ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Energy Efficiency Limitations of the Conventional Heat Integrated Distillation Column (HIDiC) Configuration for Binary Distillation

View Author Information
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States, and Air Products and Chemicals Inc., Allentown, Pennsylvania 18195, United States
†This article is dedicated to Professor Stanley I. Sandler, who has been a great teacher and a mentor to R.A.
* To whom correspondence should be addressed. E-mail: [email protected]
‡Purdue University.
§Air Products and Chemicals Inc.
Cite this: Ind. Eng. Chem. Res. 2011, 50, 1, 119–130
Publication Date (Web):November 8, 2010
https://doi.org/10.1021/ie101698f
Copyright © 2010 American Chemical Society

    Article Views

    1762

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (898 KB)

    Abstract

    In the recent literature, a typical heat integrated distillation column (HIDiC), with heat integration at multiple locations between the rectifying and stripping sections, is often claimed to be more energy efficient than a single binary distillation column. However, we find that there are many binary feed separations where HIDiC is less energy efficient than simple heat pump schemes using only one or two heat transfer locations. Furthermore, we show that the energy efficiency of HIDiC cannot be solely decided based on the feed composition or product purities. A better performance indicator is the temperature profile along the height of the rectifying section relative to the corresponding temperature profile in the stripping section. On the basis of the analysis of these temperature profiles, we suggest a novel method to reduce heat transfer locations between the two distillation sections of HIDiC with negligible, if any, negative impact on the overall energy efficiency.

    Cited By

    This article is cited by 68 publications.

    1. Zhiyu Wang, Shenghu Xu, Wenhai Wang, Weihua Gui, Daoxiong Xie, Chunhua Yang, Qiquan Chen, Yalin Wang, Yunwang Xie, Xinggao Liu. Optimization of Number of Stages for Energy Conservation and Economic Feasibility of the Heat-Integrated Air Separation Column. Industrial & Engineering Chemistry Research 2020, 59 (21) , 10110-10119. https://doi.org/10.1021/acs.iecr.0c00553
    2. Tony Joseph Mathew, Radhakrishna Tumbalam Gooty, Mohit Tawarmalani, Rakesh Agrawal. 110th Anniversary: Thermal Coupling via Heat Transfer: A Potential Route to Simple Distillation Configurations with Lower Heat Duty. Industrial & Engineering Chemistry Research 2019, 58 (47) , 21671-21678. https://doi.org/10.1021/acs.iecr.9b04689
    3. Lumin Li, Lanyi Sun, Jun Wang, Jian Zhai, Yuliang Liu, Wang Zhong, and Yuanyu Tian . Design and Control of Different Pressure Thermally Coupled Reactive Distillation for Methyl Acetate Hydrolysis. Industrial & Engineering Chemistry Research 2015, 54 (49) , 12342-12353. https://doi.org/10.1021/acs.iecr.5b03041
    4. Dawei Chen, Xigang Yuan, Lianghua Xu, and K. T. Yu . Comparison between Different Configurations of Internally and Externally Heat-Integrated Distillation by Numerical Simulation. Industrial & Engineering Chemistry Research 2013, 52 (16) , 5781-5790. https://doi.org/10.1021/ie400112k
    5. Md. Malik Nawaz Khan, G. Uday Bhaskar Babu, and Amiya K. Jana . Improving Energy Efficiency and Cost-Effectiveness of Batch Distillation for Separating Wide Boiling Constituents. 1. Vapor Recompression Column. Industrial & Engineering Chemistry Research 2012, 51 (47) , 15413-15422. https://doi.org/10.1021/ie300907b
    6. Wonjun Noh, Juyeoung Seo, Junghwan Kim, Inkyu Lee. A novel process-level carbon contribution analysis (PCCA) method for carbon minimization of chemical processes: Exergy mapping to carbon emissions. Chemical Engineering Journal 2023, 471 , 144502. https://doi.org/10.1016/j.cej.2023.144502
    7. Radhika Gandu, Akash Kumar Burolia, Seshagiri Rao Ambati, Uday Bhaskar Babu Gara. Reducing total annual cost and CO 2 emissions in batch distillation for separating ternary wide boiling mixtures using vapor recompression heat pump. Chemical Product and Process Modeling 2023, 18 (1) , 177-194. https://doi.org/10.1515/cppm-2021-0057
    8. Jose Adrian Chavez Velasco, Mohit Tawarmalani, Rakesh Agrawal. Which separation scenarios are advantageous for membranes or distillations?. AIChE Journal 2022, 68 (11) https://doi.org/10.1002/aic.17839
    9. Mahya Nezhadfard, Amin Tamuzi, Amirhossein Khalili-Garakani, Norollah Kasiri. A systematic matrix-based method for synthesis and optimization of Reaction/Distillation processes including Reactive Distillation. Chemical Engineering Research and Design 2022, 186 , 206-228. https://doi.org/10.1016/j.cherd.2022.07.024
    10. Yan Li, Yixiao Ding, Manman Cao. Optimization of energy-saving distillation system of absorption heat pump based on intermediate heat exchange. Applied Thermal Engineering 2022, 213 , 118721. https://doi.org/10.1016/j.applthermaleng.2022.118721
    11. Rodrigo Battisti, Daniela Bresolin, Kênia W. Milanez, Márcia B. H. Mantelli, Maurício C. dos Santos, Lilian C. Medina, Cintia Marangoni, Ricardo A. F. Machado. Energy efficiency comparison between a conventional tray column and a novel heat-intensified thermosyphon-assisted falling film distillation unit: an assessment for mixtures with different relative volatilities. Chemical Engineering Communications 2022, 209 (7) , 895-906. https://doi.org/10.1080/00986445.2021.1926243
    12. Mirko Skiborowski, Kai Fabian Kruber, Thomas Waltermann. Sustainable Distillation Processes. 2022, 431-481. https://doi.org/10.1002/9781119740117.ch12
    13. Radhakrishna Tumbalam Gooty, Jose Adrian Chavez Velasco, Rakesh Agrawal. Methods to assess numerous distillation schemes for binary mixtures. Chemical Engineering Research and Design 2021, 172 , 1-20. https://doi.org/10.1016/j.cherd.2021.05.022
    14. Jose Adrian Chavez Velasco, Mohit Tawarmalani, Rakesh Agrawal. Systematic Analysis Reveals Thermal Separations Are Not Necessarily Most Energy Intensive. Joule 2021, 5 (2) , 330-343. https://doi.org/10.1016/j.joule.2020.12.002
    15. Kanubhai K. Parmar, Kunjal K. Parmar, Garimella Padmavathi, Sukanta K. Dash. Energy reduction and improved product recovery with enhanced safety of industrial scale propane‐propylene separation process. International Journal of Energy Research 2020, 44 (15) , 12630-12638. https://doi.org/10.1002/er.5511
    16. Zhiyu Wang, Weizhong Qin, Chunhua Yang, Wenhai Wang, Shenghu Xu, Weihua Gui, Youxian Sun, Daoxiong Xie, Yalin Wang, Jiangang Lu, Qiquan Chen, Xinggao Liu. Heat-transfer distribution optimization for the heat-integrated air separation column. Separation and Purification Technology 2020, 248 , 117048. https://doi.org/10.1016/j.seppur.2020.117048
    17. Rodrigo Battisti, Kênia W. Milanez, Márcia B.H. Mantelli, Maurício C. dos Santos, Lilian C. Medina, Cintia Marangoni, Ricardo A.F. Machado. Energy conditions assessment of a two-phase annular thermosyphon used as heat supplier for a new pilot-scale falling film distillation unit. Thermal Science and Engineering Progress 2020, 19 , 100648. https://doi.org/10.1016/j.tsep.2020.100648
    18. Dyah Retno Sawitri, Arief Budiman. Comparative study of Heat Pump Assisted Distillation Column and Its Application for Pressure Swing Distillation Process. IOP Conference Series: Materials Science and Engineering 2020, 778 (1) , 012159. https://doi.org/10.1088/1757-899X/778/1/012159
    19. Amiya K. Jana. Vertical partition in fractionating tower to configure a novel heat integrated distillation hybridized with vapor recompression. Separation and Purification Technology 2020, 235 , 116153. https://doi.org/10.1016/j.seppur.2019.116153
    20. Lin Cong, Xinggao Liu. Temperature Inferential Control of Heat‐Integrated Distillation Column Based on Variable Sensitive Stage Temperature Set‐point. The Canadian Journal of Chemical Engineering 2019, 97 (11) , 2952-2960. https://doi.org/10.1002/cjce.23527
    21. Cintia Marangoni, Ana Paula Meneguelo, Joel G. Teleken, Leandro O. Werle, Kenia W. Milanez, Marcia B. H. Mantelli, Marintho B. Quadri, Ariovaldo Bolzan, Maurício C. dos Santos, Lilian C. Medina, Ricardo A. F. Machado. Falling film distillation column with heat transfer by means of a vapor chamber – part I: isothermal operation. Chemical Engineering Communications 2019, 206 (8) , 994-1005. https://doi.org/10.1080/00986445.2018.1542250
    22. Yufeng Fan, Qing Ye, Hao Cen, Jingxing Chen, Tong Liu. Design and optimization of reactive distillation processes for synthesis of isopropanol based on self-heat recuperation technology. Chemical Engineering Research and Design 2019, 147 , 171-186. https://doi.org/10.1016/j.cherd.2019.05.004
    23. Sidharth Sankar Parhi, Gade Pandu Rangaiah, Amiya K. Jana. Optimizing reboiler duty and reflux ratio profiles of vapor recompressed batch distillation. Separation and Purification Technology 2019, 213 , 553-570. https://doi.org/10.1016/j.seppur.2018.12.066
    24. Mahya Nezhadfard, Amirhossein Khalili-Garakani, Norollah Kasiri. Development of the Reaction/Distillation matrix to include more complicated Reaction/Distillation systems and performance evaluation using an ethylene hydration case study. Chemical Engineering Research and Design 2018, 139 , 259-271. https://doi.org/10.1016/j.cherd.2018.09.029
    25. Xiaoli Ma, Prashant Kumar, Nitish Mittal, Alexandra Khlyustova, Prodromos Daoutidis, K. Andre Mkhoyan, Michael Tsapatsis. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science 2018, 361 (6406) , 1008-1011. https://doi.org/10.1126/science.aat4123
    26. Lin Cong, Liang Chang, Xinggao Liu, Xiaogang Deng, Honglong Chen. Analysis of CO 2 Emission and Economic Feasibility for a Heat‐Integrated Air Separation System. Chemical Engineering & Technology 2018, 41 (8) , 1639-1648. https://doi.org/10.1002/ceat.201600052
    27. Lianghua Xu, Lianrui Gao, Xiaohong Yin, Xigang Yuan. Improving performance of dividing wall column using multistage vapor recompression with intermediate reboiler. Chemical Engineering Research and Design 2018, 134 , 382-391. https://doi.org/10.1016/j.cherd.2018.04.023
    28. Hiroshi Takase, Shinji Hasebe. Synthesis of ternary distillation process structures featuring minimum utility cost using the IDEAS approach. AIChE Journal 2018, 64 (4) , 1285-1294. https://doi.org/10.1002/aic.16023
    29. Sudip Banerjee, Amiya K. Jana. Internally heat integrated batch distillation: Vapor recompression and nonlinear control. Separation and Purification Technology 2017, 189 , 267-278. https://doi.org/10.1016/j.seppur.2017.08.003
    30. Mahmoud M. El-Halwagi. Integration of Combined Heat and Power Systems. 2017, 239-273. https://doi.org/10.1016/B978-0-12-809823-3.00008-4
    31. Yao Fu, Xinggao Liu. An advanced control of heat integrated air separation column based on simplified wave model. Journal of Process Control 2017, 49 , 45-55. https://doi.org/10.1016/j.jprocont.2016.11.004
    32. Bandaru Kiran, Amiya K. Jana. Thermal integration of vapor recompression in a heat-integrated distillation: Impact of multiple intermediate reboilers. Chemical Engineering Research and Design 2016, 114 , 171-179. https://doi.org/10.1016/j.cherd.2016.08.021
    33. Amiya K. Jana. A new divided-wall heat integrated distillation column (HIDiC) for batch processing: Feasibility and analysis. Applied Energy 2016, 172 , 199-206. https://doi.org/10.1016/j.apenergy.2016.03.117
    34. J. Rafael Alcántara-Avila, Hao-Yeh Lee. Heat-Integrated Intensified Distillation Processes. 2016, 83-130. https://doi.org/10.1007/978-3-319-28392-0_5
    35. L.M. Vane. Separations Versus Sustainability. 2016, 35-65. https://doi.org/10.1016/B978-0-12-802032-6.00002-5
    36. Yu-Jeng Lin, Gary T. Rochelle. Approaching a reversible stripping process for CO2 capture. Chemical Engineering Journal 2016, 283 , 1033-1043. https://doi.org/10.1016/j.cej.2015.08.086
    37. Thomas Bisgaard, Jakob Kjøbsted Huusom, Jens Abildskov. Modeling and analysis of conventional and heat-integrated distillation columns. AIChE Journal 2015, 61 (12) , 4251-4263. https://doi.org/10.1002/aic.14970
    38. Amiya K. Jana. An energy-efficient cost-effective transient batch rectifier with bottom flashing: Process dynamics and control. AIChE Journal 2015, 61 (11) , 3699-3707. https://doi.org/10.1002/aic.14915
    39. Yao Fu, Xinggao Liu. Adaptive Internal Model Control of a High-Purity Heat-Integrated Air Separation Column. Chemical Engineering & Technology 2015, 38 (9) , 1599-1607. https://doi.org/10.1002/ceat.201400393
    40. Yao Fu, XingGao Liu. Nonlinear control based on wave model of high-purity heat integrated air separation column. Chemometrics and Intelligent Laboratory Systems 2015, 146 , 1-9. https://doi.org/10.1016/j.chemolab.2015.04.020
    41. Amiya K. Jana. A novel energy-efficient batch stripper: Thermodynamic feasibility, cost analysis and CO 2 emissions. Applied Thermal Engineering 2015, 84 , 292-300. https://doi.org/10.1016/j.applthermaleng.2015.03.056
    42. Liang Chang, Xinggao Liu. Dynamic behaviours and control of full tower heat integrated air separation columns. The Canadian Journal of Chemical Engineering 2015, 93 (5) , 855-862. https://doi.org/10.1002/cjce.22142
    43. Yao Fu, Xinggao Liu. Nonlinear dynamic behaviors and control based on simulation of high-purity heat integrated air separation column. ISA Transactions 2015, 55 , 145-153. https://doi.org/10.1016/j.isatra.2014.11.006
    44. Bandaru Kiran, Amiya K. Jana. Assessing the performance improvement of an intensified heat integration scheme: Reactive pressure-swing distillation. Applied Thermal Engineering 2015, 76 , 509-520. https://doi.org/10.1016/j.applthermaleng.2014.11.053
    45. Hossein Shahandeh, Mina Jafari, Norollah Kasiri, Javad Ivakpour. Economic optimization of heat pump-assisted distillation columns in methanol-water separation. Energy 2015, 80 , 496-508. https://doi.org/10.1016/j.energy.2014.12.006
    46. Bandaru Kiran, Amiya K. Jana. Introducing vapor recompression mechanism in heat-integrated distillation column: Impact of internal energy driven intermediate and bottom reboiler. AIChE Journal 2015, 61 (1) , 118-131. https://doi.org/10.1002/aic.14620
    47. Mahmoud M. El‐Halwagi, Dominic Chwan Yee Foo. Process Synthesis and Integration. 2014, 1-24. https://doi.org/10.1002/0471238961.1618150308011212.a01.pub2
    48. Anton A. Kiss, Žarko Olujić. A review on process intensification in internally heat-integrated distillation columns. Chemical Engineering and Processing: Process Intensification 2014, 86 , 125-144. https://doi.org/10.1016/j.cep.2014.10.017
    49. C. C. S. Reddy, Y. Fang, G. P. Rangaiah. Improving energy efficiency of distillation using heat pump assisted columns. Asia-Pacific Journal of Chemical Engineering 2014, 9 (6) , 905-928. https://doi.org/10.1002/apj.1842
    50. Hossein Shahandeh, Javad Ivakpour, Norollah Kasiri. Feasibility study of heat-integrated distillation columns using rigorous optimization. Energy 2014, 74 , 662-674. https://doi.org/10.1016/j.energy.2014.07.032
    51. Liang Chang, Xinggao Liu. Non-equilibrium stage based modeling of heat integrated air separation columns. Separation and Purification Technology 2014, 134 , 73-81. https://doi.org/10.1016/j.seppur.2014.07.013
    52. Jia Mei Chew, C.C.S. Reddy, G.P. Rangaiah. Improving energy efficiency of dividing-wall columns using heat pumps, Organic Rankine Cycle and Kalina Cycle. Chemical Engineering and Processing: Process Intensification 2014, 76 , 45-59. https://doi.org/10.1016/j.cep.2013.11.011
    53. Vishesh H. Shah, Rakesh Agrawal. Conceptual Design of Zeotropic Distillation Processes. 2014, 271-303. https://doi.org/10.1016/B978-0-12-386547-2.00007-7
    54. Gara Uday Bhaskar Babu, Amiya K. Jana. Impact of vapor recompression in batch distillation on energy consumption, cost and CO2 emission: Open-loop versus closed-loop operation. Applied Thermal Engineering 2014, 62 (2) , 365-374. https://doi.org/10.1016/j.applthermaleng.2013.09.057
    55. Amiya K. Jana. Advances in heat pump assisted distillation column: A review. Energy Conversion and Management 2014, 77 , 287-297. https://doi.org/10.1016/j.enconman.2013.09.055
    56. H. Shahandeh, J. Ivakpour, N. Kasiri. Internal and external HIDiCs (heat-integrated distillation columns) optimization by genetic algorithm. Energy 2014, 64 , 875-886. https://doi.org/10.1016/j.energy.2013.10.042
    57. Sanjay Pralhad Shirsat, Shrikant Devidas Dawande, Seema Sudhakar Kakade. Simulation and optimization of extractive distillation sequence with pre-separator for the ethanol dehydration using n-butyl propionate. Korean Journal of Chemical Engineering 2013, 30 (12) , 2163-2169. https://doi.org/10.1007/s11814-013-0175-8
    58. Thomas Bisgaard, Jakob Kjøbsted Huusom, Jens Abildskov. A Modeling Framework for Conventional and Heat Integrated Distillation Columns. IFAC Proceedings Volumes 2013, 46 (32) , 373-378. https://doi.org/10.3182/20131218-3-IN-2045.00102
    59. Debadrita Maiti, Amiya K. Jana. A novel combination of internal and external heat integrations in batch distillation: Application to a reactive system. Applied Thermal Engineering 2013, 59 (1-2) , 405-413. https://doi.org/10.1016/j.applthermaleng.2013.05.039
    60. Gara Uday Bhaskar Babu, Amiya K. Jana. Reducing total annualized cost and CO 2 emissions in batch distillation: Dynamics and control. AIChE Journal 2013, 59 (8) , 2821-2832. https://doi.org/10.1002/aic.14076
    61. Amiya K. Jana, Debadrita Maiti. An ideal internally heat integrated batch distillation with a jacketed still with application to a reactive system. Energy 2013, 57 , 527-534. https://doi.org/10.1016/j.energy.2013.05.014
    62. L. Xu, X. Yuan, D. Chen, Y. Luo, K. Yu. Reversibility Analysis for Design Optimization of an Internally Heat-Integrated Distillation Column. Chemical Engineering & Technology 2013, 36 (7) , 1147-1156. https://doi.org/10.1002/ceat.201300107
    63. Amiya K. Jana, Debadrita Maiti. Assessment of the implementation of vapor recompression technique in batch distillation. Separation and Purification Technology 2013, 107 , 1-10. https://doi.org/10.1016/j.seppur.2013.01.018
    64. . Heat‐Integrated Distillation Column. 2013, 271-309. https://doi.org/10.1002/9781118543702.ch8
    65. Vivek Kumar, Bandaru Kiran, Amiya K. Jana, Amar Nath Samanta. A novel multistage vapor recompression reactive distillation system with intermediate reboilers. AIChE Journal 2013, 59 (3) , 761-771. https://doi.org/10.1002/aic.13862
    66. Andreas Harwardt, Wolfgang Marquardt. Heat-integrated distillation columns: Vapor recompression or internal heat integration?. AIChE Journal 2012, 58 (12) , 3740-3750. https://doi.org/10.1002/aic.13775
    67. O.S.L. Bruinsma, T. Krikken, J. Cot, M. Sarić, S.A. Tromp, Ž. Olujić, A.I. Stankiewicz. The structured heat integrated distillation column. Chemical Engineering Research and Design 2012, 90 (4) , 458-470. https://doi.org/10.1016/j.cherd.2011.08.023
    68. Mahmoud M. El-Halwagi. Integration of Combined Heat and Power Systems. 2012, 165-200. https://doi.org/10.1016/B978-1-85617-744-3.00008-4

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect