ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Parameter Set Selection via Clustering of Parameters into Pairwise Indistinguishable Groups of Parameters

View Author Information
Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122
* To whom correspondence should be addressed. E-mail: [email protected].
Cite this: Ind. Eng. Chem. Res. 2009, 48, 13, 6000–6009
Publication Date (Web):September 18, 2008
https://doi.org/10.1021/ie800432s
Copyright © 2008 American Chemical Society

    Article Views

    560

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1 MB)

    Abstract

    Selecting a set of parameters to be estimated from experimental data is an important problem with many different types of applications. However, the computational effort grows drastically with the number of parameters in the model. This paper proposes a technique that reduces the parameters that need to be considered by clustering, where the model parameters are put into different groups on the basis of the dynamic effect that changes have on the model output. The computational requirements of the parameter set selection problem then drastically reduces as only one parameter per cluster needs to be considered instead of each parameter in the model. This paper develops the underlying theory of the presented technique and also illustrates the method on a model of a signal transduction pathway with 115 parameters.

    Cited By

    This article is cited by 45 publications.

    1. Huang-He Feng, Guo-Xing Yang, Han-Lin Wang, Xue-Ping Gu, Lian-Fang Feng, Cai-Liang Zhang, Xi Chen, Deng-Fei Wang, Yu-Xin Gao. Kinetic Parameter Estimation for Linear Low-Density Polyethylene Gas-Phase Process from Molecular Weight Distribution and Short-Chain Branching Distribution Measurements. Industrial & Engineering Chemistry Research 2023, 62 (6) , 2548-2560. https://doi.org/10.1021/acs.iecr.2c03786
    2. Genevieve Grivas, Troy Vargason, Juergen Hahn. Biomarker Identification of Complex Diseases/Disorders: Methodological Parallels to Parameter Estimation. Industrial & Engineering Chemistry Research 2020, 59 (6) , 2366-2377. https://doi.org/10.1021/acs.iecr.9b04108
    3. Cheng Yang, Kexin Wang, Zhijiang Shao, Lorenz T. Biegler. Integrated Parameter Mapping and Real-Time Optimization for Load Changes in High-Temperature Gas-Cooled Pebble Bed Reactors. Industrial & Engineering Chemistry Research 2018, 57 (28) , 9171-9184. https://doi.org/10.1021/acs.iecr.7b05174
    4. Diana C. López C and Günter Wozny , Antonio Flores-Tlacuahuac , Ruben Vasquez-Medrano , Victor M. Zavala . A Computational Framework for Identifiability and Ill-Conditioning Analysis of Lithium-Ion Battery Models. Industrial & Engineering Chemistry Research 2016, 55 (11) , 3026-3042. https://doi.org/10.1021/acs.iecr.5b03910
    5. Zahra Eghtesadi and Kimberley B. McAuley . Mean Square Error Based Method for Parameter Ranking and Selection To Obtain Accurate Predictions at Specified Operating Conditions. Industrial & Engineering Chemistry Research 2014, 53 (14) , 6033-6046. https://doi.org/10.1021/ie5002444
    6. Kevin A. P. McLean, Shaohua Wu, and Kimberley B. McAuley . Mean-Squared-Error Methods for Selecting Optimal Parameter Subsets for Estimation. Industrial & Engineering Chemistry Research 2012, 51 (17) , 6105-6115. https://doi.org/10.1021/ie202352f
    7. Simon C. Warder, Matthew D. Piggott. Optimal experiment design for a bottom friction parameter estimation problem. GEM - International Journal on Geomathematics 2022, 13 (1) https://doi.org/10.1007/s13137-022-00196-4
    8. Weifeng Chen, Baojia Wang, Lorenz T. Biegler. Parameter estimation with improved model prediction for over-parametrized nonlinear systems. Computers & Chemical Engineering 2022, 157 , 107601. https://doi.org/10.1016/j.compchemeng.2021.107601
    9. Zhaozheng Hou. Introducing Parameter Clustering to the OED Procedure for Model Calibration of a Synthetic Inducible Promoter in S. cerevisiae. Processes 2021, 9 (6) , 1053. https://doi.org/10.3390/pr9061053
    10. Ilias Bouchkira, Abderrazak M. Latifi, Lhachmi Khamar, Saad Benjelloun. Global sensitivity based estimability analysis for the parameter identification of Pitzer’s thermodynamic model. Reliability Engineering & System Safety 2021, 207 , 107263. https://doi.org/10.1016/j.ress.2020.107263
    11. Marcella Torres. A Machine Learning Method for Parameter Estimation and Sensitivity Analysis. 2021, 330-343. https://doi.org/10.1007/978-3-030-77977-1_26
    12. Ali Shahmohammadi, Kimberley B. McAuley. Using prior parameter knowledge in model‐based design of experiments for pharmaceutical production. AIChE Journal 2020, 66 (11) https://doi.org/10.1002/aic.17021
    13. Alireza Goshtasbi, Jixin Chen, James R. Waldecker, Shinichi Hirano, Tulga Ersal. Robust Parameter Subset Selection and Optimal Experimental Design for Effective Parameterization of PEM Fuel Cell Models. 2020, 352-358. https://doi.org/10.23919/ACC45564.2020.9147213
    14. D. Joubert, J.D. Stigter, J. Molenaar. An efficient procedure to assist in the re-parametrization of structurally unidentifiable models. Mathematical Biosciences 2020, 323 , 108328. https://doi.org/10.1016/j.mbs.2020.108328
    15. Alireza Goshtasbi, Jixin Chen, James R. Waldecker, Shinichi Hirano, Tulga Ersal. Effective Parameterization of PEM Fuel Cell Models—Part I: Sensitivity Analysis and Parameter Identifiability. Journal of The Electrochemical Society 2020, 167 (4) , 044504. https://doi.org/10.1149/1945-7111/ab7091
    16. Alireza Goshtasbi, Jixin Chen, James R. Waldecker, Shinichi Hirano, Tulga Ersal. Effective Parameterization of PEM Fuel Cell Models—Part II: Robust Parameter Subset Selection, Robust Optimal Experimental Design, and Multi-Step Parameter Identification Algorithm. Journal of The Electrochemical Society 2020, 167 (4) , 044505. https://doi.org/10.1149/1945-7111/ab7092
    17. Markos A. Katsoulakis, Pedro Vilanova. Data-driven, variational model reduction of high-dimensional reaction networks. Journal of Computational Physics 2020, 401 , 108997. https://doi.org/10.1016/j.jcp.2019.108997
    18. Alexander Mendler, Michael Döhler, Carlos E. Ventura, Laurent Mevel. Clustering of Redundant Parameters for Fault Isolation with Gaussian Residuals. IFAC-PapersOnLine 2020, 53 (2) , 13727-13732. https://doi.org/10.1016/j.ifacol.2020.12.877
    19. Marcella Torres, Jing Wang, Paul J. Yannie, Shobha Ghosh, Rebecca A. Segal, Angela M. Reynolds, . Identifying important parameters in the inflammatory process with a mathematical model of immune cell influx and macrophage polarization. PLOS Computational Biology 2019, 15 (7) , e1007172. https://doi.org/10.1371/journal.pcbi.1007172
    20. Jung Hun Kim, Jong Min Lee. Successive complementary model-based experimental designs for parameter estimation of fed-batch bioreactors. Bioprocess and Biosystems Engineering 2018, 41 (12) , 1767-1777. https://doi.org/10.1007/s00449-018-1999-8
    21. Dongheon Lee, Yufang Ding, Arul Jayaraman, Joseph Kwon. Mathematical Modeling and Parameter Estimation of Intracellular Signaling Pathway: Application to LPS-induced NFκB Activation and TNFα Production in Macrophages. Processes 2018, 6 (3) , 21. https://doi.org/10.3390/pr6030021
    22. John Enright, Ilija Jovanovic. Improving calibration and alignment observability for star trackers. 2018, 1-10. https://doi.org/10.1109/AERO.2018.8396677
    23. Cheng Yang, Kexin Wang, Zhijiang Shao. Integration of Parameter Approximation and Real-Time Optimization for Load Change of HTR-PM. IFAC-PapersOnLine 2018, 51 (18) , 275-280. https://doi.org/10.1016/j.ifacol.2018.09.312
    24. Adriana Villegas, Juan Pablo Arias, Daira Aragón, Silvia Ochoa, Mario Arias. Structured model and parameter estimation in plant cell cultures of Thevetia peruviana. Bioprocess and Biosystems Engineering 2017, 40 (4) , 573-587. https://doi.org/10.1007/s00449-016-1722-6
    25. Daniel P. Howsmon, Juergen Hahn. Regularization Techniques to Overcome Overparameterization of Complex Biochemical Reaction Networks. IEEE Life Sciences Letters 2016, 2 (3) , 31-34. https://doi.org/10.1109/LLS.2016.2646498
    26. Zahra Eghtesadi, Kimberley B. McAuley. Mean-squared-error-based method for parameter ranking and selection with noninvertible fisher information matrix. AIChE Journal 2016, 62 (4) , 1112-1125. https://doi.org/10.1002/aic.15096
    27. Karol Nienałtowski, Michał Włodarczyk, Tomasz Lipniacki, Michał Komorowski. Clustering reveals limits of parameter identifiability in multi-parameter models of biochemical dynamics. BMC Systems Biology 2015, 9 (1) https://doi.org/10.1186/s12918-015-0205-8
    28. Pu Li, Quoc Dong Vu. A simple method for identifying parameter correlations in partially observed linear dynamic models. BMC Systems Biology 2015, 9 (1) https://doi.org/10.1186/s12918-015-0234-3
    29. R.G.M. van der Sman, G. van Willigenburg, H.M. Vollebregt, V. Eisner, A. Mepschen. Comparison of first principles model of beer microfiltration to experiments via systematic parameter identification. Journal of Membrane Science 2015, 484 , 64-79. https://doi.org/10.1016/j.memsci.2015.03.015
    30. Shreya Maiti, Wei Dai, Robert Alaniz, Juergen Hahn, Arul Jayaraman. Mathematical Modeling of Pro- and Anti-Inflammatory Signaling in Macrophages. Processes 2015, 3 (1) , 1-18. https://doi.org/10.3390/pr3010001
    31. Khushaal Popli, Vinay Prasad. Robust design of experiments using constrained stochastic optimization. IFAC-PapersOnLine 2015, 48 (8) , 106-111. https://doi.org/10.1016/j.ifacol.2015.08.165
    32. David Müller, Erik Esche, Diana C. López C., Günter Wozny. An algorithm for the identification and estimation of relevant parameters for optimization under uncertainty. Computers & Chemical Engineering 2014, 71 , 94-103. https://doi.org/10.1016/j.compchemeng.2014.07.007
    33. Ji Liu, Wei Dai, Juergen Hahn. Mathematical Modeling and Analysis of Crosstalk between MAPK Pathway and Smad-Dependent TGF-β Signal Transduction. Processes 2014, 2 (3) , 570-595. https://doi.org/10.3390/pr2030570
    34. Wei Dai, Loveleena Bansal, Juergen Hahn, Daniel Word. Parameter set selection for dynamic systems under uncertainty via dynamic optimization and hierarchical clustering. AIChE Journal 2014, 60 (1) , 181-192. https://doi.org/10.1002/aic.14265
    35. Wei Dai, Loveleena Bansal, Juergen Hahn. Parameter Set Selection for Signal Transduction Pathway Models including Uncertainties. IFAC Proceedings Volumes 2014, 47 (3) , 815-820. https://doi.org/10.3182/20140824-6-ZA-1003.00292
    36. Diana C. López C., Tilman Barz, Mariana Peñuela, Adriana Villegas, Silvia Ochoa, Günter Wozny. Model-based identifiable parameter determination applied to a simultaneous saccharification and fermentation process model for bio-ethanol production. Biotechnology Progress 2013, 29 (4) , 1064-1082. https://doi.org/10.1002/btpr.1753
    37. Costas Kravaris, Juergen Hahn, Yunfei Chu. Advances and selected recent developments in state and parameter estimation. Computers & Chemical Engineering 2013, 51 , 111-123. https://doi.org/10.1016/j.compchemeng.2012.06.001
    38. Alexandre Haye, Jaroslav Albert, Marianne Rooman. Robust non-linear differential equation models of gene expression evolution across Drosophila development. BMC Research Notes 2012, 5 (1) https://doi.org/10.1186/1756-0500-5-46
    39. Yunfei Chu, Juergen Hahn. Generalization of a parameter set selection procedure based on orthogonal projections and the D-optimality criterion. AIChE Journal 2012, 58 (7) , 2085-2096. https://doi.org/10.1002/aic.12727
    40. Kevin A. P. McLean, Kim B. McAuley. Mathematical modelling of chemical processes-obtaining the best model predictions and parameter estimates using identifiability and estimability procedures. The Canadian Journal of Chemical Engineering 2012, 90 (2) , 351-366. https://doi.org/10.1002/cjce.20660
    41. Alexandre Haye, Jaroslav Albert, Yves Dehouck, Marianne Rooman. Detection of Developmental and Perturbation Stages from DNA Microarray Time Series and Robust Modeling of Gene Expression Evolution. IFAC Proceedings Volumes 2012, 45 (2) , 635-640. https://doi.org/10.3182/20120215-3-AT-3016.00113
    42. Tom Quaiser, Anna Dittrich, Fred Schaper, Martin Mönnigmann. A simple work flow for biologically inspired model reduction - application to early JAK-STAT signaling. BMC Systems Biology 2011, 5 (1) https://doi.org/10.1186/1752-0509-5-30
    43. Y.S. Kim, M.H. Kim, C.K. Yoo. A new statistical framework for parameter subset selection and optimal parameter estimation in the activated sludge model. Journal of Hazardous Materials 2010, 183 (1-3) , 441-447. https://doi.org/10.1016/j.jhazmat.2010.07.044
    44. Sridharan Srinath, Rudiyanto Gunawan. Parameter identifiability of power-law biochemical system models. Journal of Biotechnology 2010, 149 (3) , 132-140. https://doi.org/10.1016/j.jbiotec.2010.02.019
    45. Ryan T. Roper, Maria Pia Saccomani, Paolo Vicini. Cellular signaling identifiability analysis: A case study. Journal of Theoretical Biology 2010, 264 (2) , 528-537. https://doi.org/10.1016/j.jtbi.2010.02.029

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect