ACS Publications. Most Trusted. Most Cited. Most Read
Green and Efficient Conversion of CO2 to Methanol by Biomimetic Coimmobilization of Three Dehydrogenases in Protamine-Templated Titania
My Activity

Figure 1Loading Img
    Article

    Green and Efficient Conversion of CO2 to Methanol by Biomimetic Coimmobilization of Three Dehydrogenases in Protamine-Templated Titania
    Click to copy article linkArticle link copied!

    View Author Information
    Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
    * To whom correspondence should be addressed. Tel.: 86-22-2789 2143. Fax: 86-22-2789 2143. E-mail: [email protected]
    Other Access Options

    Industrial & Engineering Chemistry Research

    Cite this: Ind. Eng. Chem. Res. 2009, 48, 9, 4210–4215
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ie801931j
    Published March 27, 2009
    Copyright © 2009 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    A green and efficient mutienzyme system was established, which efficiently converted carbon dioxide into methanol, by encapsulating three dehydrogenases within titania particles through a facile and mild biomimetic mineralization process. The enzyme-containing titania particles were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The results indicated that the enzyme-containing titania particles were amorphous and consisted of interconnected nanospheres with sizes in the range of 400−600 nm. The three encapsulated dehydrogenases (formate dehydrogenase, formaldehyde dehydrogenase, alcohol dehydrogenase) sequentially converted carbon dioxide into HCOOH, CHOH, and CH3OH using NADH as a terminal electron donor for each dehydrogenase-catalyzed reduction. Compared to the open-style system which directly performed the bioconversion using free enzymes in aqueous solution, higher reaction yield in a wider pH and temperature range was obtained by the closed-style coimmobilization multienzyme system.

    Copyright © 2009 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 82 publications.

    1. Dustin P. Patterson, Christy Hjorth, Andrea Hernandez Irias, Nathasha Hewagama, Jessica Bird. Delayed In Vivo Encapsulation of Enzymes Alters the Catalytic Activity of Virus-Like Particle Nanoreactors. ACS Synthetic Biology 2022, 11 (9) , 2956-2968. https://doi.org/10.1021/acssynbio.1c00636
    2. Ee Taek Hwang, Seonbyul Lee. Multienzymatic Cascade Reactions via Enzyme Complex by Immobilization. ACS Catalysis 2019, 9 (5) , 4402-4425. https://doi.org/10.1021/acscatal.8b04921
    3. Xin Li, Jiaguo Yu, Mietek Jaroniec, Xiaobo Chen. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chemical Reviews 2019, 119 (6) , 3962-4179. https://doi.org/10.1021/acs.chemrev.8b00400
    4. Fayez Nasir Al-Rowaili, Aqil Jamal, Mohammad S. Ba Shammakh, Azeem Rana. A Review on Recent Advances for Electrochemical Reduction of Carbon Dioxide to Methanol Using Metal–Organic Framework (MOF) and Non-MOF Catalysts: Challenges and Future Prospects. ACS Sustainable Chemistry & Engineering 2018, 6 (12) , 15895-15914. https://doi.org/10.1021/acssuschemeng.8b03843
    5. Yanzi Wang, Yongzhen Chen, Caihong Wang, Jing Sun, Zhiping Zhao, Wenfang Liu. Polyethylenimine-Modified Membranes for CO2 Capture and in Situ Hydrogenation. ACS Applied Materials & Interfaces 2018, 10 (34) , 29003-29009. https://doi.org/10.1021/acsami.8b08636
    6. Pegah S. Nabavi Zadeh, Milene Zezzi do Valle Gomes, Björn Åkerman, Anders E. C. Palmqvist. Förster Resonance Energy Transfer Study of the Improved Biocatalytic Conversion of CO2 to Formaldehyde by Coimmobilization of Enzymes in Siliceous Mesostructured Cellular Foams. ACS Catalysis 2018, 8 (8) , 7251-7260. https://doi.org/10.1021/acscatal.8b01806
    7. Fauziah Marpani, Jianquan Luo, Ramona Valentina Mateiu, Anne S. Meyer, and Manuel Pinelo . In Situ Formation of a Biocatalytic Alginate Membrane by Enhanced Concentration Polarization. ACS Applied Materials & Interfaces 2015, 7 (32) , 17682-17691. https://doi.org/10.1021/acsami.5b05529
    8. Xiaoyuan Ji, Zhiguo Su, Ping Wang, Guanghui Ma, and Songping Zhang . Tethering of Nicotinamide Adenine Dinucleotide Inside Hollow Nanofibers for High-Yield Synthesis of Methanol from Carbon Dioxide Catalyzed by Coencapsulated Multienzymes. ACS Nano 2015, 9 (4) , 4600-4610. https://doi.org/10.1021/acsnano.5b01278
    9. Dezhang Ren Zhiyuan Song Jun Fu Zhibao Huo . Application of Diverse Hydrogen Sources to Methanol Synthesis from CO2. 2015, 109-122. https://doi.org/10.1021/bk-2015-1194.ch004
    10. Chen Yang, Hong Wu, Jiafu Shi, Xiaoli Wang, Jingjing Xie, and Zhongyi Jiang . Preparation of Dopamine/Titania Hybrid Nanoparticles through Biomimetic Mineralization and Titanium(IV)–Catecholate Coordination for Enzyme Immobilization. Industrial & Engineering Chemistry Research 2014, 53 (32) , 12665-12672. https://doi.org/10.1021/ie501734g
    11. Xiaoli Wang, Zheng Li, Jiafu Shi, Hong Wu, Zhongyi Jiang, Wenyan Zhang, Xiaokai Song, and Qinghong Ai . Bioinspired Approach to Multienzyme Cascade System Construction for Efficient Carbon Dioxide Reduction. ACS Catalysis 2014, 4 (3) , 962-972. https://doi.org/10.1021/cs401096c
    12. Anna Kubacka, Marcos Fernández-García, and Gerardo Colón . Advanced Nanoarchitectures for Solar Photocatalytic Applications. Chemical Reviews 2012, 112 (3) , 1555-1614. https://doi.org/10.1021/cr100454n
    13. Min Wu, Qin He, Qianfei Shao, Yonggang Zuo, Fen Wang, and Henmei Ni . Preparation and Characterization of Monodispersed Microfloccules of TiO2 Nanoparticles with Immobilized Multienzymes. ACS Applied Materials & Interfaces 2011, 3 (9) , 3300-3307. https://doi.org/10.1021/am200792a
    14. Shunfa Gao, Qiyong Liao, Ruqing Chong, Feixue Sun, Zihui Meng, Wenfang Liu. Nonporous and porous silica-polyethylene composite membrane attached FDH for carbon dioxide conversion to formate and its application in a photo-enzyme coupled system. Separation and Purification Technology 2025, 362 , 131656. https://doi.org/10.1016/j.seppur.2025.131656
    15. Adriaan Dirkzwager, Lloyd Mallee, Tim Groeneveld, Essi B. Quayson, Mohammed Al Qumber, Teresa van Dongen, Duncan G. G. McMillan. Green Engineering of Silicon and Titanium Dioxide Architectures and Realizing Downstream Applications. Advanced Sustainable Systems 2024, 6 https://doi.org/10.1002/adsu.202400591
    16. G.R. Dey. Approach for C1 to C2 products commencing from carbon dioxide: A brief review. Petroleum 2024, 10 (3) , 373-398. https://doi.org/10.1016/j.petlm.2023.07.002
    17. Asim Mahmood, Khalid Aljohani, Bassam S. Aljohani, Areej Bukhari, Zain Ul Abedin. Electrifying Solutions: MOFs and Multi-Metal Nanomaterials for Sustainable Methanol Electro-oxidation and CO2 Reduction. Materials Today Sustainability 2024, 619 , 100966. https://doi.org/10.1016/j.mtsust.2024.100966
    18. Allwin Sudhakaran, Chob Singh, Hemavathi M. Aaradhya, Ankush Biradar, Akshaya K. Samal, Nitin K. Chaudhari, Arvind H. Jadhav. Advancements and Perspective of Environmentally Sustainable Technologies for Electrochemical Selective Conversion of CO 2 to Methanol. Catalysis Reviews 2024, 192 , 1-113. https://doi.org/10.1080/01614940.2024.2340582
    19. Do-Yun Jung, Zhi Li. Highly active and recyclable immobilized multiple enzymes for one-pot enantioselective cascade reactions: Synthesis of (R)- and (S)-α-amino acids from racemic α-hydroxy acids. Applied Catalysis B: Environmental 2024, 341 , 123313. https://doi.org/10.1016/j.apcatb.2023.123313
    20. Qiyong Liao, Rui Gao, Feixue Sun, Ruqing Chong, Zihui Meng, Wenfang Liu. A photo-enzyme coupled system for carbon dioxide conversion to solar fuel: The rate-matching and compatibility between photocatalysis and enzyme catalysis. Journal of Cleaner Production 2024, 436 , 140661. https://doi.org/10.1016/j.jclepro.2024.140661
    21. Jonas Meyer, Manuela Romero, Jorg Thöming, Michael Baune, Nicholas Reimer, Ralf Dringen, Ingmar Bösing. Experimental insights into electrocatalytic [Cp*Rh(bpy)Cl]+ mediated NADH regeneration. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-49021-4
    22. Ashok Kumar Nadda, Deblina Dutta, Anuj Kumar, Kriti Sharma, Pritam Kumar Panda, Debajyoti Kundu, Deepti Yadav, Sunil Kumar, Su Shiung Lam. Chemistry of CO2-philic materials in enzyme-based hybrid interfacial systems: Implications, strategies and applications. Fuel Processing Technology 2023, 250 , 107905. https://doi.org/10.1016/j.fuproc.2023.107905
    23. Qiyong Liao, Mengya Guo, Menglei Mao, Rui Gao, Zihui Meng, Xinlong Fan, Wenfang Liu. Construction and optimization of a photo−enzyme coupled system for sustainable CO2 conversion to methanol. Process Biochemistry 2023, 129 , 44-55. https://doi.org/10.1016/j.procbio.2023.03.011
    24. Jakub Zdarta, Agnieszka Kołodziejczak-Radzimska, Karolina Bachosz, Agnieszka Rybarczyk, Muhammad Bilal, Hafiz M.N. Iqbal, Bogusław Buszewski, Teofil Jesionowski. Nanostructured supports for multienzyme co-immobilization for biotechnological applications: Achievements, challenges and prospects. Advances in Colloid and Interface Science 2023, 315 , 102889. https://doi.org/10.1016/j.cis.2023.102889
    25. Ying Yang, Jiali Huang, Yingbing Zou, Yunbin Li, Tingting Zhan, Limei Huang, Xiuling Ma, Zhangjing Zhang, Shengchang Xiang. N, O-coordinated Zn-MOFs for selective conversion of CO2 to formate. Applied Surface Science 2023, 618 , 156664. https://doi.org/10.1016/j.apsusc.2023.156664
    26. T. Dey, R. Patil, S. Ponnada, R.K. Sharma, S. Dutta. Multi-enzyme cascade in carbon dioxide electroreduction fuel cell. Materials Today Sustainability 2023, 21 , 100333. https://doi.org/10.1016/j.mtsust.2023.100333
    27. Yingjie Du, Le Zhong, Ziyuan Wang, Yuxiao Feng, Jiandong Cui, Shiru Jia. Immobilization of multienzymes: Problems and solutions. 2023, 317-340. https://doi.org/10.1016/B978-0-323-91317-1.00017-7
    28. Qiyong Liao, Wenfang Liu, Zihui Meng. Strategies for overcoming the limitations of enzymatic carbon dioxide reduction. Biotechnology Advances 2022, 60 , 108024. https://doi.org/10.1016/j.biotechadv.2022.108024
    29. Shelly Singla, Pooja Devi, Soumen Basu. Possible Ways for CO 2 Reduction into Hydrocarbons. 2022, 169-186. https://doi.org/10.1002/9781119776086.ch8
    30. Carmela Di Spiridione, Michele Aresta, Angela Dibenedetto. Improving the Enzymatic Cascade of Reactions for the Reduction of CO2 to CH3OH in Water: From Enzymes Immobilization Strategies to Cofactor Regeneration and Cofactor Suppression. Molecules 2022, 27 (15) , 4913. https://doi.org/10.3390/molecules27154913
    31. Diego Carballares, Javier Rocha-Martin, Roberto Fernandez-Lafuente. Coimmobilization of lipases exhibiting three very different stability ranges. Reuse of the active enzymes and selective discarding of the inactivated ones. International Journal of Biological Macromolecules 2022, 206 , 580-590. https://doi.org/10.1016/j.ijbiomac.2022.02.084
    32. Mengya Guo, Fengjuan Gu, Lingding Meng, Qiyong Liao, Zihui Meng, Wenfang Liu. Synthesis of formaldehyde from CO2 catalyzed by the coupled photo-enzyme system. Separation and Purification Technology 2022, 286 , 120480. https://doi.org/10.1016/j.seppur.2022.120480
    33. Tingting Zhan, Yingbing Zou, Ying Yang, Xiuling Ma, Zhangjing Zhang, Shengchang Xiang. Two‐dimensional Metal‐organic Frameworks for Electrochemical CO 2 Reduction Reaction. ChemCatChem 2022, 14 (3) https://doi.org/10.1002/cctc.202101453
    34. Io Antonopoulou, Ulrika Rova, Paul Christakopoulos. CO2 to Methanol: A Highly Efficient Enzyme Cascade. 2022, 317-344. https://doi.org/10.1007/978-1-0716-2269-8_19
    35. Fatin Nasreen Ahmad Rizal Lim, Fauziah Marpani, Victoria Eliz Anak Dilol, Syazana Mohamad Pauzi, Nur Hidayati Othman, Nur Hashimah Alias, Nik Raikhan Nik Him, Jianquan Luo, Norazah Abd Rahman. A Review on the Design and Performance of Enzyme-Aided Catalysis of Carbon Dioxide in Membrane, Electrochemical Cell and Photocatalytic Reactors. Membranes 2022, 12 (1) , 28. https://doi.org/10.3390/membranes12010028
    36. Pragya Singh, Rohit Srivastava. Utilization of bio-inspired catalyst for CO2 reduction into green fuels: Recent advancement and future perspectives. Journal of CO2 Utilization 2021, 53 , 101748. https://doi.org/10.1016/j.jcou.2021.101748
    37. Milene Zezzi do Valle Gomes, Gerard Masdeu, Patrick Eiring, Alexander Kuhlemann, Markus Sauer, Björn Åkerman, Anders E. C. Palmqvist. Improved biocatalytic cascade conversion of CO 2 to methanol by enzymes Co-immobilized in tailored siliceous mesostructured cellular foams. Catalysis Science & Technology 2021, 11 (21) , 6952-6959. https://doi.org/10.1039/D1CY01354H
    38. Aişe Ünlü, Zeynep Efsun Duman-Özdamar, Buse Çaloğlu, Barış Binay. Enzymes for Efficient CO2 Conversion. The Protein Journal 2021, 40 (4) , 489-503. https://doi.org/10.1007/s10930-021-10007-8
    39. Sizhu Ren, Ruixue Chen, Zhangfei Wu, Shan Su, Jiaxi Hou, Yanlin Yuan. Enzymatic characteristics of immobilized carbonic anhydrase and its applications in CO2 conversion. Colloids and Surfaces B: Biointerfaces 2021, 204 , 111779. https://doi.org/10.1016/j.colsurfb.2021.111779
    40. Yoo Seok Lee, Koun Lim, Shelley D. Minteer. Cascaded Biocatalysis and Bioelectrocatalysis: Overview and Recent Advances. Annual Review of Physical Chemistry 2021, 72 (1) , 467-488. https://doi.org/10.1146/annurev-physchem-090519-050109
    41. Milton Chai, Amir Razmjou, Vicki Chen. Metal-organic-framework protected multi-enzyme thin-film for the cascade reduction of CO2 in a gas-liquid membrane contactor. Journal of Membrane Science 2021, 623 , 118986. https://doi.org/10.1016/j.memsci.2020.118986
    42. Sidra Saqib, Ahmad Mukhtar, Sami Ullah, Muhammad Sagir, M. B. Tahir, Rabia Amen, Muhammad Babar, Abdullah G. Al-Sehemi, Muhammad Ali Assiri, Muhammad Ibrahim. Biological Methods for Carbon Dioxide Conversion and Utilization. 2021, 165-177. https://doi.org/10.1007/978-3-030-61837-7_10
    43. Niharika, Yatendra S. Chaudhary, Suddhasatwa Basu. CO2 Conversion into Chemicals and Fuel: India’s Perspective. 2021, 105-122. https://doi.org/10.1007/978-981-16-0029-6_8
    44. Fayez Nasir Al-Rowaili, Aqil Jamal. Electrochemical Reduction of Carbon Dioxide to Methanol Using Metal-Organic Frameworks and Non-metal-Organic Frameworks Catalyst. 2020, 91-131. https://doi.org/10.1007/978-3-030-28622-4_5
    45. Karolina Bachosz, Karol Synoradzki, Maciej Staszak, Manuel Pinelo, Anne S. Meyer, Jakub Zdarta, Teofil Jesionowski. Bioconversion of xylose to xylonic acid via co-immobilized dehydrogenases for conjunct cofactor regeneration. Bioorganic Chemistry 2019, 93 , 102747. https://doi.org/10.1016/j.bioorg.2019.01.043
    46. Fumio Kurayama, Newaz Mohammed Bahadur, Masahide Sato, Takeshi Furusawa, Noboru Suzuki. One‐step preparation of organic‐inorganic hybrid capsules based on simultaneous gelation and silicification. Engineering Reports 2019, 1 (4) https://doi.org/10.1002/eng2.12061
    47. Sizhu Ren, Conghai Li, Xiaobo Jiao, Shiru Jia, Yanjun Jiang, Muhammad Bilal, Jiandong Cui. Recent progress in multienzymes co-immobilization and multienzyme system applications. Chemical Engineering Journal 2019, 373 , 1254-1278. https://doi.org/10.1016/j.cej.2019.05.141
    48. P. Chiranjeevi, Metin Bulut, Tom Breugelmans, Sunil A. Patil, Deepak Pant. Current trends in enzymatic electrosynthesis for CO2 reduction. Current Opinion in Green and Sustainable Chemistry 2019, 16 , 65-70. https://doi.org/10.1016/j.cogsc.2019.02.007
    49. Jiyeun Yi, Jinhyuk Lee, Bong Hyun Sung, Du-Kyeong Kang, GyuTae Lim, Jung-Hoon Bae, Seung-Goo Lee, Sun Chang Kim, Jung-Hoon Sohn. Development of Bacillus methanolicus methanol dehydrogenase with improved formaldehyde reduction activity. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-31001-8
    50. Xinying Zhang, Meiyin Wang, Linlin Lin, Gao Xiao, Zhenping Tang, Xuefeng Zhu. Synthesis of novel laccase-biotitania biocatalysts for malachite green decolorization. Journal of Bioscience and Bioengineering 2018, 126 (1) , 69-77. https://doi.org/10.1016/j.jbiosc.2018.01.021
    51. Yangbin Shen, Yulu Zhan, Shuping Li, Fandi Ning, Ying Du, Yunjie Huang, Ting He, Xiaochun Zhou. Methanol–Water Aqueous‐Phase Reforming with the Assistance of Dehydrogenases at Near‐Room Temperature. ChemSusChem 2018, 11 (5) , 864-871. https://doi.org/10.1002/cssc.201702359
    52. P. Majumdar, M.K. Bera, D. Pant, S. Patra. Enzymatic Electrocatalysis of CO2 Reduction. 2018, 577-589. https://doi.org/10.1016/B978-0-12-409547-2.13353-0
    53. Jiafu Shi, Yizhou Wu, Shaohua Zhang, Yu Tian, Dong Yang, Zhongyi Jiang. Bioinspired construction of multi-enzyme catalytic systems. Chemical Society Reviews 2018, 47 (12) , 4295-4313. https://doi.org/10.1039/C7CS00914C
    54. Zhibo Zhang, Jan Muschiol, Yuhong Huang, Sigyn Björk Sigurdardóttir, Nicolas von Solms, Anders E. Daugaard, Jiang Wei, Jianquan Luo, Bao-Hua Xu, Suojiang Zhang, Manuel Pinelo. Efficient ionic liquid-based platform for multi-enzymatic conversion of carbon dioxide to methanol. Green Chemistry 2018, 20 (18) , 4339-4348. https://doi.org/10.1039/C8GC02230E
    55. CATERINA G.C. MARQUES NETTO, LEANDRO H. ANDRADE, HENRIQUE E. TOMA. Carbon dioxide/methanol conversion cycle based on cascade enzymatic reactions supported on superparamagnetic nanoparticles. Anais da Academia Brasileira de Ciências 2018, 90 (1 suppl 1) , 593-606. https://doi.org/10.1590/0001-3765201720170330
    56. Fauziah Marpani, Zsuzsa Sárossy, Manuel Pinelo, Anne S. Meyer. Kinetics based reaction optimization of enzyme catalyzed reduction of formaldehyde to methanol with synchronous cofactor regeneration. Biotechnology and Bioengineering 2017, 114 (12) , 2762-2770. https://doi.org/10.1002/bit.26405
    57. Sandipam Srikanth, Yolanda Alvarez‐Gallego, Karolien Vanbroekhoven, Deepak Pant. Enzymatic Electrosynthesis of Formic Acid through Carbon Dioxide Reduction in a Bioelectrochemical System: Effect of Immobilization and Carbonic Anhydrase Addition. ChemPhysChem 2017, 18 (22) , 3174-3181. https://doi.org/10.1002/cphc.201700017
    58. Fauziah Marpani, Manuel Pinelo, Anne S. Meyer. Enzymatic conversion of CO2 to CH3OH via reverse dehydrogenase cascade biocatalysis: Quantitative comparison of efficiencies of immobilized enzyme systems. Biochemical Engineering Journal 2017, 127 , 217-228. https://doi.org/10.1016/j.bej.2017.08.011
    59. Xuejun Yu, Dimitri Niks, Ashok Mulchandani, Russ Hille. Efficient reduction of CO2 by the molybdenum-containing formate dehydrogenase from Cupriavidus necator (Ralstonia eutropha). Journal of Biological Chemistry 2017, 292 (41) , 16872-16879. https://doi.org/10.1074/jbc.M117.785576
    60. Milene Zezzi do Valle Gomes, Anders E. C. Palmqvist. Influence of operating conditions and immobilization on activity of alcohol dehydrogenase for the conversion of formaldehyde to methanol. New Journal of Chemistry 2017, 41 (19) , 11391-11397. https://doi.org/10.1039/C7NJ02028G
    61. Xiaoyuan Ji, Zhiguo Su, Ping Wang, Guanghui Ma, Songping Zhang. Integration of Artificial Photosynthesis System for Enhanced Electronic Energy‐Transfer Efficacy: A Case Study for Solar‐Energy Driven Bioconversion of Carbon Dioxide to Methanol. Small 2016, 12 (34) , 4753-4762. https://doi.org/10.1002/smll.201600707
    62. Yan-zi Wang, Zhi-ping Zhao, Man-feng Li, Yong-zhen Chen, Wen-fang Liu. Development of a hollow fiber membrane micro-reactor for biocatalytic production of formate from CO2. Journal of Membrane Science 2016, 514 , 44-52. https://doi.org/10.1016/j.memsci.2016.04.032
    63. Sabiha Sultana, Prakash Chandra Sahoo, Satyabadi Martha, Kulamani Parida. A review of harvesting clean fuels from enzymatic CO 2 reduction. RSC Advances 2016, 6 (50) , 44170-44194. https://doi.org/10.1039/C6RA05472B
    64. Jiandong Cui, Shiru Jia, Longhao Liang, Yamin Zhao, Yuxiao Feng. Mesoporous CLEAs-silica composite microparticles with high activity and enhanced stability. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep14203
    65. Inés Ardao, Delphine Magnin, Spiros N. Agathos. Bioinspired production of magnetic laccase‐biotitania particles for the removal of endocrine disrupting chemicals. Biotechnology and Bioengineering 2015, 112 (10) , 1986-1996. https://doi.org/10.1002/bit.25612
    66. Jiandong Cui, Longhao Liang, Cong Han, Rong lin Liu. Stabilization of Phenylalanine Ammonia Lyase from Rhodotorula glutinis by Encapsulation in Polyethyleneimine-Mediated Biomimetic Silica. Applied Biochemistry and Biotechnology 2015, 176 (4) , 999-1011. https://doi.org/10.1007/s12010-015-1624-0
    67. Yanzi Wang, Manfeng Li, Zhiping Zhao, Wenfang Liu. Effect of carbonic anhydrase on enzymatic conversion of CO2 to formic acid and optimization of reaction conditions. Journal of Molecular Catalysis B: Enzymatic 2015, 116 , 89-94. https://doi.org/10.1016/j.molcatb.2015.03.014
    68. Jianquan Luo, Anne S. Meyer, R.V. Mateiu, Manuel Pinelo. Cascade catalysis in membranes with enzyme immobilization for multi-enzymatic conversion of CO2 to methanol. New Biotechnology 2015, 32 (3) , 319-327. https://doi.org/10.1016/j.nbt.2015.02.006
    69. Jiafu Shi, Yanjun Jiang, Zhongyi Jiang, Xueyan Wang, Xiaoli Wang, Shaohua Zhang, Pingping Han, Chen Yang. Enzymatic conversion of carbon dioxide. Chemical Society Reviews 2015, 44 (17) , 5981-6000. https://doi.org/10.1039/C5CS00182J
    70. Wenfang Liu, Yanhui Hou, Benxiang Hou, Zhiping Zhao. Enzyme-catalyzed Sequential Reduction of Carbon Dioxide to Formaldehyde. Chinese Journal of Chemical Engineering 2014, 22 (11-12) , 1328-1332. https://doi.org/10.1016/j.cjche.2014.09.026
    71. Sandipam Srikanth, Miranda Maesen, Xochitl Dominguez-Benetton, Karolien Vanbroekhoven, Deepak Pant. Enzymatic electrosynthesis of formate through CO2 sequestration/reduction in a bioelectrochemical system (BES). Bioresource Technology 2014, 165 , 350-354. https://doi.org/10.1016/j.biortech.2014.01.129
    72. Jianhui Huang, Markus Antonietti, Jian Liu. Bio-inspired carbon nitride mesoporous spheres for artificial photosynthesis: photocatalytic cofactor regeneration for sustainable enzymatic synthesis. J. Mater. Chem. A 2014, 2 (21) , 7686-7693. https://doi.org/10.1039/C4TA00793J
    73. Engelbert Portenkirchner, Kerstin Oppelt, Daniel A. M. Egbe, Günther Knör, Niyazi Serdar Sariçiftçi. Electro- and photo-chemistry of rhenium and rhodium complexes for carbon dioxide and proton reduction: a mini review. Nanomaterials and Energy 2013, 2 (3) , 134-147. https://doi.org/10.1680/nme.13.00004
    74. Inés Ardao, Ee Taek Hwang, An-Ping Zeng. In Vitro Multienzymatic Reaction Systems for Biosynthesis. 2013, 153-184. https://doi.org/10.1007/10_2013_232
    75. Fang Liu, Scott Banta, Wilfred Chen. Functional assembly of a multi-enzyme methanol oxidation cascade on a surface-displayed trifunctional scaffold for enhanced NADH production. Chemical Communications 2013, 49 (36) , 3766. https://doi.org/10.1039/c3cc40454d
    76. Rémi Cazelles, Jullien Drone, François Fajula, Ovidiu Ersen, Simona Moldovan, Anne Galarneau. Reduction of CO2 to methanol by a polyenzymatic system encapsulated in phospholipids–silica nanocapsules. New Journal of Chemistry 2013, 37 (11) , 3721. https://doi.org/10.1039/c3nj00688c
    77. Sadhana Rayalu, Renu Yadav, Snehal Wanjari, Chandan Prabhu, Srinivas Chakravarthy Mushnoori, Nitin Labhsetwar, T. Satyanarayanan, Swati Kotwal, S. R. Wate, Sung-Gil Hong, Jungbae Kim. Nanobiocatalysts for Carbon Capture, Sequestration and Valorisation. Topics in Catalysis 2012, 55 (16-18) , 1217-1230. https://doi.org/10.1007/s11244-012-9896-x
    78. Liang Wang, Yuan Chen, Rongrong Jiang. Nanoparticle-supported consecutive reactions catalyzed by alkyl hydroperoxide reductase. Journal of Molecular Catalysis B: Enzymatic 2012, 76 , 9-14. https://doi.org/10.1016/j.molcatb.2011.11.016
    79. K. Lanjekar, N. Gharat. In vitro enzyme catalytic biotransformation of Carbon dioxide into useful chemicals - A short review. 2011, 112-117. https://doi.org/10.1109/GTEC.2011.6167654
    80. Paul K. Addo, Robert L. Arechederra, Abdul Waheed, James D. Shoemaker, William S. Sly, Shelley D. Minteer. Methanol Production via Bioelectrocatalytic Reduction of Carbon Dioxide: Role of Carbonic Anhydrase in Improving Electrode Performance. Electrochemical and Solid-State Letters 2011, 14 (4) , E9-E13. https://doi.org/10.1149/1.3537463
    81. Siddharth V. Patwardhan. Biomimetic and bioinspired silica: recent developments and applications. Chemical Communications 2011, 47 (27) , 7567. https://doi.org/10.1039/c0cc05648k
    82. Lorena Betancor, Heather R. Luckarift. Co-immobilized coupled enzyme systems in biotechnology. Biotechnology and Genetic Engineering Reviews 2010, 27 (1) , 95-114. https://doi.org/10.1080/02648725.2010.10648146

    Industrial & Engineering Chemistry Research

    Cite this: Ind. Eng. Chem. Res. 2009, 48, 9, 4210–4215
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ie801931j
    Published March 27, 2009
    Copyright © 2009 American Chemical Society

    Article Views

    2069

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.