Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Predicted properties of the superheavy elements. III. Element 115, Eka-bismuth
My Activity

Figure 1Loading Img
    article

    Predicted properties of the superheavy elements. III. Element 115, Eka-bismuth
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    The Journal of Physical Chemistry

    Cite this: J. Phys. Chem. 1974, 78, 19, 1945–1949
    Click to copy citationCitation copied!
    https://doi.org/10.1021/j100612a015
    Published September 1, 1974

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 31 publications.

    1. Hong-Tao Sun, Yoshio Sakka, Naoto Shirahata, Yoshitaka Matsushita, Kenzo Deguchi, and Tadashi Shimizu . NMR, ESR, and Luminescence Characterization of Bismuth Embedded Zeolites Y. The Journal of Physical Chemistry C 2013, 117 (12) , 6399-6408. https://doi.org/10.1021/jp401861c
    2. Zhiwei Chang, Jiguang Li, and Chenzhong Dong. Ionization Potentials, Electron Affinities, Resonance Excitation Energies, Oscillator Strengths, And Ionic Radii of Element Uus (Z = 117) and Astatine. The Journal of Physical Chemistry A 2010, 114 (51) , 13388-13394. https://doi.org/10.1021/jp107411s
    3. Valeria G. Pershina. Electronic Structure and Properties of the Transactinides and Their Compounds. Chemical Reviews 1996, 96 (6) , 1977-2010. https://doi.org/10.1021/cr941182g
    4. Hermann Sicius. Pnictogene: Elemente der fünften Hauptgruppe. 2023, 1-69. https://doi.org/10.1007/978-3-662-55944-4_5-2
    5. Hermann Sicius. Pnictogene: Elemente der fünften Hauptgruppe. 2023, 283-351. https://doi.org/10.1007/978-3-662-65664-8_5
    6. A. N. Romanov, E. V. Haula, A. A. Kostyukov, A. E. Egorov, V. A. Kuzmin, V. N. Korchak. Bismuth Monocation IR Photoluminescence in Mixed Cyclotriphosphates of Alkali and Alkaline Earth Metals. Inorganic Materials 2022, 58 (12) , 1284-1293. https://doi.org/10.1134/S002016852212010X
    7. Hermann Sicius. Pnictogene: Elemente der fünften Hauptgruppe. 2021, 277-344. https://doi.org/10.1007/978-3-662-55939-0_5
    8. Hermann Sicius. Pnictogene: Elemente der fünften Hauptgruppe. 2020, 1-68. https://doi.org/10.1007/978-3-662-55944-4_5-1
    9. Hong-Tao Sun, Jiajia Zhou, Jianrong Qiu. Recent advances in bismuth activated photonic materials. Progress in Materials Science 2014, 64 , 1-72. https://doi.org/10.1016/j.pmatsci.2014.02.002
    10. Robert Eichler, Bernd Eichler. Thermochemical Data from Gas-Phase Adsorption and Methods of Their Estimation. 2014, 375-413. https://doi.org/10.1007/978-3-642-37466-1_7
    11. Alexey N. Romanov, Zukhra T. Fattakhova, Denis M. Zhigunov, Vladimir N. Korchak, Vladimir B. Sulimov. On the origin of near-IR luminescence in Bi-doped materials (I). Generation of low-valence bismuth species by Bi3+ and Bi0 synproportionation. Optical Materials 2011, 33 (4) , 631-634. https://doi.org/10.1016/j.optmat.2010.11.019
    12. V. Pershina, A. Borschevsky, J. Anton, T. Jacob. Theoretical predictions of trends in spectroscopic properties of gold containing dimers of the 6p and 7p elements and their adsorption on gold. The Journal of Chemical Physics 2010, 133 (10) https://doi.org/10.1063/1.3476470
    13. V. Pershina, A. Borschevsky, J. Anton, T. Jacob. Theoretical predictions of trends in spectroscopic properties of homonuclear dimers and volatility of the 7p elements. The Journal of Chemical Physics 2010, 132 (19) https://doi.org/10.1063/1.3425996
    14. V. Pershina. Electronic Structure and Chemistry of the Heaviest Elements. 2010, 451-520. https://doi.org/10.1007/978-1-4020-9975-5_11
    15. John S. Thayer. Relativistic Effects and the Chemistry of the Heavier Main Group Elements. 2010, 63-97. https://doi.org/10.1007/978-1-4020-9975-5_2
    16. V. Pershina. The Chemistry of the Superheavy Elements and Relativistic Effects. 2004, 1-80. https://doi.org/10.1016/S1380-7323(04)80028-1
    17. Peter Schwerdtfeger, Michael Seth. Relativistic Effects of the Superheavy Elements. 1998https://doi.org/10.1002/0470845015.cra007
    18. EPHRAIM ELIAV UZI KALDOR YASUYUKI I. The relativistic coupled-cluster method: transition energies of bismuth and eka-bismuth. Molecular Physics 1998, 94 (1) , 181-187. https://doi.org/10.1080/002689798168466
    19. V. Pershina, B. Fricke. Relativistic effects in physics and chemistry of element 105. IV. Their influence on the electronic structure and related properties. The Journal of Chemical Physics 1993, 99 (12) , 9720-9729. https://doi.org/10.1063/1.465454
    20. Elijah Johnson, B. Fricke, O. L. Keller, C. W. Nestor, T. C. Tucker. Ionization potentials and radii of atoms and ions of element 104 (unnilquadium) and of hafnium (2+) derived from multiconfiguration Dirac–Fock calculations. The Journal of Chemical Physics 1990, 93 (11) , 8041-8050. https://doi.org/10.1063/1.459334
    21. E. Köber, E. J. Langrock. Search for Superheavy Elements in the Nature. Isotopenpraxis Isotopes in Environmental and Health Studies 1990, 26 (12) , 576-583. https://doi.org/10.1080/10256019008622438
    22. Glenn T. Seaborg, O. Lewin Keller. Future Elements. 1986, 1629-1646. https://doi.org/10.1007/978-94-009-3155-8_17
    23. S. Nozette, W. V. Boynton. Superheavy Elements: An Early Solar System Upper Limit for Elements 107 to 110. Science 1981, 214 (4518) , 331-333. https://doi.org/10.1126/science.214.4518.331
    24. K.-P. Dostal. Die Geschichte des Periodensystems der chemischen Elemente von den Anfängen bis zur Gegenwart. Teil 2. Isotopenpraxis Isotopes in Environmental and Health Studies 1980, 16 (12) , 377-383. https://doi.org/10.1080/10256018008544514
    25. R.J. Otto, D.J. Morrissey, D. Lee, A. Ghiorso, J.M. Nitschke, G.T. Seaborg, M.M. Fowler, R.J. Silva. A search for superheavy elements with half-lives between a few minutes and several hundred days, produced in the 48Ca+248Cm reaction. Journal of Inorganic and Nuclear Chemistry 1978, 40 (4) , 589-595. https://doi.org/10.1016/0022-1902(78)80372-8
    26. E. K. Hulet, R. W. Lougheed, J. F. Wild, J. H. Landrum, P. C. Stevenson, A. Ghiorso, J. M. Nitschke, R. J. Otto, D. J. Morrissey, P. A. Baisden, B. F. Gavin, D. Lee, R. J. Silva, M. M. Fowler, G. T. Seaborg. Search for Superheavy Elements in the Bombardment of Cm 248 with Ca 48 . Physical Review Letters 1977, 39 (7) , 385-389. https://doi.org/10.1103/PhysRevLett.39.385
    27. R. A. Esterlund, D. Molzahn, R. Brandt, P. Patzelt, P. Vater, A. H. Boos, M. R. Chandratillake, I. S. Grant, J. D. Hemingway, G. W. A. Newton. Search for long-lived superheavy elements in the reaction system U 238 + 9.6-MeV/nucleon Cu 6 3 , 6 5 . Physical Review C 1977, 15 (1) , 319-324. https://doi.org/10.1103/PhysRevC.15.319
    28. Edward Anders, H. Higuchi, Jacques Gros, H. Takahashi, John W. Morgan. Extinct Superheavy Element in the Allende Meteorite. Science 1975, 190 (4221) , 1262-1271. https://doi.org/10.1126/science.190.4221.1262
    29. O. L. JUN. KELLER, C. W. JUN. NESTOR, BURKHARD FRICKE. ChemInform Abstract: PREDICTED PROPERTIES OF THE SUPERHEAVY ELEMENTS PART 3, ELEMENT 115, EKA‐BISMUTH. Chemischer Informationsdienst 1974, 5 (46) https://doi.org/10.1002/chin.197446058
    30. B. Eichler, R. Eichler. Gas-phase Adsorption Chromatographic Determination of Thermochemical Data and Empirical Methods for their Estimation. , 205-236. https://doi.org/10.1007/0-306-48415-3_6
    31. Burkhard Fricke. Superheavy elements a prediction of their chemical and physical properties. , 89-144. https://doi.org/10.1007/BFb0116498

    The Journal of Physical Chemistry

    Cite this: J. Phys. Chem. 1974, 78, 19, 1945–1949
    Click to copy citationCitation copied!
    https://doi.org/10.1021/j100612a015
    Published September 1, 1974

    Article Views

    204

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.