Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Metal Ion Inhibition of Nonenzymatic Pyridoxal Phosphate Catalyzed Decarboxylation and Transamination
My Activity

Figure 1Loading Img
    Article

    Metal Ion Inhibition of Nonenzymatic Pyridoxal Phosphate Catalyzed Decarboxylation and Transamination
    Click to copy article linkArticle link copied!

    View Author Information
    Contribution from the Department of Chemistry, University of CaliforniaDavis, One Shields Avenue, Davis, California 95616
    Other Access Options

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2001, 123, 2, 193–198
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja0026354
    Published December 19, 2000
    Copyright © 2001 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Nonenzymatic pyridoxal phosphate (PLP) catalyzed decarboxylations and transaminations have been revisited experimentally. Metal ions are known to catalyze a variety of PLP-dependent reactions in solution, including transamination. It is demonstrated here that the rate accelerations previously observed are due solely to enhancement of Schiff base formation under subsaturating conditions. A variety of metal ions were tested for their effects on the reactivity of the 2-methyl-2-aminomalonate Schiff bases. All were found to have either no effect or a small inhibitory one. The effects of Al3+ were studied in detail with the Schiff bases of 2-methyl-2-aminomalonate, 2-aminoisobutyrate, alanine, and ethylamine. The decarboxylation of 2-methyl-2-aminomalonate is unaffected by metalation with Al3+, while the decarboxylation of 2-aminoisobutyrate is inhibited 125-fold. The transamination reaction of ethylamine is 75-fold slower than that of alanine. Ethylamine transamination is inhibited 4-fold by Al3+ metalation, while alanine transamination is inhibited only 1.3-fold. Metal ion inhibition of Schiff base reactivity suggests a simple explanation for the lack of known PLP dependent enzymes that make direct mechanistic use of metal ions. A comparison of enzyme catalyzed, PLP catalyzed, and uncatalyzed reactions shows that PLP dependent decarboxylases are among the best known biological rate enhancers:  decarboxylation occurs 1018-fold faster on the enzyme surface than it does free in solution. PLP itself provides the lion's share of the catalytic efficiency of the holoenzyme:  at pH 8, free PLP catalyzes 2-aminoisobutyrate decarboxylation by ∼1010-fold, with the enzyme contributing an additional ∼108-fold.

    Copyright © 2001 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     To whom correspondence should be addressed. E-mail:  toney@ chem.ucdavis.edu. Phone:  (530) 754-5282. Fax:  (530) 752-8995.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 70 publications.

    1. Quentin Dherbassy, Robert J. Mayer, Kamila B. Muchowska, Joseph Moran. Metal-Pyridoxal Cooperativity in Nonenzymatic Transamination. Journal of the American Chemical Society 2023, 145 (24) , 13357-13370. https://doi.org/10.1021/jacs.3c03542
    2. Robert J. Mayer, Harpreet Kaur, Sophia A. Rauscher, Joseph Moran. Mechanistic Insight into Metal Ion-Catalyzed Transamination. Journal of the American Chemical Society 2021, 143 (45) , 19099-19111. https://doi.org/10.1021/jacs.1c08535
    3. Stephanie W. Chun, Alison R. H. Narayan. Biocatalytic, Stereoselective Deuteration of α-Amino Acids and Methyl Esters. ACS Catalysis 2020, 10 (13) , 7413-7418. https://doi.org/10.1021/acscatal.0c01885
    4. Norbert K. Tavares, Nuru Stracey, Thomas C. Brunold, Jorge C. Escalante-Semerena. The l-Thr Kinase/l-Thr-Phosphate Decarboxylase (CobD) Enzyme from Methanosarcina mazei Gö1 Contains Metallocenters Needed for Optimal Activity. Biochemistry 2019, 58 (30) , 3260-3279. https://doi.org/10.1021/acs.biochem.9b00268
    5. Rodrigo Casasnovas, Juan Frau, Joaquin Ortega-Castro, Josefa Donoso, and Francisco Muñoz . C–H Activation in Pyridoxal-5′-phosphate and Pyridoxamine-5′-phosphate Schiff Bases: Effect of Metal Chelation. A Computational Study. The Journal of Physical Chemistry B 2013, 117 (8) , 2339-2347. https://doi.org/10.1021/jp311861p
    6. Wait R. Griswold, Andrew J. Fisher, and Michael D. Toney . Crystal Structures of Aspartate Aminotransferase Reconstituted with 1-Deazapyridoxal 5′-Phosphate: Internal Aldimine and Stable l-Aspartate External Aldimine. Biochemistry 2011, 50 (26) , 5918-5924. https://doi.org/10.1021/bi200436y
    7. Richard Wolfenden, Charles A. Lewis, Jr., and Yang Yuan . Kinetic Challenges Facing Oxalate, Malonate, Acetoacetate, and Oxaloacetate Decarboxylases. Journal of the American Chemical Society 2011, 133 (15) , 5683-5685. https://doi.org/10.1021/ja111457h
    8. Melissa P. Hill, Elizabeth C. Carroll, Mai C. Vang, Trevor A. Addington, Michael D. Toney, and Delmar S. Larsen. Light-Enhanced Catalysis by Pyridoxal Phosphate-Dependent Aspartate Aminotransferase. Journal of the American Chemical Society 2010, 132 (47) , 16953-16961. https://doi.org/10.1021/ja107054x
    9. Hai-Peng Bi, Wen-Wen Chen, Yong-Min Liang and Chao-Jun Li . A Novel Iron-Catalyzed Decarboxylative Csp3−Csp2 Coupling of Proline Derivatives and Naphthol. Organic Letters 2009, 11 (15) , 3246-3249. https://doi.org/10.1021/ol901129v
    10. Prajakatta Mulay, Cindy Chen, Vijay Krishna. Enzyme-independent catabolism of cysteine with pyridoxal-5′-phosphate. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-022-26966-6
    11. Greg Brewer, Cynthia Brewer, Raymond J. Butcher, Peter Zavalij. Formation of Ketimines from Aldimines in Schiff Base Condensation of Amino Acids and Imidazole-2-Carboxaldehydes: Tautomerization of Schiff Bases of Amino Acids Resulting in the Loss of Stereogenic Center. Inorganics 2023, 11 (10) , 381. https://doi.org/10.3390/inorganics11100381
    12. Raquel Nunes Palmeira, Marco Colnaghi, Stuart A. Harrison, Andrew Pomiankowski, Nick Lane. The limits of metabolic heredity in protocells. Proceedings of the Royal Society B: Biological Sciences 2022, 289 (1986) https://doi.org/10.1098/rspb.2022.1469
    13. Kaan Koper, Sang-Woo Han, Delia Casas Pastor, Yasuo Yoshikuni, Hiroshi A. Maeda. Evolutionary origin and functional diversification of aminotransferases. Journal of Biological Chemistry 2022, 298 (8) , 102122. https://doi.org/10.1016/j.jbc.2022.102122
    14. Joana C. Xavier, Stuart Kauffman. Small-molecule autocatalytic networks are universal metabolic fossils. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2022, 380 (2227) https://doi.org/10.1098/rsta.2021.0244
    15. Xiaolin Liu, Ting Han, Jacky W. Y. Lam, Ben Zhong Tang. Functional Heterochain Polymers Constructed by Alkyne Multicomponent Polymerizations. Macromolecular Rapid Communications 2021, 42 (6) , 2000386. https://doi.org/10.1002/marc.202000386
    16. R. Biju Bennie, D. Jim Livingston, C. Joel, D. Jeyanthi, Rajadurai Vijay Solomon. Crystal structure, chemical nuclease activity, and VHPO mimicking potential of oxovanadium(IV) complexes—A combined experimental and computational study. Applied Organometallic Chemistry 2021, 35 (2) https://doi.org/10.1002/aoc.6106
    17. . References. 2021, 243-287. https://doi.org/10.1016/B978-0-323-88445-7.16001-4
    18. Yao RUAN, Tian TIAN, Yingying JIANG, Tao QIN, Xinyi CHU, Hongyu ZHANG. Molecular Simulation Research on Metabolic Origin and Evolution. Chinese Journal of Space Science 2021, 41 (1) , 158. https://doi.org/10.11728/cjss2021.01.158
    19. Masanori Imai, Koichi Kato, Yoshihiro Yamaguchi, Mikako Fujita, Masami Otsuka, Hiromasa Kurosaki. Activation of Ligand Reaction on an Iron Complex: H/D Exchange Reaction of a Low-Spin Bis[2-(Pyridylmethylidene)-1-(2-pyridyl)methylamine]iron(II) Complex. Chemical and Pharmaceutical Bulletin 2020, 68 (8) , 713-716. https://doi.org/10.1248/cpb.c20-00383
    20. Joana C. Xavier, Wim Hordijk, Stuart Kauffman, Mike Steel, William F. Martin. Autocatalytic chemical networks at the origin of metabolism. Proceedings of the Royal Society B: Biological Sciences 2020, 287 (1922) , 20192377. https://doi.org/10.1098/rspb.2019.2377
    21. Tian Tian, Xin-Yi Chu, Yi Yang, Xuan Zhang, Ye-Mao Liu, Jun Gao, Bin-Guang Ma, Hong-Yu Zhang. Phosphates as Energy Sources to Expand Metabolic Networks. Life 2019, 9 (2) , 43. https://doi.org/10.3390/life9020043
    22. D. R. Monteverde, L. Gómez‐Consarnau, C. Suffridge, S. A. Sañudo‐Wilhelmy. Life's utilization of B vitamins on early Earth. Geobiology 2017, 15 (1) , 3-18. https://doi.org/10.1111/gbi.12202
    23. Filipa L Sousa, Wim Hordijk, Mike Steel, William F Martin. Autocatalytic sets in E. coli metabolism. Journal of Systems Chemistry 2015, 6 (1) https://doi.org/10.1186/s13322-015-0009-7
    24. Richard Wolfenden. Massive Thermal Acceleration of the Emergence of Primordial Chemistry, the Incidence of Spontaneous Mutation, and the Evolution of Enzymes. Journal of Biological Chemistry 2014, 289 (44) , 30198-30204. https://doi.org/10.1074/jbc.R114.567081
    25. Richard Wolfenden. Primordial chemistry and enzyme evolution in a hot environment. Cellular and Molecular Life Sciences 2014, 71 (15) , 2909-2915. https://doi.org/10.1007/s00018-014-1587-2
    26. Filipa L. Sousa, William F. Martin. Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotic one carbon compound metabolism. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2014, 1837 (7) , 964-981. https://doi.org/10.1016/j.bbabio.2014.02.001
    27. Dan Li, Nana Akyaa Ackaah-Gyasi, Benjamin K. Simpson. Immobilization of Bovine Trypsin onto Controlled Pore Glass. Journal of Food Biochemistry 2014, 38 (2) , 184-195. https://doi.org/10.1111/jfbc.12037
    28. Ahmed A. El-Sherif, Mutlaq S. Aljahdali. Review: protonation, complex-formation equilibria, and metal–ligand interaction of salicylaldehyde Schiff bases. Journal of Coordination Chemistry 2013, 66 (19) , 3423-3468. https://doi.org/10.1080/00958972.2013.839027
    29. Miodrag G. Jelić, Nikos Boukos, Mirjana M. Lalović, Nebojša Ž. Romčević, Vukadin M. Leovac, Branka B. Hadžić, Sebastian S. Baloš, Ljiljana S. Jovanović, Miloš P. Slankamenac, Miloš B. Živanov, Ljiljana S. Vojinović-Ješić. Synthesis, structure and photoluminescence properties of copper(II) and cobalt(III) complexes with pyridoxalaminoguanidine. Optical Materials 2013, 35 (12) , 2728-2735. https://doi.org/10.1016/j.optmat.2013.08.023
    30. Tirtha Mukherjee, João Costa Pessoa, Amit Kumar, Asit R. Sarkar. Synthesis, structure, magnetic properties and biological activity of supramolecular copper( ii ) and nickel( ii ) complexes with a Schiff base ligand derived from vitamin B 6. Dalton Trans. 2013, 42 (7) , 2594-2607. https://doi.org/10.1039/C2DT31575K
    31. Yosra Belaïd-Nouira, Hayfa Bakhta, Zohra Haouas, Imen Flehi-Slim, Fadoua Neffati, Mohamed Fadhel Najjar, Hassen Ben Cheikh. Fenugreek seeds, a hepatoprotector forage crop against chronic AlCl3 toxicity. BMC Veterinary Research 2013, 9 (1) , 22. https://doi.org/10.1186/1746-6148-9-22
    32. Scott C. Corley, Sean M. Gottlieb, Delmar S. Larsen. Substrate and intensity dependent photoenhanced transamination reactions of pyridoxal 5′-phosphate in solution. Chemical Physics Letters 2012, 554 , 195-200. https://doi.org/10.1016/j.cplett.2012.10.002
    33. José S. Casas, Mª Delfina Couce, José Sordo. Coordination chemistry of vitamin B6 and derivatives: A structural overview. Coordination Chemistry Reviews 2012, 256 (23-24) , 3036-3062. https://doi.org/10.1016/j.ccr.2012.07.001
    34. Michael D. Toney. Controlling reaction specificity in pyridoxal phosphate enzymes. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2011, 1814 (11) , 1407-1418. https://doi.org/10.1016/j.bbapap.2011.05.019
    35. Michael D. Toney. Pyridoxal phosphate enzymology. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2011, 1814 (11) , 1405-1406. https://doi.org/10.1016/j.bbapap.2011.08.007
    36. Ji Yuan, Ana Maria Cardenas, Hiram F. Gilbert, Timothy Palzkill. Determination of the amino acid sequence requirements for catalysis by the highly proficient orotidine monophosphate decarboxylase. Protein Science 2011, 20 (11) , 1891-1906. https://doi.org/10.1002/pro.728
    37. Richard Wolfenden. Benchmark Reaction Rates, the Stability of Biological Molecules in Water, and the Evolution of Catalytic Power in Enzymes. Annual Review of Biochemistry 2011, 80 (1) , 645-667. https://doi.org/10.1146/annurev-biochem-060409-093051
    38. Ge-lin Qiu, Yang-jian Li, Wei Yang, Yang Zou. Synthesis and Crystal Structure of a Carboxylate Bridged Binuclear Copper Complex of Schiff Base Derived from β-amino acid and Salicylaldehyde. Journal of Chemical Crystallography 2011, 41 (6) , 898-901. https://doi.org/10.1007/s10870-011-0078-7
    39. Randy B. Stockbridge, Charles A. Lewis, Yang Yuan, Richard Wolfenden. Impact of temperature on the time required for the establishment of primordial biochemistry, and for the evolution of enzymes. Proceedings of the National Academy of Sciences 2010, 107 (51) , 22102-22105. https://doi.org/10.1073/pnas.1013647107
    40. Long-Wei Lei, Yin-Zhi Jiang, Yang Zou. Hexaaquamanganese(II) bis{[ N -(3-methoxy-2-oxidobenzylidene)glycylglycinato]copper(II)} hexahydrate. Acta Crystallographica Section E Structure Reports Online 2010, 66 (5) , m520-m521. https://doi.org/10.1107/S1600536810013061
    41. Wen-Jun Zhou, Yin-Zhi Jiang, Yang Zou. (2-{[2-Carboxylato-1-(4-chlorophenyl)ethyl]iminomethyl}phenolato-κ 3 O , N , O ′)(1 H -imidazole-κ N 3 )copper(II) monohydrate. Acta Crystallographica Section E Structure Reports Online 2010, 66 (5) , m579-m580. https://doi.org/10.1107/S1600536810014765
    42. Yang Zou, Yin-Zhi Jiang, Wei-Zu Wang. Diaqua[ N -(5-nitro-2-oxidobenzylidene)glycinato]copper(II) dihydrate. Acta Crystallographica Section E Structure Reports Online 2010, 66 (4) , m455-m455. https://doi.org/10.1107/S1600536810010652
    43. Yang Zou. Tetraaquabis[μ- N -(5-nitro-2-oxidobenzylidene)glycylglycinato]manganese(II)dinickel(II) tetrahydrate. Acta Crystallographica Section E Structure Reports Online 2010, 66 (4) , m471-m472. https://doi.org/10.1107/S1600536810011293
    44. Vadim A. Soloshonok, Hector T. Catt, Taizo Ono. Biomimetic reductive amination under the continuous-flow reaction conditions. Journal of Fluorine Chemistry 2010, 131 (2) , 261-265. https://doi.org/10.1016/j.jfluchem.2009.10.013
    45. Stefan Fränzle. Autocatalytic Processes and the Role of Essential Elements in Plant Growth. 2010, 17-130. https://doi.org/10.1007/978-90-481-2752-8_2
    46. Samanta Raboni, Francesca Spyrakis, Barbara Campanini, Alessio Amadasi, Stefano Bettati, Alessio Peracchi, Andrea Mozzarelli, Roberto Contestabile. Pyridoxal 5′-Phosphate-Dependent Enzymes: Catalysis, Conformation, and Genomics. 2010, 273-350. https://doi.org/10.1016/B978-008045382-8.00140-4
    47. Hai‐Peng Bi, Liang Zhao, Yong‐Min Liang, Chao‐Jun Li. The Copper‐Catalyzed Decarboxylative Coupling of the sp 3 ‐Hybridized Carbon Atoms of α‐Amino Acids. Angewandte Chemie International Edition 2009, 48 (4) , 792-795. https://doi.org/10.1002/anie.200805122
    48. Hai‐Peng Bi, Liang Zhao, Yong‐Min Liang, Chao‐Jun Li. The Copper‐Catalyzed Decarboxylative Coupling of the sp 3 ‐Hybridized Carbon Atoms of α‐Amino Acids. Angewandte Chemie 2009, 121 (4) , 806-809. https://doi.org/10.1002/ange.200805122
    49. Vadim A. Soloshonok, Taizo Ono. First example of continuous-flow reaction conditions for biomimetic reductive amination of fluorine-containing carbonyl compounds. Journal of Fluorine Chemistry 2008, 129 (9) , 785-787. https://doi.org/10.1016/j.jfluchem.2008.05.019
    50. Teresa N. Giles, David E. Graham. Crenarchaeal Arginine Decarboxylase Evolved from an S-Adenosylmethionine Decarboxylase Enzyme*. Journal of Biological Chemistry 2008, 283 (38) , 25829-25838. https://doi.org/10.1074/jbc.M802674200
    51. Péter Nagy, Hisanori Ueki, Dmitrii O. Berbasov, Vadim A. Soloshonok. Kinetics and mechanism of triethylamine-catalyzed 1,3-proton shift. Journal of Fluorine Chemistry 2008, 129 (5) , 409-415. https://doi.org/10.1016/j.jfluchem.2008.02.001
    52. Min-Hee Lee, Bo-Ra Kim, Ho-Tae Kim. Investigation of the active site at the deuterated Schiff-base complex formed between the coenzyme vitamin B6 and the primary amine. Chemical Physics Letters 2007, 442 (4-6) , 424-428. https://doi.org/10.1016/j.cplett.2007.05.107
    53. De- Suo Yang. Synthesis, characterization and crystal structure of a mononuclear iron(III) complex derived from 4-bromo-2-[(pyridin-2-ylmethylimino)methyl]phenol. Journal of Chemical Crystallography 2007, 37 (6) , 429-432. https://doi.org/10.1007/s10870-007-9187-8
    54. Mohan S. Bharara, Stephen A. Tonks, Anne E. V. Gorden. Uranyl stabilized Schiff base complex. Chemical Communications 2007, 33 (39) , 4006. https://doi.org/10.1039/b712322a
    55. . Investigation of Fragmentation Patterns in Pyridoxal-primary Amine Complexes by Electrospray Ionization Mass Spectrometry. Bulletin of the Korean Chemical Society 2006, 947-950. https://doi.org/10.5012/bkcs.2006.27.6.947
    56. D. Zhu, Z. Su, Z. Mu, Y. Qiu, Y. Wang. Synthesis, crystal structures and properties of five-coordinate Schiff-base Zn(II) complexes. Journal of Coordination Chemistry 2006, 59 (4) , 409-419. https://doi.org/10.1080/00958970500270877
    57. Guillaume Tcherkez. Viewpoint: How large is the carbon isotope fractionation of the photorespiratory enzyme glycine decarboxylase?. Functional Plant Biology 2006, 33 (10) , 911. https://doi.org/10.1071/FP06098
    58. Jason J. Chruma, Lei Liu, Wenjun Zhou, Ronald Breslow. Hydrophobic and electronic factors in the design of dialkylglycine decarboxylase mimics. Bioorganic & Medicinal Chemistry 2005, 13 (20) , 5873-5883. https://doi.org/10.1016/j.bmc.2005.05.019
    59. Michael D. Toney. Reaction specificity in pyridoxal phosphate enzymes. Archives of Biochemistry and Biophysics 2005, 433 (1) , 279-287. https://doi.org/10.1016/j.abb.2004.09.037
    60. Dionisia Sanz, Almudena Perona, Rosa M. Claramunt, José Elguero. Synthesis and spectroscopic properties of Schiff bases derived from 3-hydroxy-4-pyridinecarboxaldehyde. Tetrahedron 2005, 61 (1) , 145-154. https://doi.org/10.1016/j.tet.2004.10.036
    61. Lei Liu, Wenjun Zhou, Jason Chruma, Ronald Breslow. Transamination Reactions with Multiple Turnovers Catalyzed by Hydrophobic Pyridoxamine Cofactors in the Presence of Polyethylenimine Polymers. Journal of the American Chemical Society 2004, 126 (26) , 8136-8137. https://doi.org/10.1021/ja048671a
    62. Lei Liu, Ronald Breslow. Polymeric and dendrimeric pyridoxal enzyme mimics. Bioorganic & Medicinal Chemistry 2004, 12 (12) , 3277-3287. https://doi.org/10.1016/j.bmc.2004.03.062
    63. Yang Zou, Wen-Long Liu, Jing-Li Xie, Chun-Lin Ni, Zhao-Ping Ni, Yi-Zhi Li, Qing-Jin Meng, Yuan-Gen Yao. Synthesis and crystal structure of metal complexes of Schiff bases derived from Glycylglycine and Salicylaldehyde [Ni(H 2 O) 6 (Ml) 2 ]· n H 2 O (M = Cu, Ni; L = C 11 H 9 N 2 O 4 ). Journal of Coordination Chemistry 2004, 57 (5) , 381-391. https://doi.org/10.1080/00958970410001689067
    64. Wen-Long Liu, Yang Zou, Chun-Lin Ni, Zhao-Ping Ni, Yi-Zhi Li, Yuan-Gen Yao, Qing-Jin Meng. Synthesis and characterization of copper(II) Schiff base complexes derived from salicylaldehyde and glycylglycylglycine. Polyhedron 2004, 23 (5) , 849-855. https://doi.org/10.1016/j.poly.2003.11.049
    65. Brian G. Miller. Insight into the Catalytic Mechanism of Orotidine 5′-phosphate Decarboxylase from Crystallography and Mutagenesis. 2004, 43-62. https://doi.org/10.1007/b94538
    66. Kumar Vanka, Zhitao Xu, Tom Ziegler. A combined density functional theory and molecular mechanics (QM/MM) study of single site ethylene polymerization catalyzed by [Cp{NC( t -Bu) 2 }TiR + ] in the presence of the counterion (CH 3 B(C 6 F 5 ) 3 ) 1. Canadian Journal of Chemistry 2003, 81 (11) , 1413-1429. https://doi.org/10.1139/v03-177
    67. José S Casas, Alfonso Castiñeiras, Félix Condori, Marı́a D Couce, Umberto Russo, Agustı́n Sánchez, Rafael Seoane, José Sordo, José M Varela. Diorganotin(IV)-promoted deamination of amino acids by pyridoxal: SnR22+ complexes of pyridoxal 5′-phosphate and of the Schiff base pyridoxal-pyridoxamine (PLPM), and antibacterial activities of PLPM and [SnR2(PLPM-2H)] (R=Me, Et, Bu, Ph). Polyhedron 2003, 22 (1) , 53-65. https://doi.org/10.1016/S0277-5387(02)01331-1
    68. Aida M. Herrera, Ganna V. Kalayda, Jeremy S. Disch, Jeffrey P. Wikstrom, Ivan V. Korendovych, Richard J. Staples, Charles F. Campana, Alexander Y. Nazarenko, Terry E. Haas, Elena V. Rybak-Akimova. Reactions at the azomethine CN bonds in the nickel( ii ) and copper( ii ) complexes of pyridine-containing Schiff-base macrocyclic ligands. Dalton Trans. 2003, 211 (23) , 4482-4492. https://doi.org/10.1039/B308557K
    69. Lei Liu, Mary Rozenman, Ronald Breslow. Stereoselectivity in reactions of amino acids catalyzed by pyridoxal derivatives carrying rigidly-Attached chirally-Mounted basic groups—transamination, racemization, decarboxylation, retro-Aldol reaction, and aldol condensation. Bioorganic & Medicinal Chemistry 2002, 10 (12) , 3973-3979. https://doi.org/10.1016/S0968-0896(02)00334-6
    70. Brian G. Miller, Richard Wolfenden. Catalytic Proficiency: The Unusual Case of OMP Decarboxylase. Annual Review of Biochemistry 2002, 71 (1) , 847-885. https://doi.org/10.1146/annurev.biochem.71.110601.135446

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2001, 123, 2, 193–198
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja0026354
    Published December 19, 2000
    Copyright © 2001 American Chemical Society

    Article Views

    1340

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.