ACS Publications. Most Trusted. Most Cited. Most Read
Unnoticed Pitfalls of Soave-Type Alpha Functions in Cubic Equations of State
My Activity

Figure 1Loading Img
    Article

    Unnoticed Pitfalls of Soave-Type Alpha Functions in Cubic Equations of State
    Click to copy article linkArticle link copied!

    View Author Information
    Departamento de Ingeniería Química, Universidad de Concepción, POB 160-C, Concepción, Chile, Institute of Physical Chemistry, University of Cologne, Cologne, Germany, and Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
    Other Access Options

    Industrial & Engineering Chemistry Research

    Cite this: Ind. Eng. Chem. Res. 2003, 42, 22, 5662–5673
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ie020828p
    Published October 7, 2003
    Copyright © 2003 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Empirical thermal cohesion functions, α(Tr), are frequently used in conventional equations of state (EOS) for fitting the vapor pressures of pure fluids. Accurate vapor pressure predictions are required for correlating and/or predicting the phase equilibrium and interfacial tension of multicomponent mixtures. This is the case for the Redlich−Kwong−Soave and Peng−Robinson models, two well-established models for engineering applications. In this work, we demonstrate that, in the case of pure fluids, the α(Tr) function can potentially predict multiple mechanically stable critical points, thus affecting the global topology of phase equilibrium predictions. A detailed analysis, based on the consistency of the prediction of the Joule−Thomson inversion curve, reveals that these predictions are not reliable from a physical point of view. In fact, conventional cubic EOS are able to predict multiple Joule−Thomson inversion curves, a behavior symptomatic of the prediction of multiple stable critical points for pure fluids. Similar pitfalls have been detected in theoretically based EOS such as SAFT and the model proposed by Johnson et al. (Johnson, J. K.; Zollweg, J. A.; Gubbins, K. E. Mol. Phys.1993, 78, 591−615) for Lennard-Jones fluids, although beyond the range in which such models are usually employed. In the case of conventional cubic EOS with quadratic mixing rules, another pitfall related to conventional α(Tr) functions is the prediction of nondifferentiable critical lines and equilibrium envelopes for mixtures. Such a physical inconsistency might generate a mechanism that predicts closed loops of immiscibility in van der Waals-type EOS that contain a temperature-dependent parameter.

    Copyright © 2003 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     To whom correspondence should be addressed. E-mail:  [email protected].

     Universidad de Concepción.

     University of Cologne.

    §

     Ben-Gurion University of the Negev.

     Present address:  Department of Chemical Engineering & Biotechnology, The College of Judea and Samaria, Ariel, Israel.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 71 publications.

    1. Nayef M. Alsaifi, J. Richard Elliott. Avoiding Artifacts in Noncubic Equations of State. Industrial & Engineering Chemistry Research 2022, 61 (42) , 15661-15677. https://doi.org/10.1021/acs.iecr.2c01923
    2. Yunhao Sun, Aatto Laaksonen, Xiaohua Lu, Xiaoyan Ji. How to Detect Possible Pitfalls in ePC-SAFT Modeling. 2. Extension to Binary Mixtures of 96 Ionic Liquids with CO2, H2S, CO, O2, CH4, N2, and H2. Industrial & Engineering Chemistry Research 2020, 59 (49) , 21579-21591. https://doi.org/10.1021/acs.iecr.0c04485
    3. Héctor Quinteros-Lama, José Matías Garrido, Ilya Polishuk. Second-Order Differential Accelerators Based on the Geometry of Equilibrium for Thermodynamic Calculations. Part I. Pure Fluids. Industrial & Engineering Chemistry Research 2019, 58 (45) , 20838-20846. https://doi.org/10.1021/acs.iecr.9b04771
    4. André M. Palma, António J. Queimada, João A. P. Coutinho. Using Volume Shifts To Improve the Description of Speed of Sound and Other Derivative Properties with Cubic Equations of State. Industrial & Engineering Chemistry Research 2019, 58 (20) , 8856-8870. https://doi.org/10.1021/acs.iecr.9b00817
    5. Caleb J. Sisco, Mohammed I. L. Abutaqiya, Francisco M. Vargas, Walter G. Chapman. Cubic-Plus-Chain (CPC). I: A Statistical Associating Fluid Theory-Based Chain Modification to the Cubic Equation of State for Large Nonpolar Molecules. Industrial & Engineering Chemistry Research 2019, 58 (17) , 7341-7351. https://doi.org/10.1021/acs.iecr.9b00435
    6. Denise S. Leal, Marcelo Embiruçu, Gloria M. N. Costa, Karen V. Pontes. Prediction of Thermodynamic Properties of CO2 by Cubic and Multiparameter Equations of State for Fluid Dynamics Applications. Journal of Chemical & Engineering Data 2019, 64 (4) , 1746-1759. https://doi.org/10.1021/acs.jced.8b01238
    7. André M. Palma, António J. Queimada, João A. P. Coutinho. Modeling of the Mixture Critical Locus with a Modified Cubic Plus Association (CPA) EoS: Aromatics, Ketones, Ethers, Diethyl Carbonate, and THF. Industrial & Engineering Chemistry Research 2018, 57 (46) , 15857-15868. https://doi.org/10.1021/acs.iecr.8b03657
    8. Wenying Zhao, Xiaoyan Sun, Li Xia, Shuguang Xiang. Research into the Polynomial Alpha Function for the Cubic Equation of State. Industrial & Engineering Chemistry Research 2018, 57 (38) , 12602-12623. https://doi.org/10.1021/acs.iecr.8b02549
    9. André M. Palma, António J. Queimada, João A. P. Coutinho. Modeling of the Mixture Critical Locus with a Modified Cubic Plus Association Equation of State: Water, Alkanols, Amines, and Alkanes. Industrial & Engineering Chemistry Research 2018, 57 (31) , 10649-10662. https://doi.org/10.1021/acs.iecr.8b01960
    10. André M. Palma, António J. Queimada, and João A. P. Coutinho . Improved Prediction of Water Properties and Phase Equilibria with a Modified Cubic Plus Association Equation of State. Industrial & Engineering Chemistry Research 2017, 56 (51) , 15163-15176. https://doi.org/10.1021/acs.iecr.7b03522
    11. André F. Young, Fernando L. P. Pessoa, and Victor R. R. Ahón . Comparison of 20 Alpha Functions Applied in the Peng–Robinson Equation of State for Vapor Pressure Estimation. Industrial & Engineering Chemistry Research 2016, 55 (22) , 6506-6516. https://doi.org/10.1021/acs.iecr.6b00721
    12. Mulamba Marc Tshibangu, Alain Valtz, Caleb Narasigadu, Christophe Coquelet, and Deresh Ramjugernath . Isothermal Vapor–Liquid Equilibrium Data and Thermodynamic Modeling for Binary Systems of Perfluorobutane (R610) + (Methane or Hydrogen Sulfide) at (293, 313, and 333) K. Journal of Chemical & Engineering Data 2014, 59 (9) , 2865-2871. https://doi.org/10.1021/je500496y
    13. Ilya Polishuk . Implementation of SAFT + Cubic, PC-SAFT, and Soave–Benedict–Webb–Rubin Equations of State for Comprehensive Description of Thermodynamic Properties in Binary and Ternary Mixtures of CH4, CO2, and n-C16H34. Industrial & Engineering Chemistry Research 2011, 50 (24) , 14175-14185. https://doi.org/10.1021/ie201952n
    14. Ilya Polishuk . Hybridizing SAFT and Cubic EOS: What Can Be Achieved?. Industrial & Engineering Chemistry Research 2011, 50 (7) , 4183-4198. https://doi.org/10.1021/ie102420n
    15. Daniela Espinoza, Hugo Segura, Jaime Wisniak and Ilya Polishuk . Comments on “Joule−Thomson Inversion Curves and Third Virial Coefficients for Pure Fluids from Molecular-Based Models” and “Predicted Inversion Curve and Third Virial Coefficients of Carbon Dioxide at High Temperatures”. Industrial & Engineering Chemistry Research 2009, 48 (14) , 6901-6903. https://doi.org/10.1021/ie900275w
    16. Ilya Polishuk. Novel Four-Parameter EOS with Temperature-Independent Parameters. Industrial & Engineering Chemistry Research 2007, 46 (26) , 9248-9256. https://doi.org/10.1021/ie070799o
    17. Fèlix Llovell and, Lourdes F. Vega. Prediction of Thermodynamic Derivative Properties of Pure Fluids through the Soft-SAFT Equation of State. The Journal of Physical Chemistry B 2006, 110 (23) , 11427-11437. https://doi.org/10.1021/jp0608022
    18. Kh. Nasrifar and, O. Bolland, , M. Moshfeghian. Predicting Natural Gas Dew Points from 15 Equations of State. Energy & Fuels 2005, 19 (2) , 561-572. https://doi.org/10.1021/ef0498465
    19. Ilya Polishuk and, Juan H. Vera. A Novel Equation of State for the Prediction of Thermodynamic Properties of Fluids. The Journal of Physical Chemistry B 2005, 109 (12) , 5977-5984. https://doi.org/10.1021/jp046025s
    20. Kh. Nasrifar and, O. Bolland. Square-Well Potential and a New α Function for the Soave−Redlich−Kwong Equation of State. Industrial & Engineering Chemistry Research 2004, 43 (21) , 6901-6909. https://doi.org/10.1021/ie049545i
    21. Ilya Polishuk,, Jaime Wisniak, and, Hugo Segura. Estimation of Liquid−Liquid−Vapor Equilibria in Binary Mixtures of n-Alkanes. Industrial & Engineering Chemistry Research 2004, 43 (18) , 5957-5964. https://doi.org/10.1021/ie049797j
    22. Ulrich K. Deiters, Thomas Kraska. Equations of state for pure fluids. 2024, 247-286. https://doi.org/10.1016/B978-0-44-313280-3.00016-3
    23. . References. 2024, 429-447. https://doi.org/10.1016/B978-0-44-313280-3.00023-0
    24. Gustavo Chaparro, Erich A. Müller. Development of thermodynamically consistent machine-learning equations of state: Application to the Mie fluid. The Journal of Chemical Physics 2023, 158 (18) https://doi.org/10.1063/5.0146634
    25. Pradnya N.P. Ghoderao, Mohan Narayan, Vishwanath H. Dalvi, Hun Soo Byun. Patel-Teja cubic equation of state – A review of modifications and applications till 2022. Fluid Phase Equilibria 2023, 567 , 113707. https://doi.org/10.1016/j.fluid.2022.113707
    26. Mohammad Bagher Asgharnejad Lamraski, Gowhar Ahmad Naikoo, Mona Zamani Pedram, Ali Sohani, Siamak Hoseinzadeh, Hiresh Moradi. Thermodynamic modeling of several alcohol-hydrocarbon binary mixtures at low to moderate conditions. Journal of Molecular Liquids 2022, 346 , 117924. https://doi.org/10.1016/j.molliq.2021.117924
    27. Lucas P. Zini, Paula B. Staudt, Rafael de P. Soares. An improved dispersive contribution for the COSMO-SAC-Phi equation of state. Fluid Phase Equilibria 2021, 534 , 112942. https://doi.org/10.1016/j.fluid.2021.112942
    28. Xiaodong Liang, Baoliang Peng, Yuan Chen, Jianhui Luo, Michael Locht Michelsen, Georgios M. Kontogeorgis. Matching the critical point of associating fluids with the Cubic Plus Association equation of state. Fluid Phase Equilibria 2020, 526 , 112674. https://doi.org/10.1016/j.fluid.2020.112674
    29. Yunhao Sun, Zhida Zuo, Aatto Laaksonen, Xiaohua Lu, Xiaoyan Ji. How to detect possible pitfalls in ePC-SAFT modelling: Extension to ionic liquids. Fluid Phase Equilibria 2020, 519 , 112641. https://doi.org/10.1016/j.fluid.2020.112641
    30. Alain Valtz, Jamal El Abbadi, Christophe Coquelet, Céline Houriez. Experimental measurements and modelling of vapour-liquid equilibrium of 2,3,3,3-tetrafluoropropene (R-1234yf) + 1,1,1,2,2-pentafluoropropane (R-245cb) system. International Journal of Refrigeration 2019, 107 , 315-325. https://doi.org/10.1016/j.ijrefrig.2019.07.024
    31. Kaiqiang Zhang, Na Jia, Lirong Liu. Nanoscale-extended alpha functions for pure and mixing confined fluids. Fluid Phase Equilibria 2019, 482 , 64-80. https://doi.org/10.1016/j.fluid.2018.10.018
    32. Fufang Yang, Qiang Liu, Yuanyuan Duan, Zhen Yang. On the temperature dependence of the α function in the cubic equation of state. Chemical Engineering Science 2018, 192 , 565-575. https://doi.org/10.1016/j.ces.2018.08.014
    33. Juheng Yang, Jing Gong, Guoyun Shi, Huirong Huang, Dan Wang, Wei Wang, Qingping Li, Bohui Shi, Haiyuan Yao. Prediction of vapor-liquid equilibrium in highly asymmetric paraffinic systems with new modified EOS-GE model. Journal of Petroleum Science and Engineering 2017, 159 , 810-817. https://doi.org/10.1016/j.petrol.2017.10.015
    34. M.A. Ahmadi, A. Bahadori. Retrograde Gas Condensate. 2017, 333-404. https://doi.org/10.1016/B978-0-12-803437-8.00007-5
    35. Luis A. Forero G, Jorge A. Velásquez J. A generalized cubic equation of state for non-polar and polar substances. Fluid Phase Equilibria 2016, 418 , 74-87. https://doi.org/10.1016/j.fluid.2015.09.045
    36. Humbul Suleman, Abdulhalim Shah Maulud, Zakaria Man. A Fugacity Corrected Thermodynamic Framework for Aqueous Alkanolamine Solutions. Journal of Solution Chemistry 2016, 45 (4) , 546-559. https://doi.org/10.1007/s10953-016-0453-2
    37. José Matías Garrido, Manuel M. Piñeiro, Andrés Mejía, Felipe J. Blas. Understanding the interfacial behavior in isopycnic Lennard-Jones mixtures by computer simulations. Physical Chemistry Chemical Physics 2016, 18 (2) , 1114-1124. https://doi.org/10.1039/C5CP06562C
    38. Mirosław Chorążewski, Karel Aim, Ivan Wichterle, Johan Jacquemin, Ilya Polishuk. High-pressure phase equilibrium in the {carbon dioxide (1) + 1-chloropropane (2)} binary system. The Journal of Chemical Thermodynamics 2015, 91 , 165-171. https://doi.org/10.1016/j.jct.2015.07.039
    39. Romain Privat, Maxime Visconte, Anis Zazoua-Khames, Jean-Noël Jaubert, Rafiqul Gani. Analysis and prediction of the alpha-function parameters used in cubic equations of state. Chemical Engineering Science 2015, 126 , 584-603. https://doi.org/10.1016/j.ces.2014.12.040
    40. José Matías Garrido, Héctor Quinteros-Lama, Manuel M. Piñeiro, Andrés Mejía, Hugo Segura. On the phase and interface behavior along the three-phase line of ternary Lennard-Jones mixtures: A collaborative approach based on square gradient theory and molecular dynamics simulations. The Journal of Chemical Physics 2014, 141 (1) https://doi.org/10.1063/1.4885348
    41. G. Pisoni, M. Cismondi, L. Cardozo-Filho, M.S. Zabaloy. Critical end line topologies for ternary systems. The Journal of Supercritical Fluids 2014, 89 , 33-47. https://doi.org/10.1016/j.supflu.2014.01.014
    42. Luis A. Forero G., Jorge A. Velásquez J.. A modified Patel–Teja cubic equation of state. Part II: Parameters for polar substances and its mixtures. Fluid Phase Equilibria 2014, 364 , 75-87. https://doi.org/10.1016/j.fluid.2013.12.009
    43. Ulrich K. Deiters. Comments on the modeling of hydrogen and hydrogen-containing mixtures with cubic equations of state. Fluid Phase Equilibria 2013, 352 , 93-96. https://doi.org/10.1016/j.fluid.2013.05.032
    44. Luis A. Forero G., Jorge A. Velásquez J.. A modified Patel–Teja cubic equation of state: Part I – Generalized model for gases and hydrocarbons. Fluid Phase Equilibria 2013, 342 , 8-22. https://doi.org/10.1016/j.fluid.2012.12.032
    45. N. Bender, P. B. Staudt, R. P. Soares, N. S. M. Cardozo. Performance of predictive models in phase equilibria of complex associating systems: PC-SAFT and CEOS/GE. Brazilian Journal of Chemical Engineering 2013, 30 (1) , 75-82. https://doi.org/10.1590/S0104-66322013000100009
    46. María José Tardón, José Matías Garrido, Héctor Quinteros-Lama, Andrés Mejía, Hugo Segura. Molar isopycnicity in heterogeneous binary mixtures. Fluid Phase Equilibria 2012, 336 , 84-97. https://doi.org/10.1016/j.fluid.2012.07.034
    47. Luis A. Forero G., Jorge A. Velásquez J.. The Patel–Teja and the Peng–Robinson EoSs performance when Soave alpha function is replaced by an exponential function. Fluid Phase Equilibria 2012, 332 , 55-76. https://doi.org/10.1016/j.fluid.2012.05.026
    48. José Matías Garrido, Héctor Quinteros-Lama, Andrés Mejía, Jaime Wisniak, Hugo Segura. A rigorous approach for predicting the slope and curvature of the temperature–entropy saturation boundary of pure fluids. Energy 2012, 45 (1) , 888-899. https://doi.org/10.1016/j.energy.2012.06.073
    49. Romain Privat, Elisa Conte, Jean-Noël Jaubert, Rafiqul Gani. Are safe results obtained when SAFT equations are applied to ordinary chemicals? Part 2: Study of solid–liquid equilibria in binary systems. Fluid Phase Equilibria 2012, 318 , 61-76. https://doi.org/10.1016/j.fluid.2012.01.013
    50. Mauricio E. Flores, María José Tardón, Christian Bidart, Andrés Mejía, Hugo Segura. A topological approach to mass barotropic phenomena in asymmetric mixtures. Fluid Phase Equilibria 2012, 313 , 171-181. https://doi.org/10.1016/j.fluid.2011.09.030
    51. Ilya Polishuk. Addressing the issue of numerical pitfalls characteristic for SAFT EOS models. Fluid Phase Equilibria 2011, 301 (1) , 123-129. https://doi.org/10.1016/j.fluid.2010.11.021
    52. Dan Vladimir Nichita, Claude F. Leibovici. Parametric construction of characteristic curves. Fluid Phase Equilibria 2011, 300 (1-2) , 83-88. https://doi.org/10.1016/j.fluid.2010.10.017
    53. Ilya Polishuk, Angel Mulero. The numerical challenges of SAFT EoS models. Reviews in Chemical Engineering 2011, 27 (5-6) https://doi.org/10.1515/REVCE.2011.009
    54. Tiziana Fornari, Pilar Luna, Roumiana P. Stateva. The vdW EoS hundred years later, yet younger than before. Application to the phase equilibria modeling of food-type systems for a green technology. The Journal of Supercritical Fluids 2010, 55 (2) , 579-593. https://doi.org/10.1016/j.supflu.2010.10.021
    55. Ilya Polishuk. About the numerical pitfalls characteristic for SAFT EOS models. Fluid Phase Equilibria 2010, 298 (1) , 67-74. https://doi.org/10.1016/j.fluid.2010.07.003
    56. Romain Privat, Rafiqul Gani, Jean-Noël Jaubert. Are safe results obtained when the PC-SAFT equation of state is applied to ordinary pure chemicals?. Fluid Phase Equilibria 2010, 295 (1) , 76-92. https://doi.org/10.1016/j.fluid.2010.03.041
    57. Vladimir Kalikhman, Daniel Kost, Ilya Polishuk. About the physical validity of attaching the repulsive terms of analytical EOS models by temperature dependencies. Fluid Phase Equilibria 2010, 293 (2) , 164-167. https://doi.org/10.1016/j.fluid.2010.03.003
    58. F. Abdollahi-Demneh, M.A. Moosavian, M.M. Montazer-Rahmati, M.R. Omidkhah, H. Bahmaniar. Comparison of the prediction power of 23 generalized equations of state: Part II — Parametric evaluation. Fluid Phase Equilibria 2010, 291 (1) , 48-58. https://doi.org/10.1016/j.fluid.2009.12.017
    59. Ilya Polishuk, Maxim Katz, Nicolay Pavlov. Prediction of phase equilibria in the systems carbon dioxide (1)–fatty acids (2) by two cubic EOS models and classical mixing rules without binary adjustable parameters. Fluid Phase Equilibria 2010, 289 (1) , 90-93. https://doi.org/10.1016/j.fluid.2009.11.021
    60. Evelyne Neau, Otilio Hernández-Garduza, Joan Escandell, Christophe Nicolas, Isabelle Raspo. The Soave, Twu and Boston–Mathias alpha functions in cubic equations of state. Fluid Phase Equilibria 2009, 276 (2) , 87-93. https://doi.org/10.1016/j.fluid.2008.09.023
    61. Romain Privat, Jean-Noël Jaubert, Fabrice Mutelet. Addition of the sulfhydryl group (–SH) to the PPR78 model (predictive 1978, Peng–Robinson EOS with temperature dependent kij calculated through a group contribution method). The Journal of Chemical Thermodynamics 2008, 40 (9) , 1331-1341. https://doi.org/10.1016/j.jct.2008.05.013
    62. M. Rabiei Faradonbeh, A. Bahramian, R. Masoudi. A New Approach to Improve the Phase Behavior of Supercritical Hydrocarbons Using PR EOS. 2008https://doi.org/10.2118/114567-MS
    63. Hugo Segura, Diego Seiltgens, Andrés Mejía, Félix Llovell, Lourdes F. Vega. An accurate direct technique for parameterizing cubic equations of state. Fluid Phase Equilibria 2008, 265 (1-2) , 66-83. https://doi.org/10.1016/j.fluid.2008.01.003
    64. Hugo Segura, Diego Seiltgens, Andrés Mejía, Félix Llovell, Lourdes F. Vega. An accurate direct technique for parameterizing cubic equations of state. Fluid Phase Equilibria 2008, 265 (1-2) , 155-172. https://doi.org/10.1016/j.fluid.2008.01.013
    65. O. Chouaieb, A. Bellagi. New Attraction Term for the Soave‐Redlich‐Kwong Equation of State. The Canadian Journal of Chemical Engineering 2007, 85 (6) , 854-862. https://doi.org/10.1002/cjce.5450850606
    66. Marcelo F. Alfradique, Marcelo Castier. Critical points of hydrocarbon mixtures with the Peng–Robinson, SAFT, and PC-SAFT equations of state. Fluid Phase Equilibria 2007, 257 (1) , 78-101. https://doi.org/10.1016/j.fluid.2007.05.012
    67. Claude F. Leibovici, Dan Vladimir Nichita. PARAMETRIC GENERATION OF SINGLE-PHASE PROPERTIES (P-T CURVES) FOR MOST CUBIC EQUATIONS OF STATE AND ANY MIXING RULES. Chemical Engineering Communications 2007, 194 (5) , 648-655. https://doi.org/10.1080/00986440600992768
    68. Dan Vladimir Nichita, Claude F. Leibovici. Calculation of Joule–Thomson inversion curves for two-phase mixtures. Fluid Phase Equilibria 2006, 246 (1-2) , 167-176. https://doi.org/10.1016/j.fluid.2006.05.025
    69. Leonid Yelash, Marcus Müller, Wolfgang Paul, Kurt Binder. A global investigation of phase equilibria using the perturbed-chain statistical-associating-fluid-theory approach. The Journal of Chemical Physics 2005, 123 (1) https://doi.org/10.1063/1.1948374
    70. Martín Cismondi, Jørgen Mollerup. Development and application of a three-parameter RK–PR equation of state. Fluid Phase Equilibria 2005, 232 (1-2) , 74-89. https://doi.org/10.1016/j.fluid.2005.03.020
    71. Ming-Chung Wang, David Shan-Hill Wong. Calculation of critical lines of hydrocarbon/water systems by extrapolating mixing rules fitted to subcritical equilibrium data. Fluid Phase Equilibria 2005, 227 (2) , 183-196. https://doi.org/10.1016/j.fluid.2004.11.012

    Industrial & Engineering Chemistry Research

    Cite this: Ind. Eng. Chem. Res. 2003, 42, 22, 5662–5673
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ie020828p
    Published October 7, 2003
    Copyright © 2003 American Chemical Society

    Article Views

    511

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.