Green and Efficient Conversion of CO2 to Methanol by Biomimetic Coimmobilization of Three Dehydrogenases in Protamine-Templated TitaniaClick to copy article linkArticle link copied!
Abstract
A green and efficient mutienzyme system was established, which efficiently converted carbon dioxide into methanol, by encapsulating three dehydrogenases within titania particles through a facile and mild biomimetic mineralization process. The enzyme-containing titania particles were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The results indicated that the enzyme-containing titania particles were amorphous and consisted of interconnected nanospheres with sizes in the range of 400−600 nm. The three encapsulated dehydrogenases (formate dehydrogenase, formaldehyde dehydrogenase, alcohol dehydrogenase) sequentially converted carbon dioxide into HCOOH, CHOH, and CH3OH using NADH as a terminal electron donor for each dehydrogenase-catalyzed reduction. Compared to the open-style system which directly performed the bioconversion using free enzymes in aqueous solution, higher reaction yield in a wider pH and temperature range was obtained by the closed-style coimmobilization multienzyme system.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 82 publications.
- Dustin P. Patterson, Christy Hjorth, Andrea Hernandez Irias, Nathasha Hewagama, Jessica Bird. Delayed In Vivo Encapsulation of Enzymes Alters the Catalytic Activity of Virus-Like Particle Nanoreactors. ACS Synthetic Biology 2022, 11
(9)
, 2956-2968. https://doi.org/10.1021/acssynbio.1c00636
- Ee Taek Hwang, Seonbyul Lee. Multienzymatic Cascade Reactions via Enzyme Complex by Immobilization. ACS Catalysis 2019, 9
(5)
, 4402-4425. https://doi.org/10.1021/acscatal.8b04921
- Xin Li, Jiaguo Yu, Mietek Jaroniec, Xiaobo Chen. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chemical Reviews 2019, 119
(6)
, 3962-4179. https://doi.org/10.1021/acs.chemrev.8b00400
- Fayez Nasir Al-Rowaili, Aqil Jamal, Mohammad S. Ba Shammakh, Azeem Rana. A Review on Recent Advances for Electrochemical Reduction of Carbon Dioxide to Methanol Using Metal–Organic Framework (MOF) and Non-MOF Catalysts: Challenges and Future Prospects. ACS Sustainable Chemistry & Engineering 2018, 6
(12)
, 15895-15914. https://doi.org/10.1021/acssuschemeng.8b03843
- Yanzi Wang, Yongzhen Chen, Caihong Wang, Jing Sun, Zhiping Zhao, Wenfang Liu. Polyethylenimine-Modified Membranes for CO2 Capture and in Situ Hydrogenation. ACS Applied Materials & Interfaces 2018, 10
(34)
, 29003-29009. https://doi.org/10.1021/acsami.8b08636
- Pegah S. Nabavi Zadeh, Milene Zezzi do Valle Gomes, Björn Åkerman, Anders E. C. Palmqvist. Förster Resonance Energy Transfer Study of the Improved Biocatalytic Conversion of CO2 to Formaldehyde by Coimmobilization of Enzymes in Siliceous Mesostructured Cellular Foams. ACS Catalysis 2018, 8
(8)
, 7251-7260. https://doi.org/10.1021/acscatal.8b01806
- Fauziah Marpani, Jianquan Luo, Ramona Valentina Mateiu, Anne S. Meyer, and Manuel Pinelo . In Situ Formation of a Biocatalytic Alginate Membrane by Enhanced Concentration Polarization. ACS Applied Materials & Interfaces 2015, 7
(32)
, 17682-17691. https://doi.org/10.1021/acsami.5b05529
- Xiaoyuan Ji, Zhiguo Su, Ping Wang, Guanghui Ma, and Songping Zhang . Tethering of Nicotinamide Adenine Dinucleotide Inside Hollow Nanofibers for High-Yield Synthesis of Methanol from Carbon Dioxide Catalyzed by Coencapsulated Multienzymes. ACS Nano 2015, 9
(4)
, 4600-4610. https://doi.org/10.1021/acsnano.5b01278
- Dezhang Ren Zhiyuan Song Jun Fu Zhibao Huo . Application of Diverse Hydrogen Sources to Methanol Synthesis from CO2. 2015, 109-122. https://doi.org/10.1021/bk-2015-1194.ch004
- Chen Yang, Hong Wu, Jiafu Shi, Xiaoli Wang, Jingjing Xie, and Zhongyi Jiang . Preparation of Dopamine/Titania Hybrid Nanoparticles through Biomimetic Mineralization and Titanium(IV)–Catecholate Coordination for Enzyme Immobilization. Industrial & Engineering Chemistry Research 2014, 53
(32)
, 12665-12672. https://doi.org/10.1021/ie501734g
- Xiaoli Wang, Zheng Li, Jiafu Shi, Hong Wu, Zhongyi Jiang, Wenyan Zhang, Xiaokai Song, and Qinghong Ai . Bioinspired Approach to Multienzyme Cascade System Construction for Efficient Carbon Dioxide Reduction. ACS Catalysis 2014, 4
(3)
, 962-972. https://doi.org/10.1021/cs401096c
- Anna Kubacka, Marcos Fernández-García, and Gerardo Colón . Advanced Nanoarchitectures for Solar Photocatalytic Applications. Chemical Reviews 2012, 112
(3)
, 1555-1614. https://doi.org/10.1021/cr100454n
- Min Wu, Qin He, Qianfei Shao, Yonggang Zuo, Fen Wang, and Henmei Ni . Preparation and Characterization of Monodispersed Microfloccules of TiO2 Nanoparticles with Immobilized Multienzymes. ACS Applied Materials & Interfaces 2011, 3
(9)
, 3300-3307. https://doi.org/10.1021/am200792a
- Shunfa Gao, Qiyong Liao, Ruqing Chong, Feixue Sun, Zihui Meng, Wenfang Liu. Nonporous and porous silica-polyethylene composite membrane attached FDH for carbon dioxide conversion to formate and its application in a photo-enzyme coupled system. Separation and Purification Technology 2025, 362 , 131656. https://doi.org/10.1016/j.seppur.2025.131656
- Adriaan Dirkzwager, Lloyd Mallee, Tim Groeneveld, Essi B. Quayson, Mohammed Al Qumber, Teresa van Dongen, Duncan G. G. McMillan. Green Engineering of Silicon and Titanium Dioxide Architectures and Realizing Downstream Applications. Advanced Sustainable Systems 2024, 6 https://doi.org/10.1002/adsu.202400591
- G.R. Dey. Approach for C1 to C2 products commencing from carbon dioxide: A brief review. Petroleum 2024, 10
(3)
, 373-398. https://doi.org/10.1016/j.petlm.2023.07.002
- Asim Mahmood, Khalid Aljohani, Bassam S. Aljohani, Areej Bukhari, Zain Ul Abedin. Electrifying Solutions: MOFs and Multi-Metal Nanomaterials for Sustainable Methanol Electro-oxidation and CO2 Reduction. Materials Today Sustainability 2024, 619 , 100966. https://doi.org/10.1016/j.mtsust.2024.100966
- Allwin Sudhakaran, Chob Singh, Hemavathi M. Aaradhya, Ankush Biradar, Akshaya K. Samal, Nitin K. Chaudhari, Arvind H. Jadhav. Advancements and Perspective of Environmentally Sustainable Technologies for Electrochemical Selective Conversion of CO
2
to Methanol. Catalysis Reviews 2024, 192 , 1-113. https://doi.org/10.1080/01614940.2024.2340582
- Do-Yun Jung, Zhi Li. Highly active and recyclable immobilized multiple enzymes for one-pot enantioselective cascade reactions: Synthesis of (R)- and (S)-α-amino acids from racemic α-hydroxy acids. Applied Catalysis B: Environmental 2024, 341 , 123313. https://doi.org/10.1016/j.apcatb.2023.123313
- Qiyong Liao, Rui Gao, Feixue Sun, Ruqing Chong, Zihui Meng, Wenfang Liu. A photo-enzyme coupled system for carbon dioxide conversion to solar fuel: The rate-matching and compatibility between photocatalysis and enzyme catalysis. Journal of Cleaner Production 2024, 436 , 140661. https://doi.org/10.1016/j.jclepro.2024.140661
- Jonas Meyer, Manuela Romero, Jorg Thöming, Michael Baune, Nicholas Reimer, Ralf Dringen, Ingmar Bösing. Experimental insights into electrocatalytic [Cp*Rh(bpy)Cl]+ mediated NADH regeneration. Scientific Reports 2023, 13
(1)
https://doi.org/10.1038/s41598-023-49021-4
- Ashok Kumar Nadda, Deblina Dutta, Anuj Kumar, Kriti Sharma, Pritam Kumar Panda, Debajyoti Kundu, Deepti Yadav, Sunil Kumar, Su Shiung Lam. Chemistry of CO2-philic materials in enzyme-based hybrid interfacial systems: Implications, strategies and applications. Fuel Processing Technology 2023, 250 , 107905. https://doi.org/10.1016/j.fuproc.2023.107905
- Qiyong Liao, Mengya Guo, Menglei Mao, Rui Gao, Zihui Meng, Xinlong Fan, Wenfang Liu. Construction and optimization of a photo−enzyme coupled system for sustainable CO2 conversion to methanol. Process Biochemistry 2023, 129 , 44-55. https://doi.org/10.1016/j.procbio.2023.03.011
- Jakub Zdarta, Agnieszka Kołodziejczak-Radzimska, Karolina Bachosz, Agnieszka Rybarczyk, Muhammad Bilal, Hafiz M.N. Iqbal, Bogusław Buszewski, Teofil Jesionowski. Nanostructured supports for multienzyme co-immobilization for biotechnological applications: Achievements, challenges and prospects. Advances in Colloid and Interface Science 2023, 315 , 102889. https://doi.org/10.1016/j.cis.2023.102889
- Ying Yang, Jiali Huang, Yingbing Zou, Yunbin Li, Tingting Zhan, Limei Huang, Xiuling Ma, Zhangjing Zhang, Shengchang Xiang. N, O-coordinated Zn-MOFs for selective conversion of CO2 to formate. Applied Surface Science 2023, 618 , 156664. https://doi.org/10.1016/j.apsusc.2023.156664
- T. Dey, R. Patil, S. Ponnada, R.K. Sharma, S. Dutta. Multi-enzyme cascade in carbon dioxide electroreduction fuel cell. Materials Today Sustainability 2023, 21 , 100333. https://doi.org/10.1016/j.mtsust.2023.100333
- Yingjie Du, Le Zhong, Ziyuan Wang, Yuxiao Feng, Jiandong Cui, Shiru Jia. Immobilization of multienzymes: Problems and solutions. 2023, 317-340. https://doi.org/10.1016/B978-0-323-91317-1.00017-7
- Qiyong Liao, Wenfang Liu, Zihui Meng. Strategies for overcoming the limitations of enzymatic carbon dioxide reduction. Biotechnology Advances 2022, 60 , 108024. https://doi.org/10.1016/j.biotechadv.2022.108024
- Shelly Singla, Pooja Devi, Soumen Basu. Possible Ways for
CO
2
Reduction into Hydrocarbons. 2022, 169-186. https://doi.org/10.1002/9781119776086.ch8
- Carmela Di Spiridione, Michele Aresta, Angela Dibenedetto. Improving the Enzymatic Cascade of Reactions for the Reduction of CO2 to CH3OH in Water: From Enzymes Immobilization Strategies to Cofactor Regeneration and Cofactor Suppression. Molecules 2022, 27
(15)
, 4913. https://doi.org/10.3390/molecules27154913
- Diego Carballares, Javier Rocha-Martin, Roberto Fernandez-Lafuente. Coimmobilization of lipases exhibiting three very different stability ranges. Reuse of the active enzymes and selective discarding of the inactivated ones. International Journal of Biological Macromolecules 2022, 206 , 580-590. https://doi.org/10.1016/j.ijbiomac.2022.02.084
- Mengya Guo, Fengjuan Gu, Lingding Meng, Qiyong Liao, Zihui Meng, Wenfang Liu. Synthesis of formaldehyde from CO2 catalyzed by the coupled photo-enzyme system. Separation and Purification Technology 2022, 286 , 120480. https://doi.org/10.1016/j.seppur.2022.120480
- Tingting Zhan, Yingbing Zou, Ying Yang, Xiuling Ma, Zhangjing Zhang, Shengchang Xiang. Two‐dimensional Metal‐organic Frameworks for Electrochemical CO
2
Reduction Reaction. ChemCatChem 2022, 14
(3)
https://doi.org/10.1002/cctc.202101453
- Io Antonopoulou, Ulrika Rova, Paul Christakopoulos. CO2 to Methanol: A Highly Efficient Enzyme Cascade. 2022, 317-344. https://doi.org/10.1007/978-1-0716-2269-8_19
- Fatin Nasreen Ahmad Rizal Lim, Fauziah Marpani, Victoria Eliz Anak Dilol, Syazana Mohamad Pauzi, Nur Hidayati Othman, Nur Hashimah Alias, Nik Raikhan Nik Him, Jianquan Luo, Norazah Abd Rahman. A Review on the Design and Performance of Enzyme-Aided Catalysis of Carbon Dioxide in Membrane, Electrochemical Cell and Photocatalytic Reactors. Membranes 2022, 12
(1)
, 28. https://doi.org/10.3390/membranes12010028
- Pragya Singh, Rohit Srivastava. Utilization of bio-inspired catalyst for CO2 reduction into green fuels: Recent advancement and future perspectives. Journal of CO2 Utilization 2021, 53 , 101748. https://doi.org/10.1016/j.jcou.2021.101748
- Milene Zezzi do Valle Gomes, Gerard Masdeu, Patrick Eiring, Alexander Kuhlemann, Markus Sauer, Björn Åkerman, Anders E. C. Palmqvist. Improved biocatalytic cascade conversion of CO
2
to methanol by enzymes Co-immobilized in tailored siliceous mesostructured cellular foams. Catalysis Science & Technology 2021, 11
(21)
, 6952-6959. https://doi.org/10.1039/D1CY01354H
- Aişe Ünlü, Zeynep Efsun Duman-Özdamar, Buse Çaloğlu, Barış Binay. Enzymes for Efficient CO2 Conversion. The Protein Journal 2021, 40
(4)
, 489-503. https://doi.org/10.1007/s10930-021-10007-8
- Sizhu Ren, Ruixue Chen, Zhangfei Wu, Shan Su, Jiaxi Hou, Yanlin Yuan. Enzymatic characteristics of immobilized carbonic anhydrase and its applications in CO2 conversion. Colloids and Surfaces B: Biointerfaces 2021, 204 , 111779. https://doi.org/10.1016/j.colsurfb.2021.111779
- Yoo Seok Lee, Koun Lim, Shelley D. Minteer. Cascaded Biocatalysis and Bioelectrocatalysis: Overview and Recent Advances. Annual Review of Physical Chemistry 2021, 72
(1)
, 467-488. https://doi.org/10.1146/annurev-physchem-090519-050109
- Milton Chai, Amir Razmjou, Vicki Chen. Metal-organic-framework protected multi-enzyme thin-film for the cascade reduction of CO2 in a gas-liquid membrane contactor. Journal of Membrane Science 2021, 623 , 118986. https://doi.org/10.1016/j.memsci.2020.118986
- Sidra Saqib, Ahmad Mukhtar, Sami Ullah, Muhammad Sagir, M. B. Tahir, Rabia Amen, Muhammad Babar, Abdullah G. Al-Sehemi, Muhammad Ali Assiri, Muhammad Ibrahim. Biological Methods for Carbon Dioxide Conversion and Utilization. 2021, 165-177. https://doi.org/10.1007/978-3-030-61837-7_10
- Niharika, Yatendra S. Chaudhary, Suddhasatwa Basu. CO2 Conversion into Chemicals and Fuel: India’s Perspective. 2021, 105-122. https://doi.org/10.1007/978-981-16-0029-6_8
- Fayez Nasir Al-Rowaili, Aqil Jamal. Electrochemical Reduction of Carbon Dioxide to Methanol Using Metal-Organic Frameworks and Non-metal-Organic Frameworks Catalyst. 2020, 91-131. https://doi.org/10.1007/978-3-030-28622-4_5
- Karolina Bachosz, Karol Synoradzki, Maciej Staszak, Manuel Pinelo, Anne S. Meyer, Jakub Zdarta, Teofil Jesionowski. Bioconversion of xylose to xylonic acid via co-immobilized dehydrogenases for conjunct cofactor regeneration. Bioorganic Chemistry 2019, 93 , 102747. https://doi.org/10.1016/j.bioorg.2019.01.043
- Fumio Kurayama, Newaz Mohammed Bahadur, Masahide Sato, Takeshi Furusawa, Noboru Suzuki. One‐step preparation of organic‐inorganic hybrid capsules based on simultaneous gelation and silicification. Engineering Reports 2019, 1
(4)
https://doi.org/10.1002/eng2.12061
- Sizhu Ren, Conghai Li, Xiaobo Jiao, Shiru Jia, Yanjun Jiang, Muhammad Bilal, Jiandong Cui. Recent progress in multienzymes co-immobilization and multienzyme system applications. Chemical Engineering Journal 2019, 373 , 1254-1278. https://doi.org/10.1016/j.cej.2019.05.141
- P. Chiranjeevi, Metin Bulut, Tom Breugelmans, Sunil A. Patil, Deepak Pant. Current trends in enzymatic electrosynthesis for CO2 reduction. Current Opinion in Green and Sustainable Chemistry 2019, 16 , 65-70. https://doi.org/10.1016/j.cogsc.2019.02.007
- Jiyeun Yi, Jinhyuk Lee, Bong Hyun Sung, Du-Kyeong Kang, GyuTae Lim, Jung-Hoon Bae, Seung-Goo Lee, Sun Chang Kim, Jung-Hoon Sohn. Development of Bacillus methanolicus methanol dehydrogenase with improved formaldehyde reduction activity. Scientific Reports 2018, 8
(1)
https://doi.org/10.1038/s41598-018-31001-8
- Xinying Zhang, Meiyin Wang, Linlin Lin, Gao Xiao, Zhenping Tang, Xuefeng Zhu. Synthesis of novel laccase-biotitania biocatalysts for malachite green decolorization. Journal of Bioscience and Bioengineering 2018, 126
(1)
, 69-77. https://doi.org/10.1016/j.jbiosc.2018.01.021
- Yangbin Shen, Yulu Zhan, Shuping Li, Fandi Ning, Ying Du, Yunjie Huang, Ting He, Xiaochun Zhou. Methanol–Water Aqueous‐Phase Reforming with the Assistance of Dehydrogenases at Near‐Room Temperature. ChemSusChem 2018, 11
(5)
, 864-871. https://doi.org/10.1002/cssc.201702359
- P. Majumdar, M.K. Bera, D. Pant, S. Patra. Enzymatic Electrocatalysis of CO2 Reduction. 2018, 577-589. https://doi.org/10.1016/B978-0-12-409547-2.13353-0
- Jiafu Shi, Yizhou Wu, Shaohua Zhang, Yu Tian, Dong Yang, Zhongyi Jiang. Bioinspired construction of multi-enzyme catalytic systems. Chemical Society Reviews 2018, 47
(12)
, 4295-4313. https://doi.org/10.1039/C7CS00914C
- Zhibo Zhang, Jan Muschiol, Yuhong Huang, Sigyn Björk Sigurdardóttir, Nicolas von Solms, Anders E. Daugaard, Jiang Wei, Jianquan Luo, Bao-Hua Xu, Suojiang Zhang, Manuel Pinelo. Efficient ionic liquid-based platform for multi-enzymatic conversion of carbon dioxide to methanol. Green Chemistry 2018, 20
(18)
, 4339-4348. https://doi.org/10.1039/C8GC02230E
- CATERINA G.C. MARQUES NETTO, LEANDRO H. ANDRADE, HENRIQUE E. TOMA. Carbon dioxide/methanol conversion cycle based on cascade enzymatic reactions supported on superparamagnetic nanoparticles. Anais da Academia Brasileira de Ciências 2018, 90
(1 suppl 1)
, 593-606. https://doi.org/10.1590/0001-3765201720170330
- Fauziah Marpani, Zsuzsa Sárossy, Manuel Pinelo, Anne S. Meyer. Kinetics based reaction optimization of enzyme catalyzed reduction of formaldehyde to methanol with synchronous cofactor regeneration. Biotechnology and Bioengineering 2017, 114
(12)
, 2762-2770. https://doi.org/10.1002/bit.26405
- Sandipam Srikanth, Yolanda Alvarez‐Gallego, Karolien Vanbroekhoven, Deepak Pant. Enzymatic Electrosynthesis of Formic Acid through Carbon Dioxide Reduction in a Bioelectrochemical System: Effect of Immobilization and Carbonic Anhydrase Addition. ChemPhysChem 2017, 18
(22)
, 3174-3181. https://doi.org/10.1002/cphc.201700017
- Fauziah Marpani, Manuel Pinelo, Anne S. Meyer. Enzymatic conversion of CO2 to CH3OH via reverse dehydrogenase cascade biocatalysis: Quantitative comparison of efficiencies of immobilized enzyme systems. Biochemical Engineering Journal 2017, 127 , 217-228. https://doi.org/10.1016/j.bej.2017.08.011
- Xuejun Yu, Dimitri Niks, Ashok Mulchandani, Russ Hille. Efficient reduction of CO2 by the molybdenum-containing formate dehydrogenase from Cupriavidus necator (Ralstonia eutropha). Journal of Biological Chemistry 2017, 292
(41)
, 16872-16879. https://doi.org/10.1074/jbc.M117.785576
- Milene Zezzi do Valle Gomes, Anders E. C. Palmqvist. Influence of operating conditions and immobilization on activity of alcohol dehydrogenase for the conversion of formaldehyde to methanol. New Journal of Chemistry 2017, 41
(19)
, 11391-11397. https://doi.org/10.1039/C7NJ02028G
- Xiaoyuan Ji, Zhiguo Su, Ping Wang, Guanghui Ma, Songping Zhang. Integration of Artificial Photosynthesis System for Enhanced Electronic Energy‐Transfer Efficacy: A Case Study for Solar‐Energy Driven Bioconversion of Carbon Dioxide to Methanol. Small 2016, 12
(34)
, 4753-4762. https://doi.org/10.1002/smll.201600707
- Yan-zi Wang, Zhi-ping Zhao, Man-feng Li, Yong-zhen Chen, Wen-fang Liu. Development of a hollow fiber membrane micro-reactor for biocatalytic production of formate from CO2. Journal of Membrane Science 2016, 514 , 44-52. https://doi.org/10.1016/j.memsci.2016.04.032
- Sabiha Sultana, Prakash Chandra Sahoo, Satyabadi Martha, Kulamani Parida. A review of harvesting clean fuels from enzymatic CO
2
reduction. RSC Advances 2016, 6
(50)
, 44170-44194. https://doi.org/10.1039/C6RA05472B
- Jiandong Cui, Shiru Jia, Longhao Liang, Yamin Zhao, Yuxiao Feng. Mesoporous CLEAs-silica composite microparticles with high activity and enhanced stability. Scientific Reports 2015, 5
(1)
https://doi.org/10.1038/srep14203
- Inés Ardao, Delphine Magnin, Spiros N. Agathos. Bioinspired production of magnetic laccase‐biotitania particles for the removal of endocrine disrupting chemicals. Biotechnology and Bioengineering 2015, 112
(10)
, 1986-1996. https://doi.org/10.1002/bit.25612
- Jiandong Cui, Longhao Liang, Cong Han, Rong lin Liu. Stabilization of Phenylalanine Ammonia Lyase from Rhodotorula glutinis by Encapsulation in Polyethyleneimine-Mediated Biomimetic Silica. Applied Biochemistry and Biotechnology 2015, 176
(4)
, 999-1011. https://doi.org/10.1007/s12010-015-1624-0
- Yanzi Wang, Manfeng Li, Zhiping Zhao, Wenfang Liu. Effect of carbonic anhydrase on enzymatic conversion of CO2 to formic acid and optimization of reaction conditions. Journal of Molecular Catalysis B: Enzymatic 2015, 116 , 89-94. https://doi.org/10.1016/j.molcatb.2015.03.014
- Jianquan Luo, Anne S. Meyer, R.V. Mateiu, Manuel Pinelo. Cascade catalysis in membranes with enzyme immobilization for multi-enzymatic conversion of CO2 to methanol. New Biotechnology 2015, 32
(3)
, 319-327. https://doi.org/10.1016/j.nbt.2015.02.006
- Jiafu Shi, Yanjun Jiang, Zhongyi Jiang, Xueyan Wang, Xiaoli Wang, Shaohua Zhang, Pingping Han, Chen Yang. Enzymatic conversion of carbon dioxide. Chemical Society Reviews 2015, 44
(17)
, 5981-6000. https://doi.org/10.1039/C5CS00182J
- Wenfang Liu, Yanhui Hou, Benxiang Hou, Zhiping Zhao. Enzyme-catalyzed Sequential Reduction of Carbon Dioxide to Formaldehyde. Chinese Journal of Chemical Engineering 2014, 22
(11-12)
, 1328-1332. https://doi.org/10.1016/j.cjche.2014.09.026
- Sandipam Srikanth, Miranda Maesen, Xochitl Dominguez-Benetton, Karolien Vanbroekhoven, Deepak Pant. Enzymatic electrosynthesis of formate through CO2 sequestration/reduction in a bioelectrochemical system (BES). Bioresource Technology 2014, 165 , 350-354. https://doi.org/10.1016/j.biortech.2014.01.129
- Jianhui Huang, Markus Antonietti, Jian Liu. Bio-inspired carbon nitride mesoporous spheres for artificial photosynthesis: photocatalytic cofactor regeneration for sustainable enzymatic synthesis. J. Mater. Chem. A 2014, 2
(21)
, 7686-7693. https://doi.org/10.1039/C4TA00793J
- Engelbert Portenkirchner, Kerstin Oppelt, Daniel A. M. Egbe, Günther Knör, Niyazi Serdar Sariçiftçi. Electro- and photo-chemistry of rhenium and rhodium complexes for carbon dioxide and proton reduction: a mini review. Nanomaterials and Energy 2013, 2
(3)
, 134-147. https://doi.org/10.1680/nme.13.00004
- Inés Ardao, Ee Taek Hwang, An-Ping Zeng. In Vitro Multienzymatic Reaction Systems for Biosynthesis. 2013, 153-184. https://doi.org/10.1007/10_2013_232
- Fang Liu, Scott Banta, Wilfred Chen. Functional assembly of a multi-enzyme methanol oxidation cascade on a surface-displayed trifunctional scaffold for enhanced NADH production. Chemical Communications 2013, 49
(36)
, 3766. https://doi.org/10.1039/c3cc40454d
- Rémi Cazelles, Jullien Drone, François Fajula, Ovidiu Ersen, Simona Moldovan, Anne Galarneau. Reduction of CO2 to methanol by a polyenzymatic system encapsulated in phospholipids–silica nanocapsules. New Journal of Chemistry 2013, 37
(11)
, 3721. https://doi.org/10.1039/c3nj00688c
- Sadhana Rayalu, Renu Yadav, Snehal Wanjari, Chandan Prabhu, Srinivas Chakravarthy Mushnoori, Nitin Labhsetwar, T. Satyanarayanan, Swati Kotwal, S. R. Wate, Sung-Gil Hong, Jungbae Kim. Nanobiocatalysts for Carbon Capture, Sequestration and Valorisation. Topics in Catalysis 2012, 55
(16-18)
, 1217-1230. https://doi.org/10.1007/s11244-012-9896-x
- Liang Wang, Yuan Chen, Rongrong Jiang. Nanoparticle-supported consecutive reactions catalyzed by alkyl hydroperoxide reductase. Journal of Molecular Catalysis B: Enzymatic 2012, 76 , 9-14. https://doi.org/10.1016/j.molcatb.2011.11.016
- K. Lanjekar, N. Gharat. In vitro enzyme catalytic biotransformation of Carbon dioxide into useful chemicals - A short review. 2011, 112-117. https://doi.org/10.1109/GTEC.2011.6167654
- Paul K. Addo, Robert L. Arechederra, Abdul Waheed, James D. Shoemaker, William S. Sly, Shelley D. Minteer. Methanol Production via Bioelectrocatalytic Reduction of Carbon Dioxide: Role of Carbonic Anhydrase in Improving Electrode Performance. Electrochemical and Solid-State Letters 2011, 14
(4)
, E9-E13. https://doi.org/10.1149/1.3537463
- Siddharth V. Patwardhan. Biomimetic and bioinspired silica: recent developments and applications. Chemical Communications 2011, 47
(27)
, 7567. https://doi.org/10.1039/c0cc05648k
- Lorena Betancor, Heather R. Luckarift. Co-immobilized coupled enzyme systems in biotechnology. Biotechnology and Genetic Engineering Reviews 2010, 27
(1)
, 95-114. https://doi.org/10.1080/02648725.2010.10648146
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.