Associating Fluids: A Review of SAFT and Related Approaches

View Author Information
Departamento de Termodinámica y Fenómenos de Transferencia, Universidad Simón Bolívar, Caracas 1080, Venezuela
Department of Chemical Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905
Cite this: Ind. Eng. Chem. Res. 2001, 40, 10, 2193–2211
Publication Date (Web):April 11, 2001
https://doi.org/10.1021/ie000773w
Copyright © 2001 American Chemical Society

    Article Views

    4569

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    We present a review of recent advances in the statistical associating fluid theory (SAFT). In contrast to the “chemical theory”, in which nonideality is explained in terms of chemical reactions between the species, SAFT and similar approaches relate nonideality to the intermolecular forces involved. Such physical theories can be tested against molecular simulations, and improvements to the theory can be made where needed. We describe the original SAFT approach and more recent modifications to it. Emphasis is placed on pointing out that SAFT is a general method and not a unique equation of state. Applications to a wide variety of fluids and mixtures are reviewed, including aqueous mixtures and electrolytes, liquid−liquid immiscible systems, amphiphilic systems, liquid crystals, polymers, petroleum fluids, and high-pressure phase equilibria.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Tel.:  +58-2-9063749, Fax +58-2-9063749, E-mail:  emuller@ usb.ve.

    *

     Author to whom correspondence should be addressed. Tel.:  919-513-2262, 919-513-2052. Fax:  919-515-3465. E-mail:  [email protected].

    Cited By

    This article is cited by 587 publications.

    1. Alexander Schulze-Hulbe, Andries J. Burger, Jamie T. Cripwell. Toward Nonaqueous Alkanolamine-Based Carbon Capture Systems: Developing Parameters for Systems Containing Glymes and Ethylene Glycols in s-SAFT-γ Mie. Industrial & Engineering Chemistry Research 2024, 63 (13) , 5912-5930. https://doi.org/10.1021/acs.iecr.4c00090
    2. Thomas Bernet, Malak Wehbe, Sara A. Febra, Andrew J. Haslam, Claire S. Adjiman, George Jackson, Amparo Galindo. Modeling the Thermodynamic Properties of Saturated Lactones in Nonideal Mixtures with the SAFT-γ Mie Approach. Journal of Chemical & Engineering Data 2024, 69 (2) , 650-678. https://doi.org/10.1021/acs.jced.3c00358
    3. Susanna H. du Plessis, Sonja A. M. Smith, Carla Latsky-Galloway, Cara E. Schwarz. Investigation of the Low-Pressure Phase Behavior and SAFT Modeling of 1-Alcohol and n-Alkane Binary Systems. Journal of Chemical & Engineering Data 2024, 69 (2) , 623-638. https://doi.org/10.1021/acs.jced.3c00346
    4. Stefan Wagner, Roland Nagl, Alexander Weissensteiner, Julija Strunčnik, Lara Schönbacher, Mario Gschwandl, Michael Fischlschweiger, Tim Zeiner. Solvent Diffusion Modeling in Silicone. Journal of Chemical & Engineering Data 2024, 69 (2) , 472-481. https://doi.org/10.1021/acs.jced.3c00406
    5. Gonçalo M. C. Silva, Germán Pérez-Sanchéz, Diego A. Pantano, Sophie Loehlé, João A. P. Coutinho. Using the SAFT-γ-Mie to Generate Coarse-Grained Force Fields Useable in Molecular Dynamics Simulations: Describing the Micellar Phases of Polyalkylglycols in Aqueous Solutions. Industrial & Engineering Chemistry Research 2023, 62 (13) , 5658-5667. https://doi.org/10.1021/acs.iecr.3c00207
    6. Sumnesh Gupta, J. Richard Elliott, Andrzej Anderko, Jacob Crosthwaite, Walter G. Chapman, Carl T. Lira. Current Practices and Continuing Needs in Thermophysical Properties for the Chemical Industry. Industrial & Engineering Chemistry Research 2023, 62 (8) , 3394-3427. https://doi.org/10.1021/acs.iecr.2c03153
    7. Sonja A. M. Smith, Jamie T. Cripwell, Cara E. Schwarz. Application of Renormalization Corrections to SAFT-VR Mie. Industrial & Engineering Chemistry Research 2022, 61 (34) , 12797-12812. https://doi.org/10.1021/acs.iecr.2c02004
    8. Alexander Schulze-Hulbe, Fariborz Shaahmadi, Andries J. Burger, Jamie T. Cripwell. Extending the Structural (s)-SAFT-γ Mie Equation of State to Primary Alcohols. Industrial & Engineering Chemistry Research 2022, 61 (33) , 12208-12228. https://doi.org/10.1021/acs.iecr.2c00198
    9. Xiao Zhao, Sixue Cheng, Yung P. Koh, Brandon D. Kelly, Gregory B. McKenna, Sindee L. Simon. Prediction of the Synergistic Glass Transition Temperature of Coamorphous Molecular Glasses Using Activity Coefficient Models. Molecular Pharmaceutics 2021, 18 (9) , 3439-3451. https://doi.org/10.1021/acs.molpharmaceut.1c00353
    10. John Towne, Xiaodong Liang, Georgios M. Kontogeorgis. Application of Quantum Chemistry Insights to the Prediction of Phase Equilibria in Associating Systems. Industrial & Engineering Chemistry Research 2021, 60 (16) , 5992-6005. https://doi.org/10.1021/acs.iecr.1c00072
    11. Jennifer A. Clark, Erik E. Santiso. SAFT-γ-Mie Cross-Interaction Parameters from Density Functional Theory-Predicted Multipoles of Molecular Fragments for Carbon Dioxide, Benzene, Alkanes, and Water. The Journal of Physical Chemistry B 2021, 125 (15) , 3867-3882. https://doi.org/10.1021/acs.jpcb.1c00851
    12. Nefeli Novak, Georgios M. Kontogeorgis, Marcelo Castier, Ioannis G. Economou. Water–Hydrocarbon Phase Equilibria with SAFT-VR Mie Equation of State. Industrial & Engineering Chemistry Research 2021, 60 (14) , 5278-5299. https://doi.org/10.1021/acs.iecr.1c00480
    13. Philipp Rehner, Joachim Gross. Multiobjective Optimization of PCP-SAFT Parameters for Water and Alcohols Using Surface Tension Data. Journal of Chemical & Engineering Data 2020, 65 (12) , 5698-5707. https://doi.org/10.1021/acs.jced.0c00684
    14. Julia Gebhardt, Matthias Kiesel, Sereina Riniker, Niels Hansen. Combining Molecular Dynamics and Machine Learning to Predict Self-Solvation Free Energies and Limiting Activity Coefficients. Journal of Chemical Information and Modeling 2020, 60 (11) , 5319-5330. https://doi.org/10.1021/acs.jcim.0c00479
    15. Amulya K. Pervaje, Joseph C. Tilly, Andrew T. Detwiler, Richard J. Spontak, Saad A. Khan, Erik E. Santiso. Molecular Simulations of Thermoset Polymers Implementing Theoretical Kinetics with Top-Down Coarse-Grained Models. Macromolecules 2020, 53 (7) , 2310-2322. https://doi.org/10.1021/acs.macromol.9b02255
    16. Lingru Zheng, Fernando Bresme, J. P. Martin Trusler, Erich A. Müller. Employing SAFT Coarse-Grained Force Fields for the Molecular Simulation of Thermodynamic and Transport Properties of CO2–n-Alkane Mixtures. Journal of Chemical & Engineering Data 2020, 65 (3) , 1159-1171. https://doi.org/10.1021/acs.jced.9b00534
    17. Ali A. AlHammadi, Aaesha M. AlBlooshi. Role of Characterization in the Accuracy of PC-SAFT Equation of State Modeling of Asphaltenes Phase Behavior. Industrial & Engineering Chemistry Research 2019, 58 (39) , 18345-18354. https://doi.org/10.1021/acs.iecr.9b01891
    18. Elmar Sauer, Joachim Gross. Prediction of Adsorption Isotherms and Selectivities: Comparison between Classical Density Functional Theory Based on the Perturbed-Chain Statistical Associating Fluid Theory Equation of State and Ideal Adsorbed Solution Theory. Langmuir 2019, 35 (36) , 11690-11701. https://doi.org/10.1021/acs.langmuir.9b02378
    19. Jianzhong Wu, John M. Prausnitz. 110th Anniversary: Molecular Thermodynamics: An Endless Frontier. Industrial & Engineering Chemistry Research 2019, 58 (23) , 9707-9708. https://doi.org/10.1021/acs.iecr.9b01597
    20. Guadalupe Jiménez-Serratos, Tim S. Totton, George Jackson, Erich A. Müller. Aggregation Behavior of Model Asphaltenes Revealed from Large-Scale Coarse-Grained Molecular Simulations. The Journal of Physical Chemistry B 2019, 123 (10) , 2380-2396. https://doi.org/10.1021/acs.jpcb.8b12295
    21. Emanuel A. Crespo, João A. P. Coutinho. A Statistical Associating Fluid Theory Perspective of the Modeling of Compounds Containing Ethylene Oxide Groups. Industrial & Engineering Chemistry Research 2019, 58 (9) , 3562-3582. https://doi.org/10.1021/acs.iecr.9b00273
    22. Thomas E. Gartner, III, Arthi Jayaraman. Modeling and Simulations of Polymers: A Roadmap. Macromolecules 2019, 52 (3) , 755-786. https://doi.org/10.1021/acs.macromol.8b01836
    23. Zhongyang Xing, Christopher Ness, Daan Frenkel, Erika Eiser. Structural and Linear Elastic Properties of DNA Hydrogels by Coarse-Grained Simulation. Macromolecules 2019, 52 (2) , 504-512. https://doi.org/10.1021/acs.macromol.8b01948
    24. Amulya K. Pervaje, Joseph C. Tilly, David L. Inglefield, Jr., Richard J. Spontak, Saad A. Khan, Erik E. Santiso. Modeling Polymer Glass Transition Properties from Empirical Monomer Data with the SAFT-γ Mie Force Field. Macromolecules 2018, 51 (23) , 9526-9537. https://doi.org/10.1021/acs.macromol.8b01734
    25. José Matías Garrido, Esteban Cea-Klapp, Ilya Polishuk. Some Observations Regarding the Association Kernel of SAFT-VR-Mie. Is the Molecularly Inspired Contribution Always Necessary?. Industrial & Engineering Chemistry Research 2018, 57 (46) , 15869-15883. https://doi.org/10.1021/acs.iecr.8b03789
    26. Edward R. Smith, Panagiotis E. Theodorakis, Richard V. Craster, Omar K. Matar. Moving Contact Lines: Linking Molecular Dynamics and Continuum-Scale Modeling. Langmuir 2018, 34 (42) , 12501-12518. https://doi.org/10.1021/acs.langmuir.8b00466
    27. Elmar Sauer, Alexandros Terzis, Marc Theiss, Bernhard Weigand, Joachim Gross. Prediction of Contact Angles and Density Profiles of Sessile Droplets Using Classical Density Functional Theory Based on the PCP-SAFT Equation of State. Langmuir 2018, 34 (42) , 12519-12531. https://doi.org/10.1021/acs.langmuir.8b01985
    28. Jamie T. Cripwell, Sonja A. M. Smith, Cara E. Schwarz, Andries J. Burger. SAFT-VR Mie: Application to Phase Equilibria of Alcohols in Mixtures with n-Alkanes and Water. Industrial & Engineering Chemistry Research 2018, 57 (29) , 9693-9706. https://doi.org/10.1021/acs.iecr.8b01042
    29. Kamil Paduszyński. Extensive Evaluation of the Conductor-like Screening Model for Real Solvents Method in Predicting Liquid–Liquid Equilibria in Ternary Systems of Ionic Liquids with Molecular Compounds. The Journal of Physical Chemistry B 2018, 122 (14) , 4016-4028. https://doi.org/10.1021/acs.jpcb.7b12115
    30. Cédric Giraudet, Konstantinos D. Papavasileiou, Michael H. Rausch, Jiaqi Chen, Ahmad Kalantar, Gerard P. van der Laan, Ioannis G. Economou, and Andreas P. Fröba . Characterization of Water Solubility in n-Octacosane Using Raman Spectroscopy. The Journal of Physical Chemistry B 2017, 121 (47) , 10665-10673. https://doi.org/10.1021/acs.jpcb.7b07580
    31. Erich A. Müller and Andrés Mejía . Extension of the SAFT-VR Mie EoS To Model Homonuclear Rings and Its Parametrization Based on the Principle of Corresponding States. Langmuir 2017, 33 (42) , 11518-11529. https://doi.org/10.1021/acs.langmuir.7b00976
    32. Hai Hoang, Stéphanie Delage-Santacreu, and Guillaume Galliero . Simultaneous Description of Equilibrium, Interfacial, and Transport Properties of Fluids Using a Mie Chain Coarse-Grained Force Field. Industrial & Engineering Chemistry Research 2017, 56 (32) , 9213-9226. https://doi.org/10.1021/acs.iecr.7b01397
    33. Pablo Navarro, Emanuel A. Crespo, João M. L. Costa, Fèlix Llovell, Julián García, Francisco Rodríguez, Pedro J. Carvalho, Lourdes F. Vega, and João A. P. Coutinho . New Experimental Data and Modeling of Glymes: Toward the Development of a Predictive Model for Polyethers. Industrial & Engineering Chemistry Research 2017, 56 (27) , 7830-7844. https://doi.org/10.1021/acs.iecr.7b01532
    34. Elmar Sauer and Joachim Gross . Classical Density Functional Theory for Liquid–Fluid Interfaces and Confined Systems: A Functional for the Perturbed-Chain Polar Statistical Associating Fluid Theory Equation of State. Industrial & Engineering Chemistry Research 2017, 56 (14) , 4119-4135. https://doi.org/10.1021/acs.iecr.6b04551
    35. T. Bernet, M. M. Piñeiro, F. Plantier, and C. Miqueu . Generalization of the Fundamental-Measure Theory Beyond Hard Potentials: The Square-Well Fluid Case. The Journal of Physical Chemistry C 2017, 121 (11) , 6184-6190. https://doi.org/10.1021/acs.jpcc.7b00797
    36. Reza Haghbakhsh, Khalil Parvaneh, and Alireza Shariati . Viscosities of Pure Ionic Liquids Using Combinations of Free Volume Theory or Friction Theory with the Cubic, the Cubic Plus Association, and the Perturbed-Chain Statistical Associating Fluid Theory Equations of State at High Pressures. Industrial & Engineering Chemistry Research 2017, 56 (8) , 2247-2258. https://doi.org/10.1021/acs.iecr.6b04193
    37. Saifuddin Ahmed, Nicolas Ferrando, Jean-Charles de Hemptinne, Jean-Pierre Simonin, Olivier Bernard, and Olivier Baudouin . A New PC-SAFT Model for Pure Water, Water–Hydrocarbons, and Water–Oxygenates Systems and Subsequent Modeling of VLE, VLLE, and LLE. Journal of Chemical & Engineering Data 2016, 61 (12) , 4178-4190. https://doi.org/10.1021/acs.jced.6b00565
    38. M. B. Oliveira, F. Llovell, J. A. P. Coutinho, and L. F. Vega . New Procedure for Enhancing the Transferability of Statistical Associating Fluid Theory (SAFT) Molecular Parameters: The Role of Derivative Properties. Industrial & Engineering Chemistry Research 2016, 55 (37) , 10011-10024. https://doi.org/10.1021/acs.iecr.6b02205
    39. Jie Xu, Qinli Liu, Ting Yan, Yuqi Wang, and Tao Fang . Vapor–Liquid Equilibrium for Methanol + Methyl Palmitate near the Critical Temperature of Methanol. Journal of Chemical & Engineering Data 2016, 61 (3) , 1229-1235. https://doi.org/10.1021/acs.jced.5b00865
    40. Lawien F. Zubeir, Christoph Held, Gabriele Sadowski, and Maaike C. Kroon . PC-SAFT Modeling of CO2 Solubilities in Deep Eutectic Solvents. The Journal of Physical Chemistry B 2016, 120 (9) , 2300-2310. https://doi.org/10.1021/acs.jpcb.5b07888
    41. Victor Alejandro Merchan and Günter Wozny . Comparative Evaluation of Rigorous Thermodynamic Models for the Description of the Hydroformylation of 1-Dodecene in a Thermomorphic Solvent System. Industrial & Engineering Chemistry Research 2016, 55 (1) , 293-310. https://doi.org/10.1021/acs.iecr.5b03328
    42. Carlos Nieto-Draghi, Guillaume Fayet, Benoit Creton, Xavier Rozanska, Patricia Rotureau, Jean-Charles de Hemptinne, Philippe Ungerer, Bernard Rousseau, and Carlo Adamo . A General Guidebook for the Theoretical Prediction of Physicochemical Properties of Chemicals for Regulatory Purposes. Chemical Reviews 2015, 115 (24) , 13093-13164. https://doi.org/10.1021/acs.chemrev.5b00215
    43. Li-Hsin Wang, Chieh-Ming Hsieh, and Shiang-Tai Lin . Improved Prediction of Vapor Pressure for Pure Liquids and Solids from the PR+COSMOSAC Equation of State. Industrial & Engineering Chemistry Research 2015, 54 (41) , 10115-10125. https://doi.org/10.1021/acs.iecr.5b01750
    44. Bong-Seop Lee and Ki-Chang Kim . Liquid–Liquid Equilibrium of Associating Fluid Mixtures Using Perturbed-Hard-Sphere-Chain Equation of State Combined with the Association Model. Industrial & Engineering Chemistry Research 2015, 54 (1) , 540-549. https://doi.org/10.1021/ie503623r
    45. Gulou Shen, Christoph Held, Jyri-Pekka Mikkola, Xiaohua Lu, and Xiaoyan Ji . Modeling the Viscosity of Ionic Liquids with the Electrolyte Perturbed-Chain Statistical Association Fluid Theory. Industrial & Engineering Chemistry Research 2014, 53 (52) , 20258-20268. https://doi.org/10.1021/ie503485h
    46. José Manuel Míguez, José Matías Garrido, Felipe J. Blas, Hugo Segura, Andrés Mejía, and Manuel M. Piñeiro . Comprehensive Characterization of Interfacial Behavior for the Mixture CO2 + H2O + CH4: Comparison between Atomistic and Coarse Grained Molecular Simulation Models and Density Gradient Theory. The Journal of Physical Chemistry C 2014, 118 (42) , 24504-24519. https://doi.org/10.1021/jp507107a
    47. Andrés Mejía, Marcela Cartes, Hugo Segura, and Erich A. Müller . Use of Equations of State and Coarse Grained Simulations to Complement Experiments: Describing the Interfacial Properties of Carbon Dioxide + Decane and Carbon Dioxide + Eicosane Mixtures. Journal of Chemical & Engineering Data 2014, 59 (10) , 2928-2941. https://doi.org/10.1021/je5000764
    48. Cassiano G. Aimoli, Edward J. Maginn, and Charlles R. A. Abreu . Thermodynamic Properties of Supercritical Mixtures of Carbon Dioxide and Methane: A Molecular Simulation Study. Journal of Chemical & Engineering Data 2014, 59 (10) , 3041-3054. https://doi.org/10.1021/je500120v
    49. Manuel M. Piñeiro, Felipe J. Blas, and María Carolina dos Ramos . Phase Equilibria and Excess Properties of Short-Alkane Mixtures Estimated Using the SAFT-VR Equation of State. Journal of Chemical & Engineering Data 2014, 59 (10) , 3242-3249. https://doi.org/10.1021/je500253h
    50. Wei-Lin Chen and Shiang-Tai Lin . A Priori Prediction of the Vapor–Liquid Equilibria of Mixtures of Acetic Acid and Water or Alcohols by Explicit Consideration of Hydrogen-Bonded Dimers. Industrial & Engineering Chemistry Research 2014, 53 (39) , 15261-15269. https://doi.org/10.1021/ie502492n
    51. Elmar Sauer, Marina Stavrou, and Joachim Gross . Comparison between a Homo- and a Heterosegmented Group Contribution Approach Based on the Perturbed-Chain Polar Statistical Associating Fluid Theory Equation of State. Industrial & Engineering Chemistry Research 2014, 53 (38) , 14854-14864. https://doi.org/10.1021/ie502203w
    52. R. Miri, P. Aagaard, and H. Hellevang . Examination of CO2–SO2 Solubility in Water by SAFT1. Implications for CO2 Transport and Storage. The Journal of Physical Chemistry B 2014, 118 (34) , 10214-10223. https://doi.org/10.1021/jp505562j
    53. S. Sokołowski and Y. V. Kalyuzhnyi . Re-entrant Phase Behavior in Confined Two-Patch Colloidal Particles. The Journal of Physical Chemistry B 2014, 118 (30) , 9076-9084. https://doi.org/10.1021/jp503826p
    54. Christoph Klink and Joachim Gross . A Density Functional Theory for Vapor–Liquid Interfaces of Mixtures Using the Perturbed-Chain Polar Statistical Associating Fluid Theory Equation of State. Industrial & Engineering Chemistry Research 2014, 53 (14) , 6169-6178. https://doi.org/10.1021/ie4029895
    55. Andrés Mejía, Carmelo Herdes, and Erich A. Müller . Force Fields for Coarse-Grained Molecular Simulations from a Corresponding States Correlation. Industrial & Engineering Chemistry Research 2014, 53 (10) , 4131-4141. https://doi.org/10.1021/ie404247e
    56. Liang Wu, Erich A. Müller, and George Jackson . Understanding and Describing the Liquid-Crystalline States of Polypeptide Solutions: A Coarse-Grained Model of PBLG in DMF. Macromolecules 2014, 47 (4) , 1482-1493. https://doi.org/10.1021/ma401230x
    57. Simona Ioniţă, Viorel Feroiu, and Dan Geană . Phase Equilibria of the Carbon Dioxide + 1-Decanol System at High Pressures. Journal of Chemical & Engineering Data 2013, 58 (11) , 3069-3077. https://doi.org/10.1021/je4005239
    58. Apostolos Krallis and Vasileios Kanellopoulos . Application of Sanchez–Lacombe and Perturbed-Chain Statistical Associating Fluid Theory Equation of State Models in Catalytic Olefins (Co)polymerization Industrial Applications. Industrial & Engineering Chemistry Research 2013, 52 (26) , 9060-9068. https://doi.org/10.1021/ie401056j
    59. Thanh-Binh Nguyen, Jean-Charles de Hemptinne, Benoit Creton, and Georgios M. Kontogeorgis . GC-PPC-SAFT Equation of State for VLE and LLE of Hydrocarbons and Oxygenated Compounds. Sensitivity Analysis. Industrial & Engineering Chemistry Research 2013, 52 (21) , 7014-7029. https://doi.org/10.1021/ie3028069
    60. Ahmadreza F. Ghobadi and J. Richard Elliott . Renormalization Group Adaptation to Equations of State From Molecular Simulation. Industrial & Engineering Chemistry Research 2013, 52 (21) , 7030-7043. https://doi.org/10.1021/ie400500j
    61. Khashayar Nasrifar . A Perturbed-Chain SAFT Equation of State Applied to Mixtures of Short- and Long-Chain n-Alkanes. Industrial & Engineering Chemistry Research 2013, 52 (19) , 6582-6591. https://doi.org/10.1021/ie400081a
    62. Carlos Avendaño, Thomas Lafitte, Claire S. Adjiman, Amparo Galindo, Erich A. Müller, and George Jackson . SAFT-γ Force Field for the Simulation of Molecular Fluids: 2. Coarse-Grained Models of Greenhouse Gases, Refrigerants, and Long Alkanes. The Journal of Physical Chemistry B 2013, 117 (9) , 2717-2733. https://doi.org/10.1021/jp306442b
    63. Hye Min Kim, Andrew J. Schultz, and David A. Kofke . Virial Equation of State of Water Based on Wertheim’s Association Theory. The Journal of Physical Chemistry B 2012, 116 (48) , 14078-14088. https://doi.org/10.1021/jp3067475
    64. Ioannis Tsivintzelis and Georgios M. Kontogeorgis . Capabilities and Limitations of an Association Theory for Chemicals in Liquid or Supercritical Solvents. Industrial & Engineering Chemistry Research 2012, 51 (41) , 13496-13517. https://doi.org/10.1021/ie301388d
    65. Kamil Paduszyński and Urszula Domańska . Heterosegmented Perturbed-Chain Statistical Associating Fluid Theory as a Robust and Accurate Tool for Modeling of Various Alkanes. 1. Pure Fluids. Industrial & Engineering Chemistry Research 2012, 51 (39) , 12967-12983. https://doi.org/10.1021/ie301998j
    66. Bennett D. Marshall, Kenneth R. Cox, and Walter G. Chapman . A Classical Density Functional Theory Study of the Neat n-Alkane/Water Interface. The Journal of Physical Chemistry C 2012, 116 (33) , 17641-17649. https://doi.org/10.1021/jp304634w
    67. M. B. Oliveira, F. Llovell, J. A. P. Coutinho, and L. F. Vega . Modeling the [NTf2] Pyridinium Ionic Liquids Family and Their Mixtures with the Soft Statistical Associating Fluid Theory Equation of State. The Journal of Physical Chemistry B 2012, 116 (30) , 9089-9100. https://doi.org/10.1021/jp303166f
    68. Xiaofei Xu, Diego E. Cristancho, Stéphane Costeux, and Zhen-Gang Wang . Density-Functional Theory for Polymer–Carbon Dioxide Mixtures. Industrial & Engineering Chemistry Research 2012, 51 (9) , 3832-3840. https://doi.org/10.1021/ie2029267
    69. Min-Kang Hsieh, Yen-Ting Yeh, Yan-Ping Chen, Po-Chun Chen, Shiang-Tai Lin, and Li-Jen Chen . Predictive Method for the Change in Equilibrium Conditions of Gas Hydrates with Addition of Inhibitors and Electrolytes. Industrial & Engineering Chemistry Research 2012, 51 (5) , 2456-2469. https://doi.org/10.1021/ie202103a
    70. Nicolas Ferrando, Jean-Charles de Hemptinne, Pascal Mougin, and Jean-Philippe Passarello . Prediction of the PC-SAFT Associating Parameters by Molecular Simulation. The Journal of Physical Chemistry B 2012, 116 (1) , 367-377. https://doi.org/10.1021/jp209313a
    71. Ilya Polishuk . Implementation of SAFT + Cubic, PC-SAFT, and Soave–Benedict–Webb–Rubin Equations of State for Comprehensive Description of Thermodynamic Properties in Binary and Ternary Mixtures of CH4, CO2, and n-C16H34. Industrial & Engineering Chemistry Research 2011, 50 (24) , 14175-14185. https://doi.org/10.1021/ie201952n
    72. Esther Forte, Amparo Galindo, and J. P. Martin Trusler . Experimental and Molecular Modeling Study of the Three-Phase Behavior of (n-Decane + Carbon Dioxide + Water) at Reservoir Conditions. The Journal of Physical Chemistry B 2011, 115 (49) , 14591-14609. https://doi.org/10.1021/jp206806a
    73. Erich A. Müller and Andrés Mejía . Comparison of United-Atom Potentials for the Simulation of Vapor–Liquid Equilibria and Interfacial Properties of Long-Chain n-Alkanes up to n-C100. The Journal of Physical Chemistry B 2011, 115 (44) , 12822-12834. https://doi.org/10.1021/jp203236q
    74. Kamil Paduszyński and Urszula Domańska . Solubility of Aliphatic Hydrocarbons in Piperidinium Ionic Liquids: Measurements and Modeling in Terms of Perturbed-Chain Statistical Associating Fluid Theory and Nonrandom Hydrogen-Bonding Theory. The Journal of Physical Chemistry B 2011, 115 (43) , 12537-12548. https://doi.org/10.1021/jp205048b
    75. M. Atilhan, S. Aparicio, S. Ejaz, D. Cristancho, I. Mantilla, and K. R. Hall . p–ρ–T Behavior of Three Lean Synthetic Natural Gas Mixtures Using a Magnetic Suspension Densimeter and Isochoric Apparatus from (250 to 450) K with Pressures up to 150 MPa: Part II. Journal of Chemical & Engineering Data 2011, 56 (10) , 3766-3774. https://doi.org/10.1021/je200438t
    76. Ilya Polishuk . Semi-Theoretical Versus Entirely Empirical: Comparing SAFT + Cubic and Soave–Benedict–Webb–Rubin (SBWR) Equations of State. Industrial & Engineering Chemistry Research 2011, 50 (19) , 11422-11431. https://doi.org/10.1021/ie201306z
    77. Carlos Avendaño, Thomas Lafitte, Amparo Galindo, Claire S. Adjiman, George Jackson, and Erich A. Müller . SAFT-γ Force Field for the Simulation of Molecular Fluids. 1. A Single-Site Coarse Grained Model of Carbon Dioxide. The Journal of Physical Chemistry B 2011, 115 (38) , 11154-11169. https://doi.org/10.1021/jp204908d
    78. Maria Jorge Pratas, Mariana B. Oliveira, Maria José Pastoriza-Gallego, António J. Queimada, Manuel M. Piñeiro, and João A. P. Coutinho . High-Pressure Biodiesel Density: Experimental Measurements, Correlation, and Cubic-Plus-Association Equation of State (CPA EoS) Modeling. Energy & Fuels 2011, 25 (8) , 3806-3814. https://doi.org/10.1021/ef200807m
    79. Nikolaos I. Diamantonis and Ioannis G. Economou . Evaluation of Statistical Associating Fluid Theory (SAFT) and Perturbed Chain-SAFT Equations of State for the Calculation of Thermodynamic Derivative Properties of Fluids Related to Carbon Capture and Sequestration. Energy & Fuels 2011, 25 (7) , 3334-3343. https://doi.org/10.1021/ef200387p
    80. N. Mac Dowell, F. E. Pereira, F. Llovell, F. J. Blas, C. S. Adjiman, G. Jackson, and A. Galindo . Transferable SAFT-VR Models for the Calculation of the Fluid Phase Equilibria in Reactive Mixtures of Carbon Dioxide, Water, and n-Alkylamines in the Context of Carbon Capture. The Journal of Physical Chemistry B 2011, 115 (25) , 8155-8168. https://doi.org/10.1021/jp107467s
    81. Daniel Van Niekerk, Fidel Castro-Marcano, Coray M. Colina, and Jonathan P. Mathews . Solvent Swelling Extent of Permian-Aged Vitrinite- and Inertinite-Rich Coals: Experiments and Modeling Using the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT). Energy & Fuels 2011, 25 (6) , 2559-2564. https://doi.org/10.1021/ef2001508
    82. Dong Nguyen-Huynh, Jean-Charles de Hemptinne, Rafael Lugo, Jean-Philippe Passarello, and Pascal Tobaly . Modeling Liquid–Liquid and Liquid–Vapor Equilibria of Binary Systems Containing Water with an Alkane, an Aromatic Hydrocarbon, an Alcohol or a Gas (Methane, Ethane, CO2 or H2S), Using Group Contribution Polar Perturbed-Chain Statistical Associating Fluid Theory. Industrial & Engineering Chemistry Research 2011, 50 (12) , 7467-7483. https://doi.org/10.1021/ie102045g
    83. Andrew J. Crane and Erich A. Müller . Self-Assembly of T-Shaped Polyphilic Molecules in Solvent Mixtures. The Journal of Physical Chemistry B 2011, 115 (16) , 4592-4605. https://doi.org/10.1021/jp111512z
    84. F. Llovell, E. Valente, O. Vilaseca, and L. F. Vega . Modeling Complex Associating Mixtures with [Cn-mim][Tf2N] Ionic Liquids: Predictions from the Soft-SAFT Equation. The Journal of Physical Chemistry B 2011, 115 (15) , 4387-4398. https://doi.org/10.1021/jp112315b
    85. Ilya Polishuk . Hybridizing SAFT and Cubic EOS: What Can Be Achieved?. Industrial & Engineering Chemistry Research 2011, 50 (7) , 4183-4198. https://doi.org/10.1021/ie102420n
    86. Mariana B. Oliveira, Vítor Ribeiro, António José Queimada, and João A. P. Coutinho . Modeling Phase Equilibria Relevant to Biodiesel Production: A Comparison of gE Models, Cubic EoS, EoS−gE and Association EoS. Industrial & Engineering Chemistry Research 2011, 50 (4) , 2348-2358. https://doi.org/10.1021/ie1013585
    87. M. Atilhan, S. Aparicio, S. Ejaz, D. Cristancho, and K. R. Hall . PρT Behavior of a Lean Synthetic Natural Gas Mixture Using Magnetic Suspension Densimeters and an Isochoric Apparatus: Part I. Journal of Chemical & Engineering Data 2011, 56 (2) , 212-221. https://doi.org/10.1021/je100676j
    88. Luis A. Follegatti-Romero, Marcelo Lanza, Fabio R. M. Batista, Eduardo A. C. Batista, Mariana B. Oliveira, João A. P. Coutinho, and Antonio J. A. Meirelles. Liquid−Liquid Equilibrium for Ternary Systems Containing Ethyl Esters, Anhydrous Ethanol and Water at 298.15, 313.15, and 333.15 K. Industrial & Engineering Chemistry Research 2010, 49 (24) , 12613-12619. https://doi.org/10.1021/ie101611j
    89. Hye Min Kim, Andrew J. Schultz and David A. Kofke. Molecular Based Modeling of Associating Fluids via Calculation of Wertheim Cluster Integrals. The Journal of Physical Chemistry B 2010, 114 (35) , 11515-11524. https://doi.org/10.1021/jp103573k
    90. Hun Yong Shin and Jianzhong Wu. Equation of State for the Phase Behavior of Carbon Dioxide−Polymer Systems. Industrial & Engineering Chemistry Research 2010, 49 (16) , 7678-7684. https://doi.org/10.1021/ie100903f
    91. Khashayar Nasrifar and Amir H. Tafazzol. Vapor−Liquid Equilibria of Acid Gas−Aqueous Ethanolamine Solutions Using the PC-SAFT Equation of State. Industrial & Engineering Chemistry Research 2010, 49 (16) , 7620-7630. https://doi.org/10.1021/ie901181n
    92. A. Barreau, I. Brunella, J.-C. de Hemptinne, V. Coupard, X. Canet and F. Rivollet . Measurements of Liquid−Liquid Equilibria for a Methanol + Glycerol + Methyl Oleate System and Prediction Using Group Contribution Statistical Associating Fluid Theory. Industrial & Engineering Chemistry Research 2010, 49 (12) , 5800-5807. https://doi.org/10.1021/ie901379x
    93. I. Ya. Erukhimovich, M. V. Belousov, E. N. Govorun, V. Abetz and M. V. Tamm . Non-Centrosymmetric Lamellar Structures in the Associating Blends of Tri- and Diblock Copolymers. Macromolecules 2010, 43 (7) , 3465-3478. https://doi.org/10.1021/ma9023735
    94. Mariana B. Oliveira, Sofia I. Miguel, António J. Queimada and João A. P. Coutinho . Phase Equilibria of Ester + Alcohol Systems and Their Description with the Cubic-Plus-Association Equation of State. Industrial & Engineering Chemistry Research 2010, 49 (7) , 3452-3458. https://doi.org/10.1021/ie901470s
    95. Doros N. Theodorou. Progress and Outlook in Monte Carlo Simulations. Industrial & Engineering Chemistry Research 2010, 49 (7) , 3047-3058. https://doi.org/10.1021/ie9019006
    96. Keith E. Gubbins and Joshua D. Moore. Molecular Modeling of Matter: Impact and Prospects in Engineering. Industrial & Engineering Chemistry Research 2010, 49 (7) , 3026-3046. https://doi.org/10.1021/ie901909c
    97. N. Mac Dowell, F. Llovell, C. S. Adjiman, G. Jackson and A. Galindo. Modeling the Fluid Phase Behavior of Carbon Dioxide in Aqueous Solutions of Monoethanolamine Using Transferable Parameters with the SAFT-VR Approach. Industrial & Engineering Chemistry Research 2010, 49 (4) , 1883-1899. https://doi.org/10.1021/ie901014t
    98. Yun Peng, Kimberly D. Goff, M. Carolina dos Ramos and Clare McCabe . Predicting the Phase Behavior of Polymer Systems with the GC-SAFT-VR Approach. Industrial & Engineering Chemistry Research 2010, 49 (3) , 1378-1394. https://doi.org/10.1021/ie900795x
    99. Oscar G. Nino-Amezquita, Sabine Enders, Philip T. Jaeger and Rudolf Eggers. Measurement and Prediction of Interfacial Tension of Binary Mixtures. Industrial & Engineering Chemistry Research 2010, 49 (2) , 592-601. https://doi.org/10.1021/ie901209z
    100. Yu-ta Suzuki, Yasuhisa Yamamura, Masato Sumita, Syuma Yasuzuka and Kazuya Saito. Neat Liquid Consisting of Hydrogen-Bonded Tetramers: Dicyclohexylmethanol. The Journal of Physical Chemistry B 2009, 113 (30) , 10077-10080. https://doi.org/10.1021/jp9048764
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect