Are Thermally Coupled Distillation Columns Always Thermodynamically More Efficient for Ternary Distillations?
Abstract
The thermodynamic efficiency of five ternary distillation configurations to distill ideal saturated liquids into pure product streams are calculated and compared. A striking result of this study is that for the fully coupled column (Petlyuk) configuration, which is known to have the lowest heat demand for ternary distillation, the range of values of feed composition and relative volatilities for which it is the most thermodynamically efficient configuration is quite limited. Among the three thermally coupled column configurations, the side-rectifier and side-stripper configurations tend to provide the most efficient configuration more often than the fully coupled configuration. Generally, the modified direct and indirect split configurations together provide the most thermodynamically efficient configuration for more feed compositions and relative volatilities than do the three thermally coupled column configurations. The high thermodynamic efficiency of these two configurations is primarily due to their ability to either accept or reject heat at the intermediate temperatures of binary mixtures.
*
To whom correspondence should be addressed. Fax: 610-481-8803. E-mail: [email protected].
Cited By
This article is cited by 127 publications.
- Wei-En Lin, Pin-Hsun Huang, Jeffrey D. Ward. Regions of Optimality for Separation System Synthesis Using Rigorous Modeling, Stochastic Optimization, and Column Stacking. Industrial & Engineering Chemistry Research 2020, 59
(26)
, 12164-12175. https://doi.org/10.1021/acs.iecr.0c01741
- Eman M. El-Gendy, Mahmoud M. Saafan, Mohamed S. Elksas, Sabry F. Saraya, Fayez F. G. Areed. New Suggested Model Reference Adaptive Controller for the Divided Wall Distillation Column. Industrial & Engineering Chemistry Research 2019, 58
(17)
, 7247-7264. https://doi.org/10.1021/acs.iecr.9b01747
- Jinglian Gu, Xinqiang You, Changyuan Tao, Jun Li, Vincent Gerbaud. Energy-Saving Reduced-Pressure Extractive Distillation with Heat Integration for Separating the Biazeotropic Ternary Mixture Tetrahydrofuran–Methanol–Water. Industrial & Engineering Chemistry Research 2018, 57
(40)
, 13498-13510. https://doi.org/10.1021/acs.iecr.8b03123
- Hua Zhou, Yintian Cai, Fengqi You. Systems Design, Modeling, and Thermoeconomic Analysis of Azeotropic Distillation Processes for Organic Waste Treatment and Recovery in Nylon Plants. Industrial & Engineering Chemistry Research 2018, 57
(30)
, 9994-10010. https://doi.org/10.1021/acs.iecr.8b00275
- Gautham
Madenoor Ramapriya, Ajiththaa Selvarajah, Luis Eduardo Jimenez Cucaita, Joshua Huff, Mohit Tawarmalani, Rakesh Agrawal. Short-Cut Methods versus Rigorous Methods for Performance-Evaluation of Distillation Configurations. Industrial & Engineering Chemistry Research 2018, 57
(22)
, 7726-7731. https://doi.org/10.1021/acs.iecr.7b05214
- Lianghua Xu, Murong Li, Xiaohong Yin, and Xigang Yuan . New Intensified Heat Integration of Vapor Recompression Assisted Dividing Wall Column. Industrial & Engineering Chemistry Research 2017, 56
(8)
, 2188-2196. https://doi.org/10.1021/acs.iecr.6b03802
- Cheng-Liang Chen, Yao-Hsien Chung, and Hao-Yeh Lee . Design and Control of Reactive Distillation Process for the Production of Methyl Valerate. Industrial & Engineering Chemistry Research 2016, 55
(5)
, 1347-1360. https://doi.org/10.1021/acs.iecr.5b03495
- Hassiba Benyounes, Khadidja Benyahia, Weifeng Shen, Vincent Gerbaud, Lichun Dong, and Shun’an Wei . Novel Procedure for Assessment of Feasible Design Parameters of Dividing-Wall Columns: Application to Non-azeotropic Mixtures. Industrial & Engineering Chemistry Research 2015, 54
(19)
, 5307-5318. https://doi.org/10.1021/ie5048576
- D. Kang and Jae W. Lee . Graphical Design of Integrated Reaction and Distillation in Dividing Wall Columns. Industrial & Engineering Chemistry Research 2015, 54
(12)
, 3175-3185. https://doi.org/10.1021/ie5047957
- Kwangil Kim, Moonyong Lee, and Sunwon Park . Two-Point Temperature Control Structure Selection for Dividing-Wall Distillation Columns. Industrial & Engineering Chemistry Research 2012, 51
(48)
, 15683-15695. https://doi.org/10.1021/ie301457a
- Fernando Israel Gómez-Castro, Vicente Rico-Ramírez, Juan Gabriel Segovia-Hernández, Salvador Hernández-Castro, Guillermo González-Alatorre, and Mahmoud M. El-Halwagi . Simplified Methodology for the Design and Optimization of Thermally Coupled Reactive Distillation Systems. Industrial & Engineering Chemistry Research 2012, 51
(36)
, 11717-11730. https://doi.org/10.1021/ie201397a
- Lorena E. Ruiz-Marín, Nelly Ramírez-Corona, Angel Castro-Agüero, and Arturo Jiménez-Gutiérrez . Shortcut Design of Fully Thermally Coupled Distillation Systems with Postfractionator. Industrial & Engineering Chemistry Research 2011, 50
(10)
, 6287-6296. https://doi.org/10.1021/ie102032e
- Vishesh H. Shah and Rakesh Agrawal. Are All Thermal Coupling Links between Multicomponent Distillation Columns Useful from an Energy Perspective?. Industrial & Engineering Chemistry Research 2011, 50
(3)
, 1770-1777. https://doi.org/10.1021/ie101768c
- Yuan-Chieh Ho, Jeffrey D. Ward, and Cheng-Ching Yu. Quantifying Potential Energy Savings of Divided Wall Columns Based on Degree of Remixing. Industrial & Engineering Chemistry Research 2011, 50
(3)
, 1473-1487. https://doi.org/10.1021/ie901907e
- San-Jang Wang, Hao-Yeh Lee, Jui-Hung Ho, Cheng-Ching Yu, Hsiao-Ping Huang and Ming-Jer Lee. Plantwide Design of Ideal Reactive Distillation Processes with Thermal Coupling. Industrial & Engineering Chemistry Research 2010, 49
(7)
, 3262-3274. https://doi.org/10.1021/ie900786u
- San-Jang Wang, Hsiao-Ping Huang and Cheng-Ching Yu . Plantwide Design of Transesterification Reactive Distillation to Co-Generate Ethyl Acetate and n-Butanol. Industrial & Engineering Chemistry Research 2010, 49
(2)
, 750-760. https://doi.org/10.1021/ie901413c
- Ilkka Malinen and Juha Tanskanen. Thermally Coupled Side-Column Configurations Enabling Distillation Boundary Crossing. 1. An Overview and a Solving Procedure. Industrial & Engineering Chemistry Research 2009, 48
(13)
, 6387-6404. https://doi.org/10.1021/ie800817n
- Ilkka Malinen and Juha Tanskanen. Thermally Coupled Side-Column Configurations Enabling Distillation Boundary Crossing. 2. Effects of Intermediate Heat Exchangers. Industrial & Engineering Chemistry Research 2009, 48
(13)
, 6372-6386. https://doi.org/10.1021/ie800818y
- Petros Proios and, Efstratios N. Pistikopoulos. Generalized Modular Framework for the Representation and Synthesis of Complex Distillation Column Sequences. Industrial & Engineering Chemistry Research 2005, 44
(13)
, 4656-4675. https://doi.org/10.1021/ie040163m
- Ivar J. Halvorsen and, Sigurd Skogestad. Shortcut Analysis of Optimal Operation of Petlyuk Distillation. Industrial & Engineering Chemistry Research 2004, 43
(14)
, 3994-3999. https://doi.org/10.1021/ie034177o
- Olga A. Flores,, J. Carlos Cárdenas,, Salvador Hernández, and, Vicente Rico-Ramírez. Thermodynamic Analysis of Thermally Coupled Distillation Sequences. Industrial & Engineering Chemistry Research 2003, 42
(23)
, 5940-5945. https://doi.org/10.1021/ie034011n
- Juan Luis Blancarte-Palacios,, María Nancy Bautista-Valdés,, Salvador Hernández,, Vicente Rico-Ramírez, and, Arturo Jiménez. Energy-Efficient Designs of Thermally Coupled Distillation Sequences for Four-Component Mixtures. Industrial & Engineering Chemistry Research 2003, 42
(21)
, 5157-5164. https://doi.org/10.1021/ie030297k
- Mariana Barttfeld and, Pío A. Aguirre. Optimal Synthesis of Multicomponent Zeotropic Distillation Processes. 2. Preprocessing Phase and Rigorous Optimization of Efficient Sequences. Industrial & Engineering Chemistry Research 2003, 42
(14)
, 3441-3457. https://doi.org/10.1021/ie0205086
- Ben-Guang Rong,, Andrzej Kraslawski, and, Ilkka Turunen. Synthesis of Functionally Distinct Thermally Coupled Configurations for Quaternary Distillations. Industrial & Engineering Chemistry Research 2003, 42
(6)
, 1204-1214. https://doi.org/10.1021/ie0207562
- Ivar J. Halvorsen and, Sigurd Skogestad. Minimum Energy Consumption in Multicomponent Distillation. 2. Three-Product Petlyuk Arrangements. Industrial & Engineering Chemistry Research 2003, 42
(3)
, 605-615. https://doi.org/10.1021/ie0108649
- Ben-Guang Rong and, Andrzej Kraslawski. Optimal Design of Distillation Flowsheets with a Lower Number of Thermal Couplings for Multicomponent Separations. Industrial & Engineering Chemistry Research 2002, 41
(23)
, 5716-5726. https://doi.org/10.1021/ie0107136
- Rakesh Agrawal. Multicomponent Distillation Columns with Partitions and Multiple Reboilers and Condensers. Industrial & Engineering Chemistry Research 2001, 40
(20)
, 4258-4266. https://doi.org/10.1021/ie000315n
- Rakesh Agrawal and, Zbigniew T. Fidkowski. Thermodynamically Efficient Systems for Ternary Distillation. Industrial & Engineering Chemistry Research 1999, 38
(5)
, 2065-2074. https://doi.org/10.1021/ie980531k
- Guido Dünnebier and, Constantinos C. Pantelides. Optimal Design of Thermally Coupled Distillation Columns. Industrial & Engineering Chemistry Research 1999, 38
(1)
, 162-176. https://doi.org/10.1021/ie9802919
- Wei-Ting Tang, Chih-Kuan Chien, Jeffrey D. Ward. Stacked Side-Stream distillation sequences. Chemical Engineering Science 2023, 280 , 119075. https://doi.org/10.1016/j.ces.2023.119075
- Radhakrishna Tumbalam Gooty, Tony Joseph Mathew, Mohit Tawarmalani, Rakesh Agrawal. An MINLP formulation to identify thermodynamically-efficient distillation configurations. Computers & Chemical Engineering 2023, 178 , 108369. https://doi.org/10.1016/j.compchemeng.2023.108369
- Chih-Kuan Chien, Jeffrey D. Ward. A new metric for the evaluation and selection of energy-intensified extractive distillation sequences. Separation and Purification Technology 2023, 320 , 124165. https://doi.org/10.1016/j.seppur.2023.124165
- Bettina Kruber, Karen Droste, Mirko Skiborowski. Thermodynamic efficiency of membrane‐assisted distillation processes. AIChE Journal 2023, 69
(6)
https://doi.org/10.1002/aic.18015
- Qing Li, Adrian J. Finn, Stephen J. Doyle, Robin Smith, Anton A. Kiss. Synthesis and optimization of energy integrated advanced distillation sequences. Separation and Purification Technology 2023, 315 , 123717. https://doi.org/10.1016/j.seppur.2023.123717
- Wenyan Li, Xiaomin Cheng, Zhongyang Li, Zhiqiang Fang, Hao Li, Jing Fang. A simple screening method for distillation sequence of thermally coupled dividing wall column: distillation sequence morphological analysis method (
DSMAM
). Journal of Chemical Technology & Biotechnology 2023, 98
(4)
, 875-889. https://doi.org/10.1002/jctb.7290
- Davood Safari, Norollah Kasiri, Amirhossein Khalili-Garakani, Mostafa Mafi. Economic Analysis of Separation Unit of Methanol to Propylene Production Based on Optimization of Refrigeration Cycles Using Pinch and Exergy Analysis. International Journal of Refrigeration 2023, 146 , 108-117. https://doi.org/10.1016/j.ijrefrig.2022.09.029
- Mingmei Wang, Erwei Song, Lin Li, Yaochang Zhang, Erqiang Wang. Application of dividing wall column in azeotropic distillation with intermediate boiling-point heteroazeotrope: Simulation and optimization. Chemical Engineering Research and Design 2023, 189 , 384-400. https://doi.org/10.1016/j.cherd.2022.11.044
- Wei-Ting Tang, Jeffrey D. Ward. Energy and exergy analysis of a stacked complex sequence and alternatives for ternary distillation. Separation and Purification Technology 2023, 304 , 122384. https://doi.org/10.1016/j.seppur.2022.122384
- Anna S. Horsch, Andres R. Acevedo, Mirko Skiborowski. Optimal Retrofit of Simple Distillation Sequences to Thermally Coupled Side-Stream Configurations. 2023, 331-336. https://doi.org/10.1016/B978-0-443-15274-0.50053-6
- Zong Yang Kong, Eduardo Sánchez-Ramírez, Ao Yang, Weifeng Shen, Juan Gabriel Segovia-Hernández, Jaka Sunarso. Process intensification from conventional to advanced distillations: Past, present, and future. Chemical Engineering Research and Design 2022, 188 , 378-392. https://doi.org/10.1016/j.cherd.2022.09.056
- Jose Adrian Chavez Velasco, Mohit Tawarmalani, Rakesh Agrawal. Which separation scenarios are advantageous for membranes or distillations?. AIChE Journal 2022, 68
(11)
https://doi.org/10.1002/aic.17839
- Zong Yang Kong, Juan Gabriel Segovia-Hernández, Hao-Yeh Lee, Jaka Sunarso. Are process-intensified extractive distillation always energetically more efficient?. Chemical Engineering and Processing - Process Intensification 2022, 181 , 109131. https://doi.org/10.1016/j.cep.2022.109131
- Shubham R. Pandit, Amiya K. Jana. Transforming conventional distillation sequence to dividing wall column: Minimizing cost, energy usage and environmental impact through genetic algorithm. Separation and Purification Technology 2022, 297 , 121437. https://doi.org/10.1016/j.seppur.2022.121437
- Mirko Skiborowski, Kai Fabian Kruber, Thomas Waltermann. Sustainable Distillation Processes. 2022, 431-481. https://doi.org/10.1002/9781119740117.ch12
- Chengna Dai, Zhigang Lei, Biaohua Chen. Other distillation techniques. 2022, 355-379. https://doi.org/10.1016/B978-0-12-820507-5.00002-6
- Hosanna Uwitonze, Inkyu Lee, Sung-Bu Suh, Inwon Lee. CFD study of oscillatory motion effect on liquid flow distribution into structured packed divided wall column. Chemical Engineering and Processing - Process Intensification 2021, 165 , 108429. https://doi.org/10.1016/j.cep.2021.108429
- Hao Chen, Haifeng Cong, Lin He, Xingang Li. A novel two-parts heat integrated dividing wall column with middle vapor recompression. Separation and Purification Technology 2021, 262 , 118302. https://doi.org/10.1016/j.seppur.2021.118302
- Juan Gabriel Segovia-Hernández, Salvador Hernández, Eduardo Sánchez-Ramírez, Jesús Mendoza-Pedroza. A Short Review of Dividing Wall Distillation Column as an Application of Process Intensification: Geographical Development and the Pioneering Contribution of Prof. Arturo Jimenez in Latin America. Chemical Engineering and Processing - Process Intensification 2021, 160 , 108275. https://doi.org/10.1016/j.cep.2020.108275
- Seong Chan Lee, Hee Chul Woo, Young Han Kim. Energy-efficient recovery process of 2,3-butanediol using 2-heptanol extraction. Chemical Engineering and Processing - Process Intensification 2021, 160 , 108286. https://doi.org/10.1016/j.cep.2020.108286
- Rakesh Agrawal, Radhakrishna Tumbalam Gooty. Misconceptions about efficiency and maturity of distillation. AIChE Journal 2020, 66
(8)
https://doi.org/10.1002/aic.16294
- Hao Chen, Xingang Li, Lin He, Haifeng Cong. Energy, exergy, economic, and environmental analysis for methyl acetate hydrolysis process with heat integrated technology used. Energy Conversion and Management 2020, 216 , 112919. https://doi.org/10.1016/j.enconman.2020.112919
- Zewei Chen, Rakesh Agrawal. Classification and Comparison of Dividing Walls for Distillation Columns. Processes 2020, 8
(6)
, 699. https://doi.org/10.3390/pr8060699
- Yanyang Wu, Guizhi Zhang, Jianyuan Xu, Xinchuan Qu, Ze Wang, Tianyou Wang, Kui Chen, Lijun Ji. Enhanced separation of mixing diols by distillation in dividing wall column. Chemical Engineering and Processing - Process Intensification 2020, 149 , 107859. https://doi.org/10.1016/j.cep.2020.107859
- Rakesh Agrawal. Chemical engineering for a solar economy (2017 P. V. Danckwerts Lecture). Chemical Engineering Science 2019, 210 , 115215. https://doi.org/10.1016/j.ces.2019.115215
- Zheyu Jiang, Zewei Chen, Joshua Huff, Anirudh A. Shenvi, Mohit Tawarmalani, Rakesh Agrawal. Global minimization of total exergy loss of multicomponent distillation configurations. AIChE Journal 2019, 65
(11)
https://doi.org/10.1002/aic.16737
- Melissa M. Donahue, Michael Baldea, R. Bruce Eldridge. Steady state considerations for designing minimum energy control strategies for a dividing wall distillation column with trace components. Chemical Engineering and Processing - Process Intensification 2019, 145 , 107641. https://doi.org/10.1016/j.cep.2019.107641
- Thomas Waltermann, Mirko Skiborowski. Efficient optimization-based design of energy-integrated distillation processes. Computers & Chemical Engineering 2019, 129 , 106520. https://doi.org/10.1016/j.compchemeng.2019.106520
- Zheyu Jiang, Rakesh Agrawal. Process intensification in multicomponent distillation: A review of recent advancements. Chemical Engineering Research and Design 2019, 147 , 122-145. https://doi.org/10.1016/j.cherd.2019.04.023
- Junwen Luo, Chunjian Xu, Yawen Zhang, Kaixin Yan, Jesse Zhu. A steady-state analysis method for optimal operation of dividing-wall column. Computers & Chemical Engineering 2018, 119 , 112-127. https://doi.org/10.1016/j.compchemeng.2018.05.010
- Itzel Oseguera-Villaseñor, Guillermo Martínez-Rodríguez, Fabricio Omar Barroso-Muñoz, Juan Gabriel Segovia-Hernández, Salvador Hernández. Multiplicities in dividing wall distillation columns in the purification of bioethanol: energy considerations. Clean Technologies and Environmental Policy 2018, 20
(7)
, 1631-1637. https://doi.org/10.1007/s10098-017-1415-0
- Lianghua Xu, Lianrui Gao, Xiaohong Yin, Xigang Yuan. Improving performance of dividing wall column using multistage vapor recompression with intermediate reboiler. Chemical Engineering Research and Design 2018, 134 , 382-391. https://doi.org/10.1016/j.cherd.2018.04.023
- Gabriel Contreras-Zarazúa, José Antonio Vázquez-Castillo, César Ramírez-Márquez, Gianni A. Pontis, Juan Gabriel Segovia-Hernández, Jesus Rafael Alcántara-Ávila. Comparison of intensified reactive distillation configurations for the synthesis of diphenyl carbonate. Energy 2017, 135 , 637-649. https://doi.org/10.1016/j.energy.2017.06.156
- Lianghua Xu, Murong Li, Xiaolong Ge, Xigang Yuan. Numerical simulation of dividing wall column with vapor recompression located at side product stage. Chemical Engineering Research and Design 2017, 120 , 138-149. https://doi.org/10.1016/j.cherd.2017.02.007
- Craig A. Hoyme. Dividing Wall Columns in the Chemical Industry. 2017, 2037-2067. https://doi.org/10.1007/978-3-319-52287-6_38
- Moritz Schröder, Christoph Ehlers, Georg Fieg. A Comprehensive Analysis on the Reactive Dividing‐Wall Column, its Minimum Energy Demand, and Energy‐Saving Potential. Chemical Engineering & Technology 2016, 39
(12)
, 2323-2338. https://doi.org/10.1002/ceat.201500722
- Terry Blevins, Willy K. Wojsznis, Mark J. Nixon, Bailee Roach. Wireless model predictive control applied for dividing wall column control. 2016, 1-7. https://doi.org/10.1109/EBCCSP.2016.7605271
- Hosanna Uwitonze, Kyu Suk Hwang, Inwon Lee. A new design method and operation of fully thermally coupled distillation column. Chemical Engineering and Processing: Process Intensification 2016, 102 , 47-58. https://doi.org/10.1016/j.cep.2015.12.010
- José D. Olguín-Angeles, Arturo Ortíz-Arroyo, Angel Castro-Agüero. Minimum Reflux of Complex Distillation Columns: Adiabatic Flash Method on Enthalpy-Composition Diagram. 2016, 1791-1796. https://doi.org/10.1016/B978-0-444-63428-3.50303-9
- Chinedu O. Okoli, Thomas A. Adams. Design of dividing wall columns for butanol recovery in a thermochemical biomass to butanol process. Chemical Engineering and Processing: Process Intensification 2015, 95 , 302-316. https://doi.org/10.1016/j.cep.2015.07.002
- Gautham Madenoor Ramapriya, Mohit Tawarmalani, Rakesh Agrawal. Thermal coupling links to liquid‐only transfer streams: A path for new dividing wall columns. AIChE Journal 2014, 60
(8)
, 2949-2961. https://doi.org/10.1002/aic.14468
- José A. Caballero, Ignacio E. Grossmann. Optimal synthesis of thermally coupled distillation sequences using a novel MILP approach. Computers & Chemical Engineering 2014, 61 , 118-135. https://doi.org/10.1016/j.compchemeng.2013.10.015
- Sandra S. Florindo, Isabel M. João, João M. Silva. Study of Energy Efficient Distillation Columns Usage for Multicomponent Separations through Process Simulation and Statistical Methods. 2014, 145-150. https://doi.org/10.1016/B978-0-444-63456-6.50025-9
- Daniel Staak, Thomas Grützner, Brian Schwegler, Detlef Roederer. Dividing wall column for industrial multi purpose use. Chemical Engineering and Processing: Process Intensification 2014, 75 , 48-57. https://doi.org/10.1016/j.cep.2013.10.007
- Daniel Beneke, Diane Hildebrandt, David Glasser. Feed distribution in distillation: Assessing benefits and limits with column profile maps and rigorous process simulation. AIChE Journal 2013, 59
(5)
, 1668-1683. https://doi.org/10.1002/aic.13940
- Kai Cheng, San-Jang Wang, David S.H. Wong. Steady-state design of thermally coupled reactive distillation process for the synthesis of diphenyl carbonate. Computers & Chemical Engineering 2013, 52 , 262-271. https://doi.org/10.1016/j.compchemeng.2013.02.001
- Ulaganathan Nallasivam, Vishesh H. Shah, Anirudh A. Shenvi, Mohit Tawarmalani, Rakesh Agrawal. Global optimization of multicomponent distillation configurations: 1. Need for a reliable global optimization algorithm. AIChE Journal 2013, 59
(3)
, 971-981. https://doi.org/10.1002/aic.13875
- . Introduction. 2012, 1-14. https://doi.org/10.1002/9781118477304.ch1
- . Design of Fully Thermally Coupled Complex Columns Using Column Profile Maps. 2012, 206-260. https://doi.org/10.1002/9781118477304.ch7
- Le Quang Minh, Nguyen Van Duc Long, Moonyong Lee. Energy efficiency improvement of dimethyl ether purification process by utilizing dividing wall columns. Korean Journal of Chemical Engineering 2012, 29
(11)
, 1500-1507. https://doi.org/10.1007/s11814-012-0048-6
- Uwitonze Hosanna, Amit Goyal, Minchul Ha, Kim Se Jung, Kyu Suk Hwang. Fully thermally coupled distillation column design for liquid petroleum gas recovery. 2012, 135-140. https://doi.org/10.1109/ICSET.2012.6357387
- Peng Wang, Haisheng Chen, Yufeng Wang, Liang Zhang, Kejin Huang, San-Jang Wang. A SIMPLE ALGORITHM FOR THE DESIGN OF FULLY THERMALLY COUPLED DISTILLATION COLUMNS (FTCDC). Chemical Engineering Communications 2012, 199
(5)
, 608-627. https://doi.org/10.1080/00986445.2011.604813
- J. Rizk, M. Nemer, D. Clodic. A real column design exergy optimization of a cryogenic air separation unit. Energy 2012, 37
(1)
, 417-429. https://doi.org/10.1016/j.energy.2011.11.012
- Xin Tong Xia, Jia Wu, Long Yong Lin. A Novel Process Employing Dividing Wall Column and Double Effect Distillation. Advanced Materials Research 2012, 455-456 , 127-133. https://doi.org/10.4028/www.scientific.net/AMR.455-456.127
- Daniel A. Beneke, Andreas A. Linninger. Graphical design and analysis of thermally coupled sidestream columns using column profile maps and temperature collocation. AIChE Journal 2011, 57
(9)
, 2406-2420. https://doi.org/10.1002/aic.12453
- Nghi Nguyen, Yaşar Demirel. Using thermally coupled reactive distillation columns in biodiesel production. Energy 2011, 36
(8)
, 4838-4847. https://doi.org/10.1016/j.energy.2011.05.020
- Lan-Yi Sun, Xing-Wu Chang, Cai-Xia Qi, Qing-Song Li. Implementation of Ethanol Dehydration Using Dividing-Wall Heterogeneous Azeotropic Distillation Column. Separation Science and Technology 2011, 46
(8)
, 1365-1375. https://doi.org/10.1080/01496395.2011.556099
- Gerardo J. Ruiz, Seon B. Kim, Laura Moes, Andreas A. Linninger. Rigorous synthesis and simulation of complex distillation networks. AIChE Journal 2011, 57
(1)
, 136-148. https://doi.org/10.1002/aic.12245
- Gerardo J. Ruiz, Seon B. Kim, Jeonghwa Moon, Libin Zhang, Andreas A. Linninger. Design and optimization of energy efficient complex separation networks. Computers & Chemical Engineering 2010, 34
(9)
, 1556-1563. https://doi.org/10.1016/j.compchemeng.2010.02.008
- I. Dejanović, Lj. Matijašević, Ž. Olujić. Dividing wall column—A breakthrough towards sustainable distilling. Chemical Engineering and Processing: Process Intensification 2010, 49
(6)
, 559-580. https://doi.org/10.1016/j.cep.2010.04.001
- San-Jang Wang, Cheng-Ching Yu, Hsiao-Ping Huang. Plant-wide design and control of DMC synthesis process via reactive distillation and thermally coupled extractive distillation. Computers & Chemical Engineering 2010, 34
(3)
, 361-373. https://doi.org/10.1016/j.compchemeng.2009.05.002
- L.‐Y. Sun, X.‐W. Chang, Y.‐M. Zhang, J. Li, Q.‐S. Li. Reducing Energy Consumption and CO
2
Emissions in Thermally Coupled Azeotropic Distillation. Chemical Engineering & Technology 2010, 33
(3)
, 395-404. https://doi.org/10.1002/ceat.200900422
- Norbert Asprion, Gerd Kaibel. Dividing wall columns: Fundamentals and recent advances. Chemical Engineering and Processing: Process Intensification 2010, 49
(2)
, 139-146. https://doi.org/10.1016/j.cep.2010.01.013
- Arun Giridhar, Rakesh Agrawal. Synthesis of distillation configurations: I. Characteristics of a good search space. Computers & Chemical Engineering 2010, 34
(1)
, 73-83. https://doi.org/10.1016/j.compchemeng.2009.05.003
- Massimiliano Errico, Giuseppe Tola, Ben-Guang Rong, Daniele Demurtas, Ilkka Turunen. Energy saving and capital cost evaluation in distillation column sequences with a divided wall column. Chemical Engineering Research and Design 2009, 87
(12)
, 1649-1657. https://doi.org/10.1016/j.cherd.2009.05.006
- Andreas A. Linninger. Industry-wide energy saving by complex separation networks. Computers & Chemical Engineering 2009, 33
(12)
, 2018-2027. https://doi.org/10.1016/j.compchemeng.2009.06.022
- Mansour Emtir, Asma Etoumi. Enhancement of conventional distillation configurations for ternary mixtures separation. Clean Technologies and Environmental Policy 2009, 11
(1)
, 123-131. https://doi.org/10.1007/s10098-008-0174-3
- Luo Yiqing, Yuan Xigang, Dong Fenglian. Synthesis and heat integration of thermally coupled complex distillation system. International Journal of Energy Research 2009, 24 , n/a-n/a. https://doi.org/10.1002/er.1576
- R. Premkumar, G.P. Rangaiah. Retrofitting conventional column systems to dividing-Wall Columns. Chemical Engineering Research and Design 2009, 87
(1)
, 47-60. https://doi.org/10.1016/j.cherd.2008.06.013
- San-Jang Wang, David S.H. Wong, Shuh-Woei Yu. Design and control of transesterification reactive distillation with thermal coupling. Computers & Chemical Engineering 2008, 32
(12)
, 3030-3037. https://doi.org/10.1016/j.compchemeng.2008.04.001
- Douani Mustapha, Ouadjenia Fatima, Terkhi Sabria. Distillation of a Complex Mixture. Part I: High Pressure Distillation Column Analysis: Modeling and Simulation. Entropy 2007, 9
(2)
, 58-72. https://doi.org/10.3390/e9020058