Metal Ion Inhibition of Nonenzymatic Pyridoxal Phosphate Catalyzed Decarboxylation and TransaminationClick to copy article linkArticle link copied!
Abstract
Nonenzymatic pyridoxal phosphate (PLP) catalyzed decarboxylations and transaminations have been revisited experimentally. Metal ions are known to catalyze a variety of PLP-dependent reactions in solution, including transamination. It is demonstrated here that the rate accelerations previously observed are due solely to enhancement of Schiff base formation under subsaturating conditions. A variety of metal ions were tested for their effects on the reactivity of the 2-methyl-2-aminomalonate Schiff bases. All were found to have either no effect or a small inhibitory one. The effects of Al3+ were studied in detail with the Schiff bases of 2-methyl-2-aminomalonate, 2-aminoisobutyrate, alanine, and ethylamine. The decarboxylation of 2-methyl-2-aminomalonate is unaffected by metalation with Al3+, while the decarboxylation of 2-aminoisobutyrate is inhibited 125-fold. The transamination reaction of ethylamine is 75-fold slower than that of alanine. Ethylamine transamination is inhibited 4-fold by Al3+ metalation, while alanine transamination is inhibited only 1.3-fold. Metal ion inhibition of Schiff base reactivity suggests a simple explanation for the lack of known PLP dependent enzymes that make direct mechanistic use of metal ions. A comparison of enzyme catalyzed, PLP catalyzed, and uncatalyzed reactions shows that PLP dependent decarboxylases are among the best known biological rate enhancers: decarboxylation occurs 1018-fold faster on the enzyme surface than it does free in solution. PLP itself provides the lion's share of the catalytic efficiency of the holoenzyme: at pH 8, free PLP catalyzes 2-aminoisobutyrate decarboxylation by ∼1010-fold, with the enzyme contributing an additional ∼108-fold.
*
To whom correspondence should be addressed. E-mail: toney@ chem.ucdavis.edu. Phone: (530) 754-5282. Fax: (530) 752-8995.
Cited By
This article is cited by 70 publications.
- Quentin Dherbassy, Robert J. Mayer, Kamila B. Muchowska, Joseph Moran. Metal-Pyridoxal Cooperativity in Nonenzymatic Transamination. Journal of the American Chemical Society 2023, 145
(24)
, 13357-13370. https://doi.org/10.1021/jacs.3c03542
- Robert J. Mayer, Harpreet Kaur, Sophia A. Rauscher, Joseph Moran. Mechanistic Insight into Metal Ion-Catalyzed Transamination. Journal of the American Chemical Society 2021, 143
(45)
, 19099-19111. https://doi.org/10.1021/jacs.1c08535
- Stephanie W. Chun, Alison R. H. Narayan. Biocatalytic, Stereoselective Deuteration of α-Amino Acids and Methyl Esters. ACS Catalysis 2020, 10
(13)
, 7413-7418. https://doi.org/10.1021/acscatal.0c01885
- Norbert
K. Tavares, Nuru Stracey, Thomas C. Brunold, Jorge C. Escalante-Semerena. The l-Thr Kinase/l-Thr-Phosphate Decarboxylase (CobD) Enzyme from Methanosarcina mazei Gö1 Contains Metallocenters Needed for Optimal Activity. Biochemistry 2019, 58
(30)
, 3260-3279. https://doi.org/10.1021/acs.biochem.9b00268
- Rodrigo Casasnovas, Juan Frau, Joaquin Ortega-Castro, Josefa Donoso, and Francisco Muñoz . C–H Activation in Pyridoxal-5′-phosphate and Pyridoxamine-5′-phosphate Schiff Bases: Effect of Metal Chelation. A Computational Study. The Journal of Physical Chemistry B 2013, 117
(8)
, 2339-2347. https://doi.org/10.1021/jp311861p
- Wait R. Griswold, Andrew J. Fisher, and Michael D. Toney . Crystal Structures of Aspartate Aminotransferase Reconstituted with 1-Deazapyridoxal 5′-Phosphate: Internal Aldimine and Stable l-Aspartate External Aldimine. Biochemistry 2011, 50
(26)
, 5918-5924. https://doi.org/10.1021/bi200436y
- Richard Wolfenden, Charles A. Lewis, Jr., and Yang Yuan . Kinetic Challenges Facing Oxalate, Malonate, Acetoacetate, and Oxaloacetate Decarboxylases. Journal of the American Chemical Society 2011, 133
(15)
, 5683-5685. https://doi.org/10.1021/ja111457h
- Melissa P. Hill, Elizabeth C. Carroll, Mai C. Vang, Trevor A. Addington, Michael D. Toney, and Delmar S. Larsen. Light-Enhanced Catalysis by Pyridoxal Phosphate-Dependent Aspartate Aminotransferase. Journal of the American Chemical Society 2010, 132
(47)
, 16953-16961. https://doi.org/10.1021/ja107054x
- Hai-Peng Bi, Wen-Wen Chen, Yong-Min Liang and Chao-Jun Li . A Novel Iron-Catalyzed Decarboxylative Csp3−Csp2 Coupling of Proline Derivatives and Naphthol. Organic Letters 2009, 11
(15)
, 3246-3249. https://doi.org/10.1021/ol901129v
- Prajakatta Mulay, Cindy Chen, Vijay Krishna. Enzyme-independent catabolism of cysteine with pyridoxal-5′-phosphate. Scientific Reports 2023, 13
(1)
https://doi.org/10.1038/s41598-022-26966-6
- Greg Brewer, Cynthia Brewer, Raymond J. Butcher, Peter Zavalij. Formation of Ketimines from Aldimines in Schiff Base Condensation of Amino Acids and Imidazole-2-Carboxaldehydes: Tautomerization of Schiff Bases of Amino Acids Resulting in the Loss of Stereogenic Center. Inorganics 2023, 11
(10)
, 381. https://doi.org/10.3390/inorganics11100381
- Raquel Nunes Palmeira, Marco Colnaghi, Stuart A. Harrison, Andrew Pomiankowski, Nick Lane. The limits of metabolic heredity in protocells. Proceedings of the Royal Society B: Biological Sciences 2022, 289
(1986)
https://doi.org/10.1098/rspb.2022.1469
- Kaan Koper, Sang-Woo Han, Delia Casas Pastor, Yasuo Yoshikuni, Hiroshi A. Maeda. Evolutionary origin and functional diversification of aminotransferases. Journal of Biological Chemistry 2022, 298
(8)
, 102122. https://doi.org/10.1016/j.jbc.2022.102122
- Joana C. Xavier, Stuart Kauffman. Small-molecule autocatalytic networks are universal metabolic fossils. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2022, 380
(2227)
https://doi.org/10.1098/rsta.2021.0244
- Xiaolin Liu, Ting Han, Jacky W. Y. Lam, Ben Zhong Tang. Functional Heterochain Polymers Constructed by Alkyne Multicomponent Polymerizations. Macromolecular Rapid Communications 2021, 42
(6)
, 2000386. https://doi.org/10.1002/marc.202000386
- R. Biju Bennie, D. Jim Livingston, C. Joel, D. Jeyanthi, Rajadurai Vijay Solomon. Crystal structure, chemical nuclease activity, and VHPO mimicking potential of oxovanadium(IV) complexes—A combined experimental and computational study. Applied Organometallic Chemistry 2021, 35
(2)
https://doi.org/10.1002/aoc.6106
- . References. 2021, 243-287. https://doi.org/10.1016/B978-0-323-88445-7.16001-4
- Yao RUAN, Tian TIAN, Yingying JIANG, Tao QIN, Xinyi CHU, Hongyu ZHANG. Molecular Simulation Research on Metabolic Origin and Evolution. Chinese Journal of Space Science 2021, 41
(1)
, 158. https://doi.org/10.11728/cjss2021.01.158
- Masanori Imai, Koichi Kato, Yoshihiro Yamaguchi, Mikako Fujita, Masami Otsuka, Hiromasa Kurosaki. Activation of Ligand Reaction on an Iron Complex: H/D Exchange Reaction of a Low-Spin Bis[2-(Pyridylmethylidene)-1-(2-pyridyl)methylamine]iron(II) Complex. Chemical and Pharmaceutical Bulletin 2020, 68
(8)
, 713-716. https://doi.org/10.1248/cpb.c20-00383
- Joana C. Xavier, Wim Hordijk, Stuart Kauffman, Mike Steel, William F. Martin. Autocatalytic chemical networks at the origin of metabolism. Proceedings of the Royal Society B: Biological Sciences 2020, 287
(1922)
, 20192377. https://doi.org/10.1098/rspb.2019.2377
- Tian Tian, Xin-Yi Chu, Yi Yang, Xuan Zhang, Ye-Mao Liu, Jun Gao, Bin-Guang Ma, Hong-Yu Zhang. Phosphates as Energy Sources to Expand Metabolic Networks. Life 2019, 9
(2)
, 43. https://doi.org/10.3390/life9020043
- D. R. Monteverde, L. Gómez‐Consarnau, C. Suffridge, S. A. Sañudo‐Wilhelmy. Life's utilization of B vitamins on early Earth. Geobiology 2017, 15
(1)
, 3-18. https://doi.org/10.1111/gbi.12202
- Filipa L Sousa, Wim Hordijk, Mike Steel, William F Martin. Autocatalytic sets in E. coli metabolism. Journal of Systems Chemistry 2015, 6
(1)
https://doi.org/10.1186/s13322-015-0009-7
- Richard Wolfenden. Massive Thermal Acceleration of the Emergence of Primordial Chemistry, the Incidence of Spontaneous Mutation, and the Evolution of Enzymes. Journal of Biological Chemistry 2014, 289
(44)
, 30198-30204. https://doi.org/10.1074/jbc.R114.567081
- Richard Wolfenden. Primordial chemistry and enzyme evolution in a hot environment. Cellular and Molecular Life Sciences 2014, 71
(15)
, 2909-2915. https://doi.org/10.1007/s00018-014-1587-2
- Filipa L. Sousa, William F. Martin. Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotic one carbon compound metabolism. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2014, 1837
(7)
, 964-981. https://doi.org/10.1016/j.bbabio.2014.02.001
- Dan Li, Nana Akyaa Ackaah-Gyasi, Benjamin K. Simpson. Immobilization of Bovine Trypsin onto Controlled Pore Glass. Journal of Food Biochemistry 2014, 38
(2)
, 184-195. https://doi.org/10.1111/jfbc.12037
- Ahmed A. El-Sherif, Mutlaq S. Aljahdali. Review: protonation, complex-formation equilibria, and metal–ligand interaction of salicylaldehyde Schiff bases. Journal of Coordination Chemistry 2013, 66
(19)
, 3423-3468. https://doi.org/10.1080/00958972.2013.839027
- Miodrag G. Jelić, Nikos Boukos, Mirjana M. Lalović, Nebojša Ž. Romčević, Vukadin M. Leovac, Branka B. Hadžić, Sebastian S. Baloš, Ljiljana S. Jovanović, Miloš P. Slankamenac, Miloš B. Živanov, Ljiljana S. Vojinović-Ješić. Synthesis, structure and photoluminescence properties of copper(II) and cobalt(III) complexes with pyridoxalaminoguanidine. Optical Materials 2013, 35
(12)
, 2728-2735. https://doi.org/10.1016/j.optmat.2013.08.023
- Tirtha Mukherjee, João Costa Pessoa, Amit Kumar, Asit R. Sarkar. Synthesis, structure, magnetic properties and biological activity of supramolecular copper(
ii
) and nickel(
ii
) complexes with a Schiff base ligand derived from vitamin B
6. Dalton Trans. 2013, 42
(7)
, 2594-2607. https://doi.org/10.1039/C2DT31575K
- Yosra Belaïd-Nouira, Hayfa Bakhta, Zohra Haouas, Imen Flehi-Slim, Fadoua Neffati, Mohamed Fadhel Najjar, Hassen Ben Cheikh. Fenugreek seeds, a hepatoprotector forage crop against chronic AlCl3 toxicity. BMC Veterinary Research 2013, 9
(1)
, 22. https://doi.org/10.1186/1746-6148-9-22
- Scott C. Corley, Sean M. Gottlieb, Delmar S. Larsen. Substrate and intensity dependent photoenhanced transamination reactions of pyridoxal 5′-phosphate in solution. Chemical Physics Letters 2012, 554 , 195-200. https://doi.org/10.1016/j.cplett.2012.10.002
- José S. Casas, Mª Delfina Couce, José Sordo. Coordination chemistry of vitamin B6 and derivatives: A structural overview. Coordination Chemistry Reviews 2012, 256
(23-24)
, 3036-3062. https://doi.org/10.1016/j.ccr.2012.07.001
- Michael D. Toney. Controlling reaction specificity in pyridoxal phosphate enzymes. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2011, 1814
(11)
, 1407-1418. https://doi.org/10.1016/j.bbapap.2011.05.019
- Michael D. Toney. Pyridoxal phosphate enzymology. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2011, 1814
(11)
, 1405-1406. https://doi.org/10.1016/j.bbapap.2011.08.007
- Ji Yuan, Ana Maria Cardenas, Hiram F. Gilbert, Timothy Palzkill. Determination of the amino acid sequence requirements for catalysis by the highly proficient orotidine monophosphate decarboxylase. Protein Science 2011, 20
(11)
, 1891-1906. https://doi.org/10.1002/pro.728
- Richard Wolfenden. Benchmark Reaction Rates, the Stability of Biological Molecules in Water, and the Evolution of Catalytic Power in Enzymes. Annual Review of Biochemistry 2011, 80
(1)
, 645-667. https://doi.org/10.1146/annurev-biochem-060409-093051
- Ge-lin Qiu, Yang-jian Li, Wei Yang, Yang Zou. Synthesis and Crystal Structure of a Carboxylate Bridged Binuclear Copper Complex of Schiff Base Derived from β-amino acid and Salicylaldehyde. Journal of Chemical Crystallography 2011, 41
(6)
, 898-901. https://doi.org/10.1007/s10870-011-0078-7
- Randy B. Stockbridge, Charles A. Lewis, Yang Yuan, Richard Wolfenden. Impact of temperature on the time required for the establishment of primordial biochemistry, and for the evolution of enzymes. Proceedings of the National Academy of Sciences 2010, 107
(51)
, 22102-22105. https://doi.org/10.1073/pnas.1013647107
- Long-Wei Lei, Yin-Zhi Jiang, Yang Zou. Hexaaquamanganese(II) bis{[
N
-(3-methoxy-2-oxidobenzylidene)glycylglycinato]copper(II)} hexahydrate. Acta Crystallographica Section E Structure Reports Online 2010, 66
(5)
, m520-m521. https://doi.org/10.1107/S1600536810013061
- Wen-Jun Zhou, Yin-Zhi Jiang, Yang Zou. (2-{[2-Carboxylato-1-(4-chlorophenyl)ethyl]iminomethyl}phenolato-κ
3
O
,
N
,
O
′)(1
H
-imidazole-κ
N
3
)copper(II) monohydrate. Acta Crystallographica Section E Structure Reports Online 2010, 66
(5)
, m579-m580. https://doi.org/10.1107/S1600536810014765
- Yang Zou, Yin-Zhi Jiang, Wei-Zu Wang. Diaqua[
N
-(5-nitro-2-oxidobenzylidene)glycinato]copper(II) dihydrate. Acta Crystallographica Section E Structure Reports Online 2010, 66
(4)
, m455-m455. https://doi.org/10.1107/S1600536810010652
- Yang Zou. Tetraaquabis[μ-
N
-(5-nitro-2-oxidobenzylidene)glycylglycinato]manganese(II)dinickel(II) tetrahydrate. Acta Crystallographica Section E Structure Reports Online 2010, 66
(4)
, m471-m472. https://doi.org/10.1107/S1600536810011293
- Vadim A. Soloshonok, Hector T. Catt, Taizo Ono. Biomimetic reductive amination under the continuous-flow reaction conditions. Journal of Fluorine Chemistry 2010, 131
(2)
, 261-265. https://doi.org/10.1016/j.jfluchem.2009.10.013
- Stefan Fränzle. Autocatalytic Processes and the Role of Essential Elements in Plant Growth. 2010, 17-130. https://doi.org/10.1007/978-90-481-2752-8_2
- Samanta Raboni, Francesca Spyrakis, Barbara Campanini, Alessio Amadasi, Stefano Bettati, Alessio Peracchi, Andrea Mozzarelli, Roberto Contestabile. Pyridoxal 5′-Phosphate-Dependent Enzymes: Catalysis, Conformation, and Genomics. 2010, 273-350. https://doi.org/10.1016/B978-008045382-8.00140-4
- Hai‐Peng Bi, Liang Zhao, Yong‐Min Liang, Chao‐Jun Li. The Copper‐Catalyzed Decarboxylative Coupling of the sp
3
‐Hybridized Carbon Atoms of α‐Amino Acids. Angewandte Chemie International Edition 2009, 48
(4)
, 792-795. https://doi.org/10.1002/anie.200805122
- Hai‐Peng Bi, Liang Zhao, Yong‐Min Liang, Chao‐Jun Li. The Copper‐Catalyzed Decarboxylative Coupling of the sp
3
‐Hybridized Carbon Atoms of α‐Amino Acids. Angewandte Chemie 2009, 121
(4)
, 806-809. https://doi.org/10.1002/ange.200805122
- Vadim A. Soloshonok, Taizo Ono. First example of continuous-flow reaction conditions for biomimetic reductive amination of fluorine-containing carbonyl compounds. Journal of Fluorine Chemistry 2008, 129
(9)
, 785-787. https://doi.org/10.1016/j.jfluchem.2008.05.019
- Teresa N. Giles, David E. Graham. Crenarchaeal Arginine Decarboxylase Evolved from an S-Adenosylmethionine Decarboxylase Enzyme*. Journal of Biological Chemistry 2008, 283
(38)
, 25829-25838. https://doi.org/10.1074/jbc.M802674200
- Péter Nagy, Hisanori Ueki, Dmitrii O. Berbasov, Vadim A. Soloshonok. Kinetics and mechanism of triethylamine-catalyzed 1,3-proton shift. Journal of Fluorine Chemistry 2008, 129
(5)
, 409-415. https://doi.org/10.1016/j.jfluchem.2008.02.001
- Min-Hee Lee, Bo-Ra Kim, Ho-Tae Kim. Investigation of the active site at the deuterated Schiff-base complex formed between the coenzyme vitamin B6 and the primary amine. Chemical Physics Letters 2007, 442
(4-6)
, 424-428. https://doi.org/10.1016/j.cplett.2007.05.107
- De- Suo Yang. Synthesis, characterization and crystal structure of a mononuclear iron(III) complex derived from 4-bromo-2-[(pyridin-2-ylmethylimino)methyl]phenol. Journal of Chemical Crystallography 2007, 37
(6)
, 429-432. https://doi.org/10.1007/s10870-007-9187-8
- Mohan S. Bharara, Stephen A. Tonks, Anne E. V. Gorden. Uranyl stabilized Schiff base complex. Chemical Communications 2007, 33
(39)
, 4006. https://doi.org/10.1039/b712322a
- . Investigation of Fragmentation Patterns in Pyridoxal-primary Amine Complexes by Electrospray Ionization Mass Spectrometry. Bulletin of the Korean Chemical Society 2006, 947-950. https://doi.org/10.5012/bkcs.2006.27.6.947
- D. Zhu, Z. Su, Z. Mu, Y. Qiu, Y. Wang. Synthesis, crystal structures and properties of five-coordinate Schiff-base Zn(II) complexes. Journal of Coordination Chemistry 2006, 59
(4)
, 409-419. https://doi.org/10.1080/00958970500270877
- Guillaume Tcherkez. Viewpoint: How large is the carbon isotope fractionation of the photorespiratory enzyme glycine decarboxylase?. Functional Plant Biology 2006, 33
(10)
, 911. https://doi.org/10.1071/FP06098
- Jason J. Chruma, Lei Liu, Wenjun Zhou, Ronald Breslow. Hydrophobic and electronic factors in the design of dialkylglycine decarboxylase mimics. Bioorganic & Medicinal Chemistry 2005, 13
(20)
, 5873-5883. https://doi.org/10.1016/j.bmc.2005.05.019
- Michael D. Toney. Reaction specificity in pyridoxal phosphate enzymes. Archives of Biochemistry and Biophysics 2005, 433
(1)
, 279-287. https://doi.org/10.1016/j.abb.2004.09.037
- Dionisia Sanz, Almudena Perona, Rosa M. Claramunt, José Elguero. Synthesis and spectroscopic properties of Schiff bases derived from 3-hydroxy-4-pyridinecarboxaldehyde. Tetrahedron 2005, 61
(1)
, 145-154. https://doi.org/10.1016/j.tet.2004.10.036
- Lei Liu, Wenjun Zhou, Jason Chruma, Ronald Breslow. Transamination Reactions with Multiple Turnovers Catalyzed by Hydrophobic Pyridoxamine Cofactors in the Presence of Polyethylenimine Polymers. Journal of the American Chemical Society 2004, 126
(26)
, 8136-8137. https://doi.org/10.1021/ja048671a
- Lei Liu, Ronald Breslow. Polymeric and dendrimeric pyridoxal enzyme mimics. Bioorganic & Medicinal Chemistry 2004, 12
(12)
, 3277-3287. https://doi.org/10.1016/j.bmc.2004.03.062
- Yang Zou, Wen-Long Liu, Jing-Li Xie, Chun-Lin Ni, Zhao-Ping Ni, Yi-Zhi Li, Qing-Jin Meng, Yuan-Gen Yao. Synthesis and crystal structure of metal complexes of Schiff bases derived from Glycylglycine and Salicylaldehyde [Ni(H
2
O)
6
(Ml)
2
]·
n
H
2
O (M = Cu, Ni; L = C
11
H
9
N
2
O
4
). Journal of Coordination Chemistry 2004, 57
(5)
, 381-391. https://doi.org/10.1080/00958970410001689067
- Wen-Long Liu, Yang Zou, Chun-Lin Ni, Zhao-Ping Ni, Yi-Zhi Li, Yuan-Gen Yao, Qing-Jin Meng. Synthesis and characterization of copper(II) Schiff base complexes derived from salicylaldehyde and glycylglycylglycine. Polyhedron 2004, 23
(5)
, 849-855. https://doi.org/10.1016/j.poly.2003.11.049
- Brian G. Miller. Insight into the Catalytic Mechanism of Orotidine 5′-phosphate Decarboxylase from Crystallography and Mutagenesis. 2004, 43-62. https://doi.org/10.1007/b94538
- Kumar Vanka, Zhitao Xu, Tom Ziegler. A combined density functional theory and molecular mechanics (QM/MM) study of single site ethylene polymerization catalyzed by [Cp{NC(
t
-Bu)
2
}TiR
+
] in the presence of the counterion (CH
3
B(C
6
F
5
)
3
)
1. Canadian Journal of Chemistry 2003, 81
(11)
, 1413-1429. https://doi.org/10.1139/v03-177
- José S Casas, Alfonso Castiñeiras, Félix Condori, Marı́a D Couce, Umberto Russo, Agustı́n Sánchez, Rafael Seoane, José Sordo, José M Varela. Diorganotin(IV)-promoted deamination of amino acids by pyridoxal: SnR22+ complexes of pyridoxal 5′-phosphate and of the Schiff base pyridoxal-pyridoxamine (PLPM), and antibacterial activities of PLPM and [SnR2(PLPM-2H)] (R=Me, Et, Bu, Ph). Polyhedron 2003, 22
(1)
, 53-65. https://doi.org/10.1016/S0277-5387(02)01331-1
- Aida M. Herrera, Ganna V. Kalayda, Jeremy S. Disch, Jeffrey P. Wikstrom, Ivan V. Korendovych, Richard J. Staples, Charles F. Campana, Alexander Y. Nazarenko, Terry E. Haas, Elena V. Rybak-Akimova. Reactions at the azomethine CN bonds in the nickel(
ii
) and copper(
ii
) complexes of pyridine-containing Schiff-base macrocyclic ligands. Dalton Trans. 2003, 211
(23)
, 4482-4492. https://doi.org/10.1039/B308557K
- Lei Liu, Mary Rozenman, Ronald Breslow. Stereoselectivity in reactions of amino acids catalyzed by pyridoxal derivatives carrying rigidly-Attached chirally-Mounted basic groups—transamination, racemization, decarboxylation, retro-Aldol reaction, and aldol condensation. Bioorganic & Medicinal Chemistry 2002, 10
(12)
, 3973-3979. https://doi.org/10.1016/S0968-0896(02)00334-6
- Brian G. Miller, Richard Wolfenden. Catalytic Proficiency: The Unusual Case of OMP Decarboxylase. Annual Review of Biochemistry 2002, 71
(1)
, 847-885. https://doi.org/10.1146/annurev.biochem.71.110601.135446
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.