Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
The Darken Relation for Multicomponent Diffusion in Liquid Mixtures of Linear Alkanes:  An Investigation Using Molecular Dynamics (MD) Simulations
My Activity

Figure 1Loading Img
    Article

    The Darken Relation for Multicomponent Diffusion in Liquid Mixtures of Linear Alkanes:  An Investigation Using Molecular Dynamics (MD) Simulations
    Click to copy article linkArticle link copied!

    View Author Information
    Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
    Other Access OptionsSupporting Information (1)

    Industrial & Engineering Chemistry Research

    Cite this: Ind. Eng. Chem. Res. 2005, 44, 17, 6939–6947
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ie050146c
    Published July 7, 2005
    Copyright © 2005 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Molecular dynamics (MD) simulations have been performed for binary, ternary, and quaternary liquid mixtures of linear alkanes containing 1−16 carbons. Both the self-diffusivities (Di,self) and the Maxwell−Stefan (M−S) diffusivities (Đij) were determined from the MD simulations for various mixture compositions. The self-diffusivity was determined to be a linear function of the mass fractions ωj of the constituent species in the mixture:  Di,self = ωj where is the self-diffusivity of infinitely dilute species i in species j. The Maxwell−Stefan diffusivity of the binary ij pair in a multicomponent mixture was determined to be predicted reasonably well by the generalization of the Darken relation:  Đij = [xi/(xi + xj)]Dj,self + [xj/(xi + xj)]Di,self, where xi is the mole fraction of species i.

    Copyright © 2005 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     To whom correspondence should be addressed. Fax:  +31 20 5255604. E-mail:  [email protected].

    Supporting Information Available

    Click to copy section linkSection link copied!

    The Darken relation for multicomponent diffusion in liquid mixtures. An investigation using MD simulations. Appendix A contains the complete set of data on Di,self and Đij for each campaign listed in Table 1; Appendix B contains the detailed procedure for calculation of the M−S diffusivities Đij from the Onsager coefficients Λij determined from MD simulations. (PDF.) This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 151 publications.

    1. Pranay Kumar Chittem, Malvina Supper, Malte Kaspereit, Wenchang Wu, Andreas P. Fröba. Diffusivities in Binary and Ternary Mixtures Containing Poly(ethylene) Glycol, Acetonitrile, and Water by Dynamic Light Scattering. Industrial & Engineering Chemistry Research 2024, 63 (33) , 14897-14908. https://doi.org/10.1021/acs.iecr.4c02233
    2. Thejas Hulikal Chakrapani, Hadi Hajibeygi, Othonas A. Moultos, Thijs J. H. Vlugt. Mutual Diffusivities of Mixtures of Carbon Dioxide and Hydrogen and Their Solubilities in Brine: Insight from Molecular Simulations. Industrial & Engineering Chemistry Research 2024, 63 (23) , 10456-10481. https://doi.org/10.1021/acs.iecr.4c01078
    3. Kalin R. Baca, Karim Al-Barghouti, Ning Wang, Madelyn G. Bennett, Lucia Matamoros Valenciano, Tessie L. May, Irene V. Xu, Max Cordry, Dorothy M. Haggard, Abigail G. Haas, Ashley Heimann, Abby N. Harders, Hannah G. Uhl, Diego T. Melfi, Andrew D. Yancey, Rajkumar Kore, Edward J. Maginn, Aaron M. Scurto, Mark B. Shiflett. Ionic Liquids for the Separation of Fluorocarbon Refrigerant Mixtures. Chemical Reviews 2024, 124 (9) , 5167-5226. https://doi.org/10.1021/acs.chemrev.3c00276
    4. Zhengyu Zhang, Jean-Frédéric Audibert, Weixi Wang, Valérie Génot, Soo Young Park, Anne Spasojević-de Biré, Robert B. Pansu. Thermodynamics of Oiling-Out in Antisolvent Crystallization. II. Diffusion toward Spinodal Decomposition. Crystal Growth & Design 2024, 24 (8) , 3501-3516. https://doi.org/10.1021/acs.cgd.4c00231
    5. Yunqi Shao, Harish Gudla, Jonas Mindemark, Daniel Brandell, Chao Zhang. Ion Transport in Polymer Electrolytes: Building New Bridges between Experiment and Molecular Simulation. Accounts of Chemical Research 2024, 57 (8) , 1123-1134. https://doi.org/10.1021/acs.accounts.3c00791
    6. Frances D. Lenahan, Maximilian Piszko, Tobias Klein, Andreas P. Fröba. Prediction of Fick Diffusion Coefficients in Binary Mixtures of Liquids with Dissolved Gases at Infinite Dilution─A Review. Journal of Chemical & Engineering Data 2024, 69 (3) , 692-702. https://doi.org/10.1021/acs.jced.3c00618
    7. Sree Harsha Bhimineni, Tianhang Zhou, Saeed Mahmoodpour, Mrityunjay Singh, Wei Li, Saientan Bag, Ingo Sass, Florian Müller-Plathe. Machine-Learning-Assisted Investigation of the Diffusion of Hydrogen in Brine by Performing Molecular Dynamics Simulation. Industrial & Engineering Chemistry Research 2023, 62 (49) , 21385-21396. https://doi.org/10.1021/acs.iecr.3c01957
    8. Felipe Mourao Coelho, Luis Fernando Mercier Franco, Abbas Firoozabadi. Effect of Salinity on CO2 Thermodiffusion in Aqueous Mixtures by Molecular Dynamics Simulations. ACS Sustainable Chemistry & Engineering 2023, 11 (48) , 17086-17097. https://doi.org/10.1021/acssuschemeng.3c05269
    9. Parsa Habibi, Julien R. T. Postma, Johan T. Padding, Poulumi Dey, Thijs J. H. Vlugt, Othonas A. Moultos. Thermodynamic and Transport Properties of H2/H2O/NaB(OH)4 Mixtures Using the Delft Force Field (DFF/B(OH)4–). Industrial & Engineering Chemistry Research 2023, 62 (30) , 11992-12005. https://doi.org/10.1021/acs.iecr.3c01422
    10. Aashutosh Mistry, Zhou Yu, Brandon L. Peters, Chao Fang, Rui Wang, Larry A. Curtiss, Nitash P. Balsara, Lei Cheng, Venkat Srinivasan. Toward Bottom-Up Understanding of Transport in Concentrated Battery Electrolytes. ACS Central Science 2022, 8 (7) , 880-890. https://doi.org/10.1021/acscentsci.2c00348
    11. Xiao Zhao, Tengfei Luo, Hui Jin. Predicting Diffusion Coefficients of Binary and Ternary Supercritical Water Mixtures via Machine and Transfer Learning with Deep Neural Network. Industrial & Engineering Chemistry Research 2022, 61 (24) , 8542-8550. https://doi.org/10.1021/acs.iecr.2c00017
    12. Ioannis N. Tsimpanogiannis, Samadarshi Maity, Alper T. Celebi, Othonas A. Moultos. Engineering Model for Predicting the Intradiffusion Coefficients of Hydrogen and Oxygen in Vapor, Liquid, and Supercritical Water based on Molecular Dynamics Simulations. Journal of Chemical & Engineering Data 2021, 66 (8) , 3226-3244. https://doi.org/10.1021/acs.jced.1c00300
    13. Tobias Klein, Maximilian Piszko, Chathura J. Kankanamge, Georgios Kasapis, Andreas P. Fröba. Fick Diffusion Coefficient in Binary Mixtures of [HMIM][NTf2] and Carbon Dioxide by Dynamic Light Scattering and Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2021, 125 (19) , 5100-5113. https://doi.org/10.1021/acs.jpcb.1c01616
    14. Kara D. Fong, Julian Self, Bryan D. McCloskey, Kristin A. Persson. Ion Correlations and Their Impact on Transport in Polymer-Based Electrolytes. Macromolecules 2021, 54 (6) , 2575-2591. https://doi.org/10.1021/acs.macromol.0c02545
    15. Calen J. Leverant, Jacob A. Harvey, Todd M. Alam. Machine Learning-Based Upscaling of Finite-Size Molecular Dynamics Diffusion Simulations for Binary Fluids. The Journal of Physical Chemistry Letters 2020, 11 (24) , 10375-10381. https://doi.org/10.1021/acs.jpclett.0c03108
    16. Sergey Krachkovskiy, Martin Dontigny, Sylviane Rochon, Chisu Kim, Michel L. Trudeau, Karim Zaghib. Determination of Binary Diffusivities in Concentrated Lithium Battery Electrolytes via NMR and Conductivity Measurements. The Journal of Physical Chemistry C 2020, 124 (45) , 24624-24630. https://doi.org/10.1021/acs.jpcc.0c07383
    17. Gabriela Guevara-Carrion, Robin Fingerhut, Jadran Vrabec. Fick Diffusion Coefficient Matrix of a Quaternary Liquid Mixture by Molecular Dynamics. The Journal of Physical Chemistry B 2020, 124 (22) , 4527-4535. https://doi.org/10.1021/acs.jpcb.0c01625
    18. Wenchang Wu, Tobias Klein, Manuel Kerscher, Michael H. Rausch, Thomas M. Koller, Cédric Giraudet, Andreas P. Fröba. Mutual and Thermal Diffusivities as well as Fluid-Phase Equilibria of Mixtures of 1-Hexanol and Carbon Dioxide. The Journal of Physical Chemistry B 2020, 124 (12) , 2482-2494. https://doi.org/10.1021/acs.jpcb.0c00646
    19. Christine Peters, Julia Thien, Ludger Wolff, Hans-Jürgen Koß, André Bardow. Quaternary Diffusion Coefficients in Liquids from Microfluidics and Raman Microspectroscopy: Cyclohexane + Toluene + Acetone + Methanol. Journal of Chemical & Engineering Data 2020, 65 (3) , 1273-1288. https://doi.org/10.1021/acs.jced.9b00632
    20. Lee P. McMaster. Method for Approximating and Interpreting Transport Properties for a Homologous Series of Solid Polymer Electrolytes. Industrial & Engineering Chemistry Research 2019, 58 (48) , 22094-22113. https://doi.org/10.1021/acs.iecr.9b01676
    21. Wenchang Wu, Tobias Klein, Manuel Kerscher, Michael H. Rausch, Thomas M. Koller, Cédric Giraudet, Andreas P. Fröba. Diffusivities in 1-Alcohols Containing Dissolved H2, He, N2, CO, or CO2 Close to Infinite Dilution. The Journal of Physical Chemistry B 2019, 123 (41) , 8777-8790. https://doi.org/10.1021/acs.jpcb.9b06211
    22. Joseph R. Vella. Fick Diffusion Coefficients of the Gaseous CH4–CO2 System from Molecular Dynamics Simulations Using TraPPE Force Fields at 101.325, 506.625, 1013.25, 2533.12, and 5066.25 kPa. Journal of Chemical & Engineering Data 2019, 64 (9) , 3672-3681. https://doi.org/10.1021/acs.jced.8b01198
    23. Seyed Hossein Jamali, Thijs van Westen, Othonas A. Moultos, Thijs J. H. Vlugt. Optimizing Nonbonded Interactions of the OPLS Force Field for Aqueous Solutions of Carbohydrates: How to Capture Both Thermodynamics and Dynamics. Journal of Chemical Theory and Computation 2018, 14 (12) , 6690-6700. https://doi.org/10.1021/acs.jctc.8b00909
    24. Tatjana Janzen, Jadran Vrabec. Diffusion Coefficients of a Highly Nonideal Ternary Liquid Mixture: Cyclohexane–Toluene–Methanol. Industrial & Engineering Chemistry Research 2018, 57 (48) , 16508-16517. https://doi.org/10.1021/acs.iecr.8b04385
    25. Ana M. Mendoza, Petro Babak, Apostolos Kantzas. Estimation of Diffusion Coefficients in Liquid Solvent–Bitumen Systems. Energy & Fuels 2018, 32 (11) , 11143-11152. https://doi.org/10.1021/acs.energyfuels.8b01859
    26. Seyed Hossein Jamali, Remco Hartkamp, Christos Bardas, Jakob Söhl, Thijs J. H. Vlugt, Othonas A. Moultos. Shear Viscosity Computed from the Finite-Size Effects of Self-Diffusivity in Equilibrium Molecular Dynamics. Journal of Chemical Theory and Computation 2018, 14 (11) , 5959-5968. https://doi.org/10.1021/acs.jctc.8b00625
    27. Ludger Wolff, Seyed Hossein Jamali, Tim M. Becker, Othonas A. Moultos, Thijs J. H. Vlugt, André Bardow. Prediction of Composition-Dependent Self-Diffusion Coefficients in Binary Liquid Mixtures: The Missing Link for Darken-Based Models. Industrial & Engineering Chemistry Research 2018, 57 (43) , 14784-14794. https://doi.org/10.1021/acs.iecr.8b03203
    28. Hari Krishna Chilukoti, Florian Müller-Plathe, Hua Yang. Application of Reverse Nonequilibrium Molecular Dynamics to the Calculation of the Mutual Diffusion Coefficient of Alkane Mixtures. The Journal of Physical Chemistry B 2018, 122 (39) , 9210-9217. https://doi.org/10.1021/acs.jpcb.8b06886
    29. Tobias Klein, Wenchang Wu, Michael H. Rausch, Cédric Giraudet, Thomas M. Koller, Andreas P. Fröba. Influence of Liquid Structure on Fickian Diffusion in Binary Mixtures of n-Hexane and Carbon Dioxide Probed by Dynamic Light Scattering, Raman Spectroscopy, and Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2018, 122 (28) , 7122-7133. https://doi.org/10.1021/acs.jpcb.8b03568
    30. Seyed Hossein Jamali, Ludger Wolff, Tim M. Becker, André Bardow, Thijs J. H. Vlugt, Othonas A. Moultos. Finite-Size Effects of Binary Mutual Diffusion Coefficients from Molecular Dynamics. Journal of Chemical Theory and Computation 2018, 14 (5) , 2667-2677. https://doi.org/10.1021/acs.jctc.8b00170
    31. Stefan A. Bringuier, Mark J. Varady, Thomas P. Pearl, and Brent A. Mantooth . Characterization of Composition-Dependent Maxwell–Stefan Diffusivities in Mixtures of Polydimethylsiloxane, Nerve Agent VX, and Methanol. Industrial & Engineering Chemistry Research 2017, 56 (13) , 3713-3725. https://doi.org/10.1021/acs.iecr.7b00159
    32. G. Guevara-Carrion, Y. Gaponenko, T. Janzen, J. Vrabec, and V. Shevtsova . Diffusion in Multicomponent Liquids: From Microscopic to Macroscopic Scales. The Journal of Physical Chemistry B 2016, 120 (47) , 12193-12210. https://doi.org/10.1021/acs.jpcb.6b09810
    33. Andrzej Sławek, José Manuel Vicent-Luna, Bartosz Marszałek, Salvador R. G. Balestra, Wacław Makowski, and Sofía Calero . Adsorption of n-Alkanes in MFI and MEL: Quasi-Equilibrated Thermodesorption Combined with Molecular Simulations. The Journal of Physical Chemistry C 2016, 120 (44) , 25338-25350. https://doi.org/10.1021/acs.jpcc.6b06957
    34. Brahmananda Chakraborty, Sharif Kidwai, and Lavanya M. Ramaniah . Trapping of Li+ Ions by [ThFn]4–n Clusters Leading to Oscillating Maxwell–Stefan Diffusivity in the Molten Salt LiF–ThF4. The Journal of Physical Chemistry B 2016, 120 (32) , 7926-7936. https://doi.org/10.1021/acs.jpcb.6b05173
    35. Mark J. Varady, Thomas P. Pearl, Shawn M. Stevenson, and Brent A. Mantooth . Decontamination of VX from Silicone: Characterization of Multicomponent Diffusion Effects. Industrial & Engineering Chemistry Research 2016, 55 (11) , 3139-3149. https://doi.org/10.1021/acs.iecr.5b04826
    36. Rajamani Krishna . Highlighting Diffusional Coupling Effects in Ternary Liquid Extraction and Comparisons with Distillation. Industrial & Engineering Chemistry Research 2016, 55 (4) , 1053-1063. https://doi.org/10.1021/acs.iecr.5b04236
    37. Hari Krishna Chilukoti, Gota Kikugawa, and Taku Ohara . Self-diffusion Coefficient and Structure of Binary n-Alkane Mixtures at the Liquid–Vapor Interfaces. The Journal of Physical Chemistry B 2015, 119 (41) , 13177-13184. https://doi.org/10.1021/acs.jpcb.5b07189
    38. Brahmananda Chakraborty . Sign Crossover in All Maxwell–Stefan Diffusivities for Molten Salt LiF-BeF2: A Molecular Dynamics Study. The Journal of Physical Chemistry B 2015, 119 (33) , 10652-10663. https://doi.org/10.1021/acs.jpcb.5b04713
    39. Wei Shi and David R. Luebke . Enhanced Gas Absorption in the Ionic Liquid 1-n-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N]) Confined in Silica Slit Pores: A Molecular Simulation Study. Langmuir 2013, 29 (18) , 5563-5572. https://doi.org/10.1021/la400226g
    40. Xin Liu, Ana Martín-Calvo, Erin McGarrity, Sondre K. Schnell, Sofía Calero, Jean-Marc Simon, Dick Bedeaux, Signe Kjelstrup, André Bardow, and Thijs J. H. Vlugt . Fick Diffusion Coefficients in Ternary Liquid Systems from Equilibrium Molecular Dynamics Simulations. Industrial & Engineering Chemistry Research 2012, 51 (30) , 10247-10258. https://doi.org/10.1021/ie301009v
    41. Miquel Garcia-Ratés, Jean-Charles de Hemptinne, Josep Bonet Avalos, and Carlos Nieto-Draghi . Molecular Modeling of Diffusion Coefficient and Ionic Conductivity of CO2 in Aqueous Ionic Solutions. The Journal of Physical Chemistry B 2012, 116 (9) , 2787-2800. https://doi.org/10.1021/jp2081758
    42. Xin Liu, Sondre K. Schnell, Jean-Marc Simon, Dick Bedeaux, Signe Kjelstrup, André Bardow, and Thijs J. H. Vlugt . Fick Diffusion Coefficients of Liquid Mixtures Directly Obtained From Equilibrium Molecular Dynamics. The Journal of Physical Chemistry B 2011, 115 (44) , 12921-12929. https://doi.org/10.1021/jp208360s
    43. William R. French, Christopher R. Iacovella, and Peter T. Cummings . The Influence of Molecular Adsorption on Elongating Gold Nanowires. The Journal of Physical Chemistry C 2011, 115 (38) , 18422-18433. https://doi.org/10.1021/jp203837r
    44. Xin Liu, Thijs J.H. Vlugt, and André Bardow . Predictive Darken Equation for Maxwell-Stefan Diffusivities in Multicomponent Mixtures. Industrial & Engineering Chemistry Research 2011, 50 (17) , 10350-10358. https://doi.org/10.1021/ie201008a
    45. Xin Liu, Thijs J. H. Vlugt, and André Bardow . Maxwell–Stefan Diffusivities in Binary Mixtures of Ionic Liquids with Dimethyl Sulfoxide (DMSO) and H2O. The Journal of Physical Chemistry B 2011, 115 (26) , 8506-8517. https://doi.org/10.1021/jp203026c
    46. Xin Liu, André Bardow, and Thijs J. H. Vlugt . Multicomponent Maxwell−Stefan Diffusivities at Infinite Dilution. Industrial & Engineering Chemistry Research 2011, 50 (8) , 4776-4782. https://doi.org/10.1021/ie102515w
    47. Zoi A. Makrodimitri, Dominik J. M. Unruh, and Ioannis G. Economou . Molecular Simulation of Diffusion of Hydrogen, Carbon Monoxide, and Water in Heavy n-Alkanes. The Journal of Physical Chemistry B 2011, 115 (6) , 1429-1439. https://doi.org/10.1021/jp1063269
    48. Rajamani Krishna. Describing the Diffusion of Guest Molecules Inside Porous Structures. The Journal of Physical Chemistry C 2009, 113 (46) , 19756-19781. https://doi.org/10.1021/jp906879d
    49. Damelys Zabala, Carlos Nieto-Draghi, Jean Charles de Hemptinne and Aura L. López de Ramos . Diffusion Coefficients in CO2/n-Alkane Binary Liquid Mixtures by Molecular Simulation. The Journal of Physical Chemistry B 2008, 112 (51) , 16610-16618. https://doi.org/10.1021/jp8042329
    50. Lydia Zarkova, Uwe Hohm and Milena Damyanova . Viscosity, Second pVT Virial Coefficient, and Diffusion of Binary Mixtures of Small Alkanes CH4, C2H6, C3H8, n-C4H10, i-C4H10, n-C5H12, i-C5H12, and C(CH3)4 Predicted by Means of an Isotropic Temperature-Dependent Potential. Journal of Chemical & Engineering Data 2008, 53 (6) , 1231-1240. https://doi.org/10.1021/je800073v
    51. Ross Taylor. (Di)Still Modeling after All These Years:  A View of the State of the Art. Industrial & Engineering Chemistry Research 2007, 46 (13) , 4349-4357. https://doi.org/10.1021/ie061626m
    52. R. Krishna and, J. M. van Baten. Describing Binary Mixture Diffusion in Carbon Nanotubes with the Maxwell−Stefan Equations. An Investigation Using Molecular Dynamics Simulations. Industrial & Engineering Chemistry Research 2006, 45 (6) , 2084-2093. https://doi.org/10.1021/ie051126d
    53. Yuqi Su, Denis Saric, Gabriela Guevara-Carrion, Ying Zhang, Maogang He, Jadran Vrabec. Fick and Maxwell-Stefan diffusion of the liquid mixture cyclohexane + toluene + acetone + methanol and its subsystems. Chemical Engineering Science 2024, , 120662. https://doi.org/10.1016/j.ces.2024.120662
    54. Mohamed L. Malki, Hichem Chellal, Shaowen Mao, Vamegh Rasouli, Mohamed Mehana. A critical review of underground hydrogen storage: From fundamentals to applications, unveiling future frontiers in energy storage. International Journal of Hydrogen Energy 2024, 79 , 1365-1394. https://doi.org/10.1016/j.ijhydene.2024.07.076
    55. Meenesh R. Singh, Priyanka G Singh, Vamsi V Gande, Rohit Chauhan, Nitin Minocha. Simplified Universal Equations for Ionic Conductivity and Transference Number. Journal of The Electrochemical Society 2024, https://doi.org/10.1149/1945-7111/ad586c
    56. Yaquan Ai, Han Wu, Timothy Lee, Chia-fon Lee, Xiangrong Li. Theoretical analysis of the three-stage phase transition process of alkane droplet under supercritical conditions. International Journal of Heat and Mass Transfer 2024, 225 , 125381. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125381
    57. Hongwei Zhang, Xin Wang, Qinjun Kang, Bicheng Yan, Shuyu Sun, Rui Qiao. Transport properties of oil-CO2 mixtures in calcite nanopores: Physics and machine learning models. Fuel 2024, 358 , 130308. https://doi.org/10.1016/j.fuel.2023.130308
    58. Martin Preising, Martin French, Christopher Mankovich, François Soubiran, Ronald Redmer. Material Properties of Saturn’s Interior from Ab Initio Simulations. The Astrophysical Journal Supplement Series 2023, 269 (2) , 47. https://doi.org/10.3847/1538-4365/ad0293
    59. Øystein Gullbrekken, Sondre Kvalvåg Schnell. Coupled ion transport in concentrated PEO–LiTFSI polymer electrolytes. New Journal of Chemistry 2023, 47 (44) , 20344-20357. https://doi.org/10.1039/D3NJ04065H
    60. Aashutosh Mistry, Zhou Yu, Lei Cheng, Venkat Srinivasan. On Relative Importance of Vehicular and Structural Motions in Defining Electrolyte Transport. Journal of The Electrochemical Society 2023, 170 (11) , 110536. https://doi.org/10.1149/1945-7111/ad0c66
    61. Takumi Ijichi, Shin-ichi Tsuda, Takashi Tokumasu, Hiroki Nagashima. The evaluation of density and diffusion properties in hydrogen/oxygen mixture modelled by Lennard-Jones fluid. Molecular Physics 2023, 121 (19-20) https://doi.org/10.1080/00268976.2023.2192836
    62. Jeong-In Kim, Shusei Kubota, Shungo Natsui, Taiki Iwanaga, Yuji Miki, Hiroshi Nogami. Intra-particle Analysis of Impact of H2 on Iron-oxide Reduction in CO–CO2–H2–H2O–N2 Gas Atmosphere. ISIJ International 2023, 63 (10) , 1595-1606. https://doi.org/10.2355/isijinternational.ISIJINT-2023-152
    63. Signe Kjelstrup, Astrid Fagertun Gunnarshaug, Øystein Gullbrekken, Sondre K. Schnell, Anders Lervik. Transport coefficients for ion and solvent coupling. The case of the lithium-ion battery electrolyte. The Journal of Chemical Physics 2023, 159 (3) https://doi.org/10.1063/5.0158623
    64. Yongcheng Luo, Hanmin Xiao, Xiangui Liu, Taiyi Zheng, Zhenkai Wu. Diffusion coefficient and the volume swelling of CO2/light oil systems: Insights from dynamic volume analysis and molecular dynamics simulation. Journal of Molecular Liquids 2023, 382 , 121943. https://doi.org/10.1016/j.molliq.2023.121943
    65. Dieter Bothe, Pierre-Étienne Druet. On the structure of continuum thermodynamical diffusion fluxes—A novel closure scheme and its relation to the Maxwell–Stefan and the Fick–Onsager approach. International Journal of Engineering Science 2023, 184 , 103818. https://doi.org/10.1016/j.ijengsci.2023.103818
    66. Gastón A. González, Ruben A. Fritz, Yamil J. Colón, Felipe Herrera. Model reduction for molecular diffusion in nanoporous media. Physical Review Materials 2023, 7 (3) https://doi.org/10.1103/PhysRevMaterials.7.036001
    67. Mohammadali Ahmadi, Matthew Clarke, Zhangxin Chen. The effect of bitumen molecular fractions on diffusivity and rheology of bitumen under high‐temperature conditions: Molecular dynamics ( MD ) simulation study. The Canadian Journal of Chemical Engineering 2023, 101 (3) , 1150-1161. https://doi.org/10.1002/cjce.24650
    68. Sanaz Gharehzadeh Shirazi, Mohammad Almasi. Study of Thermodynamic and Transport Properties of Formamide and 1-Alkanol Mixtures at Different Temperatures. Journal of Solution Chemistry 2023, 52 (2) , 166-175. https://doi.org/10.1007/s10953-022-01221-8
    69. Daoming Feng, Caifen Wang, Yan Liu, Abid Naeem, Qin Zheng, Ming Yang, Jiwen Zhang, Li Wu, Tao Guo. Interactions of Essential Oil Components to Their Payloads in Supramolecular Particulate Carriers of Cyclodextrin Metal-Organic Frameworks. Journal of Oleo Science 2023, 72 (10) , 957-968. https://doi.org/10.5650/jos.ess23031
    70. David Fertig, Hans Hasse, Simon Stephan. Transport properties of binary Lennard-Jones mixtures: Insights from entropy scaling and conformal solution theory. Journal of Molecular Liquids 2022, 367 , 120401. https://doi.org/10.1016/j.molliq.2022.120401
    71. C. Ticknor, E. R. Meyer, A. J. White, J. D. Kress, L. A. Collins. Multicomponent mutual diffusion in the warm, dense matter regime. Physics of Plasmas 2022, 29 (11) https://doi.org/10.1063/5.0119033
    72. J.-M. Simon, P. Krüger, S. K. Schnell, T. J. H. Vlugt, S. Kjelstrup, D. Bedeaux. Kirkwood–Buff integrals: From fluctuations in finite volumes to the thermodynamic limit. The Journal of Chemical Physics 2022, 157 (13) https://doi.org/10.1063/5.0106162
    73. Marcelle B.M. Spera, Flávia N. Braga, Rodrigo A.C. Bartolomeu, Ioannis G. Economou, Luís F.M. Franco. Diffusion of fluids confined in carbonate minerals: A molecular dynamics simulation study for carbon dioxide and methane–ethane mixture within calcite. Fuel 2022, 325 , 124800. https://doi.org/10.1016/j.fuel.2022.124800
    74. Antara Mazumder, Breanna M. Dobyns, Michael P. Howard, Bryan S. Beckingham. Theoretical and Experimental Considerations for Investigating Multicomponent Diffusion in Hydrated, Dense Polymer Membranes. Membranes 2022, 12 (10) , 942. https://doi.org/10.3390/membranes12100942
    75. Ying Zhang, Songtao Cao, Yuqi Su, Maogang He. Mutual diffusion coefficients of ethanol + isooctane and n-butanol + isooctane mixtures and tests of a new local-composition prediction model for diffusion in binary liquids. The Journal of Chemical Thermodynamics 2022, 172 , 106812. https://doi.org/10.1016/j.jct.2022.106812
    76. Mehdi Ghasemi, Sina Omrani, Saeed Mahmoodpour, Tianhang Zhou. Molecular dynamics simulation of hydrogen diffusion in water-saturated clay minerals; implications for Underground Hydrogen Storage (UHS). International Journal of Hydrogen Energy 2022, 47 (59) , 24871-24885. https://doi.org/10.1016/j.ijhydene.2022.05.246
    77. Christoph Helfenritter, Matthias Kind. Multi-Component Diffusion in the Vicinity of a Growing Crystal. Crystals 2022, 12 (6) , 872. https://doi.org/10.3390/cryst12060872
    78. Gabriela Guevara-Carrion, Robin Fingerhut, Jadran Vrabec. Diffusion in multicomponent aqueous alcoholic mixtures. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-91727-w
    79. Nicolas Desbiens, Philippe Arnault, William Weens, Vincent Dubois, Guillaume Perrin. Bootstrapping time correlation functions of molecular dynamics. Physical Review E 2021, 104 (5) https://doi.org/10.1103/PhysRevE.104.055310
    80. Sina Omrani, Saeed Mahmoodpour, Behzad Rostami, Mehdi Salehi Sedeh, Ingo Sass. Diffusion coefficients of CO 2 –SO 2 –water and CO 2 –N 2 –water systems and their impact on the CO 2 sequestration process: Molecular dynamics and dissolution process simulations. Greenhouse Gases: Science and Technology 2021, 11 (4) , 764-779. https://doi.org/10.1002/ghg.2078
    81. Micah Silverman, Daniel Hallinan. The relationship between self-diffusion activation energy and Soret coefficient in binary liquid mixtures. Chemical Engineering Science 2021, 240 , 116660. https://doi.org/10.1016/j.ces.2021.116660
    82. Alper T. Celebi, Seyed Hossein Jamali, André Bardow, Thijs J. H. Vlugt, Othonas A. Moultos. Finite-size effects of diffusion coefficients computed from molecular dynamics: a review of what we have learned so far. Molecular Simulation 2021, 47 (10-11) , 831-845. https://doi.org/10.1080/08927022.2020.1810685
    83. Tatyana Lyubimova, Sergei Prokopev, Valentina Shevtsova. Behaviour of a Ternary Mixture with the Net Separation Ratio Close to Zero. Journal of Physics: Conference Series 2021, 1945 (1) , 012030. https://doi.org/10.1088/1742-6596/1945/1/012030
    84. Robin Fingerhut, Gabriela Guevara-Carrion, Isabel Nitzke, Denis Saric, Joshua Marx, Kai Langenbach, Sergei Prokopev, David Celný, Martin Bernreuther, Simon Stephan, Maximilian Kohns, Hans Hasse, Jadran Vrabec. ms2: A molecular simulation tool for thermodynamic properties, release 4.0. Computer Physics Communications 2021, 262 , 107860. https://doi.org/10.1016/j.cpc.2021.107860
    85. Thiago J.P. dos Santos, Frederico W. Tavares, Charlles R.A. Abreu. Fick diffusion coefficients via molecular dynamics: An alternative approach in the Fourier domain. Journal of Molecular Liquids 2021, 329 , 115460. https://doi.org/10.1016/j.molliq.2021.115460
    86. Xiao Zhao, Tengfei Luo, Hui Jin. A predictive model for self-, Maxwell-Stefan, and Fick diffusion coefficients of binary supercritical water mixtures. Journal of Molecular Liquids 2021, 324 , 114735. https://doi.org/10.1016/j.molliq.2020.114735
    87. Matthias Heinen, René S. Chatwell, Simon Homes, Gabriela Guevara-Carrion, Robin Fingerhut, Maximilian Kohns, Simon Stephan, Martin T. Horsch, Jadran Vrabec. Molecular Modeling and Simulation: Model Development, Thermodynamic Properties, Scaling Behavior and Data Management. 2021, 541-559. https://doi.org/10.1007/978-3-030-80602-6_36
    88. J. David Bazak, J. P. Allen, S. A. Krachkovskiy, G. R. Goward. Mapping of Lithium-Ion Battery Electrolyte Transport Properties and Limiting Currents with In Situ MRI. Journal of The Electrochemical Society 2020, 167 (14) , 140518. https://doi.org/10.1149/1945-7111/abc0c9
    89. David Rosenberger, Nicholas Lubbers, Timothy C. Germann. Evaluating diffusion and the thermodynamic factor for binary ionic mixtures. Physics of Plasmas 2020, 27 (10) https://doi.org/10.1063/5.0017788
    90. Jinho Ryu, Takuji Oda, Hisashi Tanigawa. Comparison and validation of the lattice thermal conductivity formulas used in equilibrium molecular dynamics simulations for binary systems. Computational Materials Science 2020, 178 , 109615. https://doi.org/10.1016/j.commatsci.2020.109615
    91. Ubaya A. Higgoda, Chathura J. Kankanamge, Robert Hellmann, Thomas M. Koller, Andreas P. Fröba. Fick diffusion coefficients of binary fluid mixtures consisting of methane, carbon dioxide, and propane via molecular dynamics simulations based on simplified pair-specific ab initio-derived force fields. Fluid Phase Equilibria 2019, 502 , 112257. https://doi.org/10.1016/j.fluid.2019.112257
    92. I. Siemons, R.M. Boom, R.G.M. van der Sman, M.A.I. Schutyser. Moisture diffusivity in concentrated and dry protein-carbohydrate films. Food Hydrocolloids 2019, 97 , 105219. https://doi.org/10.1016/j.foodhyd.2019.105219
    93. Alexander Klinov, Ivan Anashkin. Diffusion in Binary Aqueous Solutions of Alcohols by Molecular Simulation. Processes 2019, 7 (12) , 947. https://doi.org/10.3390/pr7120947
    94. A. J. White, C. Ticknor, E. R. Meyer, J. D. Kress, L. A. Collins. Multicomponent mutual diffusion in the warm, dense matter regime. Physical Review E 2019, 100 (3) https://doi.org/10.1103/PhysRevE.100.033213
    95. Cheng Chen, Xi Jiang. Transport property prediction and inhomogeneity analysis of supercritical n-Dodecane by molecular dynamics simulation. Fuel 2019, 244 , 48-60. https://doi.org/10.1016/j.fuel.2019.01.181
    96. Ioannis N. Tsimpanogiannis, Othonas A. Moultos, Luís F. M. Franco, Marcelle B. de M. Spera, Máté Erdős, Ioannis G. Economou. Self-diffusion coefficient of bulk and confined water: a critical review of classical molecular simulation studies. Molecular Simulation 2019, 45 (4-5) , 425-453. https://doi.org/10.1080/08927022.2018.1511903
    97. Rajamani Krishna. Diffusing uphill with James Clerk Maxwell and Josef Stefan. Chemical Engineering Science 2019, 195 , 851-880. https://doi.org/10.1016/j.ces.2018.10.032
    98. Tatjana Janzen, Robin Fingerhut, Matthias Heinen, Andreas Köster, Y. Mauricio Muñoz-Muñoz, Jadran Vrabec. Molecular Modeling and Simulation: Force Field Development, Evaporation Processes and Thermophysical Properties of Mixtures. 2019, 457-474. https://doi.org/10.1007/978-3-030-13325-2_29
    99. Gabriela Guevara-Carrion, Yuri Gaponenko, Aliaksandr Mialdun, Tatjana Janzen, Valentina Shevtsova, Jadran Vrabec. Interplay of structure and diffusion in ternary liquid mixtures of benzene + acetone + varying alcohols. The Journal of Chemical Physics 2018, 149 (6) https://doi.org/10.1063/1.5044431
    100. Vladimir Berezovsky, Sven Öberg. Computational study of the CO adsorption and diffusion in zeolites: validating the Reed–Ehrlich model. Adsorption 2018, 24 (4) , 403-413. https://doi.org/10.1007/s10450-018-9948-z
    Load all citations

    Industrial & Engineering Chemistry Research

    Cite this: Ind. Eng. Chem. Res. 2005, 44, 17, 6939–6947
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ie050146c
    Published July 7, 2005
    Copyright © 2005 American Chemical Society

    Article Views

    2814

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.