Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Synthesis of 1,1-Disubstituted Alkenes via a Ru-Catalyzed Addition

View Author Information
Contribution from the Department of Chemistry, Stanford University, Stanford, California 94305-5080
Cite this: J. Am. Chem. Soc. 2001, 123, 50, 12504–12509
Publication Date (Web):November 17, 2001
https://doi.org/10.1021/ja012009m
Copyright © 2001 American Chemical Society

    Article Views

    2506

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    The synthesis of 1,1-disubstituted alkenes typically involves reactions that lack atom economy such as olefination protocols. The use of various ruthenium complexes to effect the addition of terminal alkynes to alkenes is explored as an atom economical strategy. Two new ruthenium complexes have been discovered that effect this reaction at ambient temperature, cyclopentadienylruthenium (triphenylphosphine) camphorsulfonate and cyclopentadienylruthenium tris(acetonitrile) hexafluorophosphate. Using these complexes as catalysts, reactions proceed at ambient temperature in acetone or DMF, respectively. Regioselectivity favoring the formation of a 1,1-disubstituted over a 1,2-disubstituted alkene typically ranges from 9:1 to >25:1. The reaction demonstrates extraordinary chemoselectivityeven di- and trisubstituted alkenes such as present in the products do not compete with the starting monosubstituted alkene. Free hydroxyl groups as well as silyl and PMB ethers are tolerated as are ketones, esters, and amides. The mechanism of the reaction is believed to invoke formation of a metallacyclopentene. To account for the chemo- and regioselectivity, the initial formation of the metallacycle is believed to be reversible. While formation of the 2,5-disubstituted ruthenacyclopentene, which produces the linear product, is believed to be kinetically preferred, the rate of β-hydrogen elimination from the 2,4-disubstituted ruthenacyclopentene, which produces the branched product, is believed to be faster. Thus, the competition between the rate of β-hydrogen elimination and cycloreversion rationalizes the results.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Experimental details for all reactions as well as characterization data and X-ray data (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 64 publications.

    1. Shunya Takahashi, Takenori Hama, Toshihiko Nogawa, Narihito Ogawa, Hiroyuki Koshino. Total Synthesis of Clostrienose. ACS Omega 2023, 8 (38) , 35382-35392. https://doi.org/10.1021/acsomega.3c05277
    2. Arko Seal, Santanu Mukherjee. Enantioselective Synthesis of Skipped Dienes via Iridium-Catalyzed Allylic Alkylation of Phosphonates. Organic Letters 2023, 25 (13) , 2253-2257. https://doi.org/10.1021/acs.orglett.3c00505
    3. Zeyu Zhang, Danyun Li, Chanjuan Xi. CO2-Promoted and Nickel-Catalyzed Direct Hydroallylation of Terminal Alkynes with Allylic Alcohols: Access to 1,4-Dienes. Organic Letters 2023, 25 (4) , 698-702. https://doi.org/10.1021/acs.orglett.3c00044
    4. Anjia Liu, Dongmei Chi, Shufeng Chen. Palladium-Catalyzed Cascade Allylative Dicarbofunctionalization of Aryl Phenol-Tethered Alkynes with Allyl Iodides: Synthesis of Skipped Dienes. Organic Letters 2021, 23 (21) , 8333-8337. https://doi.org/10.1021/acs.orglett.1c03073
    5. Barry M. Trost, Guoting Zhang. Ruthenium-Catalyzed Intermolecular Coupling of Vinylic 1,2-Bisboronates with Alkynes: Stereoselective Access to Boryl-Substituted Homoallylic Alcohols. Journal of the American Chemical Society 2020, 142 (16) , 7312-7316. https://doi.org/10.1021/jacs.0c01755
    6. Barry M. Trost, Hadi Gholami. Propene as an Atom-Economical Linchpin for Concise Total Synthesis of Polyenes: Piericidin A. Journal of the American Chemical Society 2018, 140 (37) , 11623-11626. https://doi.org/10.1021/jacs.8b08974
    7. Melrose Mailig, Avijit Hazra, Megan K. Armstrong, and Gojko Lalic . Catalytic Anti-Markovnikov Hydroallylation of Terminal and Functionalized Internal Alkynes: Synthesis of Skipped Dienes and Trisubstituted Alkenes. Journal of the American Chemical Society 2017, 139 (20) , 6969-6977. https://doi.org/10.1021/jacs.7b02104
    8. Elisabeth A. Ziemann, Sladjana Baljak, Stefan Steffens, Timo Stein, Nick Van Steerteghem, Inge Asselberghs, Koen Clays, and Jürgen Heck . Stille Cross-Coupling Reaction with Cationic [(η5-Cp)(η6-C6H6–xIx)Ru]+ Complexes as Key for Ethynyl-Bridged Homo- and Heteronuclear Sandwich Compounds. Organometallics 2015, 34 (9) , 1692-1700. https://doi.org/10.1021/acs.organomet.5b00160
    9. Barry M. Trost and James J. Cregg . Ruthenium-Catalyzed Alkene–Alkyne Coupling of Disubstituted Olefins: Application to the Stereoselective Synthesis of Trisubstituted Enecarbamates. Journal of the American Chemical Society 2015, 137 (2) , 620-623. https://doi.org/10.1021/ja511911b
    10. Xin Hong, Barry M. Trost, and K. N. Houk . Mechanism and Origins of Selectivity in Ru(II)-Catalyzed Intramolecular (5+2) Cycloadditions and Ene Reactions of Vinylcyclopropanes and Alkynes from Density Functional Theory. Journal of the American Chemical Society 2013, 135 (17) , 6588-6600. https://doi.org/10.1021/ja4012657
    11. Ryosuke Matsubara, Alicia C. Gutierrez, and Timothy F. Jamison . Nickel-Catalyzed Heck-Type Reactions of Benzyl Chlorides and Simple Olefins. Journal of the American Chemical Society 2011, 133 (47) , 19020-19023. https://doi.org/10.1021/ja209235d
    12. Xavier Guinchard and Emmanuel Roulland. Total Synthesis of the Antiproliferative Macrolide (+)-Neopeltolide. Organic Letters 2009, 11 (20) , 4700-4703. https://doi.org/10.1021/ol902047z
    13. Xingzhong Zeng,, Xudong Wei,, Vittorio Farina,, Elio Napolitano,, Yibo Xu,, Li Zhang,, Nizar Haddad,, Nathan K. Yee,, Nelu Grinberg,, Sherry Shen, and, Chris H. Senanayake. Epimerization Reaction of a Substituted Vinylcyclopropane Catalyzed by Ruthenium Carbenes:  Mechanistic Analysis. The Journal of Organic Chemistry 2006, 71 (23) , 8864-8875. https://doi.org/10.1021/jo061587o
    14. Barry M. Trost,, Michelle R. Machacek, and, Brian D. Faulk. Sequential Ru−Pd Catalysis:  A Two-Catalyst One-Pot Protocol for the Synthesis of N- and O-Heterocycles. Journal of the American Chemical Society 2006, 128 (20) , 6745-6754. https://doi.org/10.1021/ja060812g
    15. Barry M. Trost,, Julien P. N. Papillon, and, Thomas Nussbaumer. Ru-Catalyzed Alkene−Alkyne Coupling. Total Synthesis of Amphidinolide P. Journal of the American Chemical Society 2005, 127 (50) , 17921-17937. https://doi.org/10.1021/ja055967n
    16. Martin Poirier,, Norman Aubry,, Colette Boucher,, Jean-Marie Ferland,, Steve LaPlante, and, Youla S. Tsantrizos. RCM of Tripeptide Dienes Containing a Chiral Vinylcyclopropane Moiety:  Impact of Different Ru-Based Catalysts on the Stereochemical Integrity of the Macrocyclic Products. The Journal of Organic Chemistry 2005, 70 (26) , 10765-10773. https://doi.org/10.1021/jo051706k
    17. Barry M. Trost,, Stephen T. Wrobleski,, John D. Chisholm,, Paul E. Harrington, and, Michael Jung. Total Synthesis of (+)-Amphidinolide A. Assembly of the Fragments. Journal of the American Chemical Society 2005, 127 (39) , 13589-13597. https://doi.org/10.1021/ja0533646
    18. Eric C. Hansen and, Daesung Lee. Synthesis of β,β-Disubstituted Vinyl Boronates via the Ruthenium-Catalyzed Alder Ene Reaction of Borylated Alkynes and Alkenes. Journal of the American Chemical Society 2005, 127 (10) , 3252-3253. https://doi.org/10.1021/ja0424629
    19. Hui Chen and, Shuhua Li. Mechanism of Ruthenium-Catalyzed Alder Ene-Type Reaction:  A Theoretical Study. Organometallics 2005, 24 (5) , 872-884. https://doi.org/10.1021/om049384i
    20. Jacques Le Paih,, Florian Monnier,, Sylvie Dérien,, Pierre H. Dixneuf,, Eric Clot, and, Odile Eisenstein. Biscarbene−Ruthenium Complexes in Catalysis: Novel Stereoselective Synthesis of (1E,3E)-1,4-Disubstituted-1,3-dienes via Head-to-Head Coupling of Terminal Alkynes and Addition of Carboxylic Acids. Journal of the American Chemical Society 2003, 125 (39) , 11964-11975. https://doi.org/10.1021/ja0349554
    21. Barry M. Trost. On Inventing Reactions for Atom Economy. Accounts of Chemical Research 2002, 35 (9) , 695-705. https://doi.org/10.1021/ar010068z
    22. Barry M. Trost and, Anthony B. Pinkerton. Formation of Vinyl Halides via a Ruthenium-Catalyzed Three-Component Coupling. Journal of the American Chemical Society 2002, 124 (25) , 7376-7389. https://doi.org/10.1021/ja011426w
    23. Barry M. Trost and, Christina M. Older. A Convenient Synthetic Route to [CpRu(CH3CN)3]PF6. Organometallics 2002, 21 (12) , 2544-2546. https://doi.org/10.1021/om020143p
    24. Jieping Chen, Wen-Ting Wei, Zhuocheng Li, Zhan Lu. Metal-catalyzed Markovnikov-type selective hydrofunctionalization of terminal alkynes. Chemical Society Reviews 2024, 89 https://doi.org/10.1039/D4CS00167B
    25. Shi-Qi Zhang, Yan-Lin Li, Kun Cui, Chen Chen, Zheng-Yang Gu, Hu He, Ji-Bao Xia. Regio- and stereoselective divergent cross-coupling of alkynes and disubstituted alkenes via photoredox cobalt dual catalysis. Organic Chemistry Frontiers 2023, 10 (24) , 6070-6080. https://doi.org/10.1039/D3QO01281F
    26. Yangbin Jin, Chunsheng Li, Wanqing Wu, Huanfeng Jiang. Regioselective Synthesis of 1,4‐Dienes via Palladium‐Catalyzed Oxidative Allylation of N ‐Tosylhydrazones. Advanced Synthesis & Catalysis 2023, 365 (14) , 2338-2343. https://doi.org/10.1002/adsc.202300319
    27. Jieping Chen, Jiale Ying, Zhan Lu. Cobalt-catalyzed branched selective hydroallylation of terminal alkynes. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-32291-3
    28. Zi‐Xuan Wang, Peng‐Chao Gao, En‐Ze Lin, Bi‐Jie Li. Stereodefined Skipped Dienes through Iridium‐Catalyzed Formal Addition of Tertiary Allylic C−H Bonds to Alkynes. Angewandte Chemie 2022, 134 (26) https://doi.org/10.1002/ange.202200075
    29. Zi‐Xuan Wang, Peng‐Chao Gao, En‐Ze Lin, Bi‐Jie Li. Stereodefined Skipped Dienes through Iridium‐Catalyzed Formal Addition of Tertiary Allylic C−H Bonds to Alkynes. Angewandte Chemie International Edition 2022, 61 (26) https://doi.org/10.1002/anie.202200075
    30. Toshiro Takao, Akiko Inagaki. Mono- and Bis-cyclopentadienyl Complexes of Ruthenium and Osmium. 2022, 294-443. https://doi.org/10.1016/B978-0-12-820206-7.00143-8
    31. Dongquan Zhang, Miaomiao Li, Jiajia Li, Aijun Lin, Hequan Yao. Rhodium-catalyzed intermolecular enantioselective Alder–ene type reaction of cyclopentenes with silylacetylenes. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-26955-9
    32. Andreas Thiel, Daniel F. Sauer, Ulrich Markel, M. A. Stephanie Mertens, Tino Polen, Ulrich Schwaneberg, Jun Okuda. An artificial ruthenium-containing β-barrel protein for alkene–alkyne coupling reaction. Organic & Biomolecular Chemistry 2021, 19 (13) , 2912-2916. https://doi.org/10.1039/D1OB00279A
    33. Fan Song, Fang Wang, Lei Guo, Xiaoliang Feng, Yanyan Zhang, Lingling Chu. Visible‐Light‐Enabled Stereodivergent Synthesis of E ‐ and Z ‐Configured 1,4‐Dienes by Photoredox/Nickel Dual Catalysis. Angewandte Chemie 2020, 132 (1) , 183-187. https://doi.org/10.1002/ange.201909543
    34. Fan Song, Fang Wang, Lei Guo, Xiaoliang Feng, Yanyan Zhang, Lingling Chu. Visible‐Light‐Enabled Stereodivergent Synthesis of E ‐ and Z ‐Configured 1,4‐Dienes by Photoredox/Nickel Dual Catalysis. Angewandte Chemie International Edition 2020, 59 (1) , 177-181. https://doi.org/10.1002/anie.201909543
    35. Wen Liu, Pengfei Zhou, Jiawen Lang, Shunxi Dong, Xiaohua Liu, Xiaoming Feng. A nickel( ii )-catalyzed asymmetric intramolecular Alder-ene reaction of 1,7-dienes. Chemical Communications 2019, 55 (31) , 4479-4482. https://doi.org/10.1039/C9CC01521C
    36. Chunhui Shan, Kangbao Zhong, Xiaotian Qi, Dongdong Xu, Ling-Bo Qu, Ruopeng Bai, Yu Lan. Long distance unconjugated agostic-assisted 1,5-H shift in a Ru-mediated Alder-ene type reaction: mechanism and stereoselectivity. Organic Chemistry Frontiers 2018, 5 (21) , 3178-3185. https://doi.org/10.1039/C8QO00699G
    37. Barry M. Trost, Jacob S. Tracy. Organic Synthesis. Use of Alkynes as a Key to Innovation in Designing Structure for Function. Israel Journal of Chemistry 2018, 58 (1-2) , 18-27. https://doi.org/10.1002/ijch.201700077
    38. Sayori Kiyota, Seonyoung In, Nobuyuki Komine, Masafumi Hirano. Regioselectivity Control by Added MeCN in Ru(0)-catalyzed Cross-dimerization of Internal Alkynes with Methyl Methacrylate. Chemistry Letters 2017, 46 (7) , 1040-1043. https://doi.org/10.1246/cl.170224
    39. Youla S. Tsantrizos. Synthetic Challenges in the Assembly of Macrocyclic HCV NS3/NS4A Protease Inhibitors: The Case of BILN 2061 and Its Analogs. 2015, 89-112. https://doi.org/10.1007/7081_2015_184
    40. Rui Jin, Song Liu, Yu Lan. Distortion–interaction analysis along the reaction pathway to reveal the reactivity of the Alder-ene reaction of enes. RSC Advances 2015, 5 (75) , 61426-61435. https://doi.org/10.1039/C5RA10345B
    41. Paul Kübler, Benjamin Oelkers, Jörg Sundermeyer. Ruthenium cyclopentadienylidene phosphorane complexes – Synthesis, characterization and catalysis. Journal of Organometallic Chemistry 2014, 767 , 165-176. https://doi.org/10.1016/j.jorganchem.2014.06.002
    42. Jiao Jiao, Yasushi Nishihara. Alkynylboron compounds in organic synthesis. Journal of Organometallic Chemistry 2012, 721-722 , 3-16. https://doi.org/10.1016/j.jorganchem.2012.05.027
    43. Barry M. Trost. Atom Economy: a Challenge for Enhanced Synthetic Efficiency. 2012, 1-35. https://doi.org/10.1002/9783527628698.hgc072
    44. Daesung Lee, Ivan Volchkov. Regio- and Stereoselective Metal-Catalyzed Reactions and Their Application to a Total Synthesis of (−)-Dactylolide. 2012, 171-197. https://doi.org/10.1016/B978-0-12-386540-3.00009-5
    45. Thierry Achard, Aymeric Lepronier, Yves Gimbert, Hervé Clavier, Laurent Giordano, Alphonse Tenaglia, Gérard Buono. A Regio‐ and Diastereoselective Platinum‐Catalyzed Tandem [2+1]/[3+2] Cycloaddition Sequence. Angewandte Chemie 2011, 123 (15) , 3614-3618. https://doi.org/10.1002/ange.201007992
    46. Thierry Achard, Aymeric Lepronier, Yves Gimbert, Hervé Clavier, Laurent Giordano, Alphonse Tenaglia, Gérard Buono. A Regio‐ and Diastereoselective Platinum‐Catalyzed Tandem [2+1]/[3+2] Cycloaddition Sequence. Angewandte Chemie International Edition 2011, 50 (15) , 3552-3556. https://doi.org/10.1002/anie.201007992
    47. Scott E. Denmark, Jack Hung‐Chang Liu. Sequential Processes in Palladium‐Catalyzed Silicon‐Based Cross‐Coupling. Israel Journal of Chemistry 2010, 50 (5-6) , 577-587. https://doi.org/10.1002/ijch.201000036
    48. Lukáš Severa, Jan Vávra, Anna Kohoutová, Martina Čížková, Tereza Šálová, Jakub Hývl, David Šaman, Radek Pohl, Louis Adriaenssens, Filip Teplý. Air-tolerant C–C bond formation via organometallic ruthenium catalysis: diverse catalytic pathways involving (C5Me5)Ru or (C5H5)Ru are robust to molecular oxygen. Tetrahedron Letters 2009, 50 (31) , 4526-4528. https://doi.org/10.1016/j.tetlet.2009.05.079
    49. Chung‐Yeh Wu, Hsien‐Hsin Chou, Ying‐Chih Lin, Yu Wang, Yi‐Hung Liu. Reactions of Ruthenium Vinylidene and Acetylide Complexes Containing Trichloromethyl Groups: Preparation of a Cyclobutenonyl Complex by Solid‐State Photolysis. Chemistry – A European Journal 2009, 15 (13) , 3221-3229. https://doi.org/10.1002/chem.200802133
    50. Louis Adriaenssens, Lukáš Severa, Jan Vávra, Tereza Šálová, Jakub Hývl, Martina Čížková, Radek Pohl, David Šaman, Filip Teplý. Bio- and air-tolerant carbon–carbon bond formations via organometallic ruthenium catalysis. Collection of Czechoslovak Chemical Communications 2009, 74 (7-8) , 1023-1034. https://doi.org/10.1135/cccc2009053
    51. L. Fensterbank, J.-P. Goddard, M. Malacria. C–C Bond Formation (Part 1) by Addition Reactions: through Carbometallation Catalyzed by Group 8–11 Metals. 2007, 299-368. https://doi.org/10.1016/B0-08-045047-4/00129-1
    52. K.M. Brummond, J.A. Loyer-Drew. C–C Bond Formation (Part 1) by Addition Reactions: Alder-ene Reaction. 2007, 557-601. https://doi.org/10.1016/B0-08-045047-4/00134-5
    53. Barry M. Trost, Mathias U. Frederiksen, Michael T. Rudd. Ruthenium‐katalysierte Reaktionen – eine Schatzkiste für atomökonomische Umwandlungen. Angewandte Chemie 2005, 117 (41) , 6788-6825. https://doi.org/10.1002/ange.200500136
    54. Barry M. Trost, Mathias U. Frederiksen, Michael T. Rudd. Ruthenium‐Catalyzed Reactions—A Treasure Trove of Atom‐Economic Transformations. Angewandte Chemie International Edition 2005, 44 (41) , 6630-6666. https://doi.org/10.1002/anie.200500136
    55. Edward?J. Farrington, Christopher?F.?J. Barnard, Elizabeth Rowsell, John?M. Brown. Ruthenium Complex-Catalysed Heck Reactions of Areneboronic Acids; Mechanism, Synthesis and Halide Tolerance. Advanced Synthesis & Catalysis 2005, 347 (1) , 185-195. https://doi.org/10.1002/adsc.200404231
    56. A.C. Regan. One or More CC Bond(s) Formed by Addition. 2005, 533-580. https://doi.org/10.1016/B0-08-044655-8/00012-X
    57. V. Caprio. Ketones: Dialkyl Ketones. 2005, 135-214. https://doi.org/10.1016/B0-08-044655-8/00049-0
    58. Eric C. Hansen, Daesung Lee. Stereocontrolled synthesis of 2-alkenyl-4-methylene tetrahydropyrans. Tetrahedron Letters 2004, 45 (38) , 7151-7155. https://doi.org/10.1016/j.tetlet.2004.07.063
    59. Angelino Doppiu, Albrecht Salzer. A New Route to Cationic Half‐Sandwich Ruthenium( II ) Complexes with Chiral Cyclopentadienylphosphane Ligands. European Journal of Inorganic Chemistry 2004, 2004 (11) , 2244-2252. https://doi.org/10.1002/ejic.200300934
    60. Sylvie Dérien, Pierre H. Dixneuf. The versatility of molecular ruthenium catalyst RuCl(COD)(C5Me5). Journal of Organometallic Chemistry 2004, 689 (8) , 1382-1392. https://doi.org/10.1016/j.jorganchem.2003.12.006
    61. . Preparation of Difunctional Compounds. 2003, 483-708. https://doi.org/10.1002/9780471476665.ch16
    62. Matthias Tamm, Bernd Dreßel, Thomas Lügger, Roland Fröhlich, Stefan Grimme. Chelate Complexes of Functionalized Cycloheptatrienyl Ligands: Molybdenum Complexes with Linked Cycloheptatrienyl‐Phosphane Ligands and Their Use in Catalytic Carbon−Carbon Bond Formation. European Journal of Inorganic Chemistry 2003, 2003 (6) , 1088-1098. https://doi.org/10.1002/ejic.200390140
    63. Matthias Tamm, Bernd Dreßel, Victoria Urban, Thomas Lügger. Coordinatively unsaturated molybdenum complexes with chelating cycloheptatrienyl-phosphane ligands and their use in transition metal catalysis. Inorganic Chemistry Communications 2002, 5 (10) , 837-840. https://doi.org/10.1016/S1387-7003(02)00587-7
    64. Barry M. Trost, Anthony B. Pinkerton, F. Dean Toste, Martin Sperrle. ChemInform Abstract: Synthesis of 1,1‐Disubstituted Alkenes via a Ru‐Catalyzed Addition.. ChemInform 2002, 33 (21) https://doi.org/10.1002/chin.200221049