ACS Publications. Most Trusted. Most Cited. Most Read
The Effect of Mechanical Interlocking on Crystal Packing:  Predictions and Testing
My Activity

Figure 1Loading Img
    Article

    The Effect of Mechanical Interlocking on Crystal Packing:  Predictions and Testing
    Click to copy article linkArticle link copied!

    View Author Information
    Contribution from the Consiglio Nazionale delle Ricerche, Istituto di Spettroscopia Molecolare, Via P. Gobetti 101, 40129, Bologna, Italy, Centre for Supramolecular and Macromolecular Chemistry, Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K., Dipartimento di Chimica “G. Ciamician”, Università degli Studi di Bologna, V. F. Selmi 2, I-40126, Bologna, Italy, and CLRC Daresbury Laboratory, Warrington, Cheshire, WA4 4AD, U.K.
    Other Access OptionsSupporting Information (2)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2002, 124, 2, 225–233
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja0159362
    Published December 13, 2001
    Copyright © 2002 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The first statistical analyses of the X-ray crystal structures of mechanically interlocked molecular architectures, the first molecular mechanics-based solid-state calculations on such structures and atomic force microscopy (AFM) experiments are used in combination to predict and test which types of benzylic amide macrocycle-containing rotaxanes possess mobile components in the crystalline phase and thus could form the basis of solid-state devices that function through mechanical motion at the molecular level. The statistical studies and calculations show that crystals formed by rotaxanes possess similarities and unanticipated differences with respect to the crystal packing of noninterlocked molecules. Trends in the rotaxane series correlate quantities related to crystal packing, molecular size, stoichiometry, and H-bonding. In accordance with the findings of Gavezzotti et al. for conventional molecular architectures, a principal component analysis (PCA) showed that three vectors related to the size, packing parameters, and stoichiometry are sufficient to describe the crystal properties of benzylic amide macrocycle-containing rotaxanes. When hydrogen bond-related quantities are included in a second PCA, they combine with the size and the stoichiometry vectors but not with packing-related parameters, indicating that the intramolecular “saturation” of the H-bonds (between the interlocked components) takes precedence over crystal assembly (i.e., intermolecular packing) in these systems. However, cluster analyses also suggest a major role for the energy of interaction between the macrocycle and its crystal environment. The identification of such a “privileged” interaction is of fundamental importance to the development of rotaxanes with in-crystal mobility of one or more of their interlocked components, a prerequisite for the exploitation of molecular level mechanical motion in the solid state. The set of trends found, together with the calculated energies, was used to propose guidelines for which benzylic amide macrocycle-containing rotaxanes are best suited to become building blocks for systems with mobile submolecular units in the crystalline phase. An experimental test of the predictive power of such guidelines was carried out using AFM on a rotaxane and its thread, identified by the study as a promising candidate for solid-state mobility. Intuitively, the rotaxane should be less mobile in the solid state since it has multiple sets of both hydrogen bond donors and acceptors that can form strong inter- and intramolecular H-bonds. Conversely, the thread has no hydrogen bond donors and cannot form such bonds. The AFM experiments, however, confirm the statistical analysis prediction that the rotaxane is considerably more mobile in the solid than the thread.

    Copyright © 2002 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Istituto di Spettroscopia Molecolare.

    *

     To whom correspondence should be addressed. D.A.L.:  E-mail, [email protected]. F.Z.:  E-mail, [email protected].

     University of Warwick. Present address:  Department of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, U.K.

    §

     Università degli Studi di Bologna.

     CLRC Daresbury Laboratory.

    Supporting Information Available

    Click to copy section linkSection link copied!

    A table with the PCA correlations matrix, plots of the correlation between some noncovalent interactions (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 72 publications.

    1. Fellipe F. S. Farias, Gustavo H. Weimer, Suzan K. Kunz, Ramon R. Prates, Tainára Orlando, Marcos A. P. Martins. [2]Rotaxane Solvates: Insights into the Presence of Solvents in the Crystal Lattice. Crystal Growth & Design 2024, 24 (10) , 4030-4044. https://doi.org/10.1021/acs.cgd.3c01179
    2. Tainára Orlando, Jesus de Maria Perez, Fellipe Freire Santos Farias, Paulo Roberto dos Santos Salbego, Alberto Martinez-Cuezva, Marcos Antonio Pinto Martins, Jose Berna. Mechanical Bonding as a Promoter of Crystalline Diversity in Halogenated [2]Rotaxanes. Crystal Growth & Design 2023, 23 (5) , 3794-3804. https://doi.org/10.1021/acs.cgd.3c00194
    3. Javid Ahmad Malla, Arundhati Roy, Pinaki Talukdar. Anion Selective Ion Channel Constructed from a Self-Assembly of Bis(cholate)-Substituted Fumaramide. Organic Letters 2018, 20 (19) , 5991-5994. https://doi.org/10.1021/acs.orglett.8b02115
    4. Marcos A. P. Martins, Leticia V. Rodrigues, Alexandre R. Meyer, Clarissa P. Frizzo, Manfredo Hörner, Nilo Zanatta, Helio G. Bonacorso, Jose Berná, and Mateo Alajarín . Density Functional Theory and Quantum Theory of Atoms in Molecules Analysis: Influence of Intramolecular Interactions on Pirouetting Movement in Tetraalkylsuccinamide[2]rotaxanes. Crystal Growth & Design 2017, 17 (11) , 5845-5857. https://doi.org/10.1021/acs.cgd.7b00944
    5. Sundus Erbas-Cakmak, David A. Leigh, Charlie T. McTernan, and Alina L. Nussbaumer . Artificial Molecular Machines. Chemical Reviews 2015, 115 (18) , 10081-10206. https://doi.org/10.1021/acs.chemrev.5b00146
    6. Anouk M. Rijs, Euan R. Kay, David A. Leigh, and Wybren Jan Buma . IR Spectroscopy on Jet-Cooled Isolated Two-Station Rotaxanes. The Journal of Physical Chemistry A 2011, 115 (34) , 9669-9675. https://doi.org/10.1021/jp200909v
    7. José Berná, Mateo Alajarín and Raúl-Angel Orenes . Azodicarboxamides as Template Binding Motifs for the Building of Hydrogen-Bonded Molecular Shuttles. Journal of the American Chemical Society 2010, 132 (31) , 10741-10747. https://doi.org/10.1021/ja101151t
    8. Daniel M. D’Souza, David A. Leigh, Loïc Mottier, Kathleen M. Mullen, Francesco Paolucci, Simon J. Teat and Songwei Zhang. Nitrone [2]Rotaxanes: Simultaneous Chemical Protection and Electrochemical Activation of a Functional Group. Journal of the American Chemical Society 2010, 132 (27) , 9465-9470. https://doi.org/10.1021/ja1034683
    9. Qiong Zhang, Yaoquan Tu, He Tian, Yan-Li Zhao, J. Fraser Stoddart and Hans Ågren . Working Mechanism for a Redox Switchable Molecular Machine Based on Cyclodextrin: A Free Energy Profile Approach. The Journal of Physical Chemistry B 2010, 114 (19) , 6561-6566. https://doi.org/10.1021/jp102834k
    10. Na Fu, Jeffrey M. Baumes, Easwaran Arunkumar, Bruce C. Noll and Bradley D. Smith. Squaraine Rotaxanes with Boat Conformation Macrocycles. The Journal of Organic Chemistry 2009, 74 (17) , 6462-6468. https://doi.org/10.1021/jo901298n
    11. Werner Reckien,, Barbara Kirchner, and, Sigrid D. Peyerimhoff. Frequency Analysis of Amide-Linked Rotaxane Mimetics. The Journal of Physical Chemistry A 2006, 110 (47) , 12963-12970. https://doi.org/10.1021/jp065327m
    12. Dimitrios Gournis,, Luboš Jankovič,, Enrico Maccallini,, Darja Benne,, Petra Rudolf,, Jean-François Colomer,, Chloé Sooambar,, Vasilios Georgakilas,, Maurizio Prato,, Marianna Fanti,, Francesco Zerbetto,, Ginka H. Sarova, and, Dirk M. Guldi. Clay−Fulleropyrrolidine Nanocomposites. Journal of the American Chemical Society 2006, 128 (18) , 6154-6163. https://doi.org/10.1021/ja0579661
    13. Gary D. Fallon,, Marcia A.-P. Lee,, Steven J. Langford, and, Peter J. Nichols. Unusual Solid-State Behavior in a Neutral [2]Catenane Bearing a Hydrolyzable Component. Organic Letters 2004, 6 (5) , 655-658. https://doi.org/10.1021/ol036116s
    14. Massimiliano Cavallini,, Fabio Biscarini,, Massimiliano Massi,, Angeles Farran-Morales,, David A. Leigh, and, Francesco Zerbetto. Spontaneous Fabrication of Microscopic Arrays of Molecular Structures with Submicron Length Scales. Nano Letters 2002, 2 (6) , 635-639. https://doi.org/10.1021/nl0255496
    15. Jing Guo, Shiyao Li, Huan Yao, Liupan Yang, Lili Wang. Research Progress of Tetralactam Macrocycle-Based Molecular Recognition and Applications. Chinese Journal of Organic Chemistry 2024, 44 (6) , 1777. https://doi.org/10.6023/cjoc202401021
    16. Fellipe F.S. Farias, Gustavo H. Weimer, Suzan K. Kunz, Paulo R.S. Salbego, Tainára Orlando, Marcos A.P. Martins. The rotational movement in solution of fumaramide- vs. succinamide [2]rotaxanes: The influence of intercomponent interactions. Journal of Molecular Liquids 2023, 385 , 122291. https://doi.org/10.1016/j.molliq.2023.122291
    17. Maxime Gauthier, Philip Waelès, Frédéric Coutrot. Post‐Synthetic Macrocyclization of Rotaxane Building Blocks. ChemPlusChem 2022, 87 (3) https://doi.org/10.1002/cplu.202100458
    18. Dewald P. van Heerden, Leonard J. Barbour. Guest-occupiable space in the crystalline solid state: a simple rule-of-thumb for predicting occupancy. Chemical Society Reviews 2021, 50 (2) , 735-749. https://doi.org/10.1039/D0CS01040E
    19. Tainára Orlando, Paulo R. S. Salbego, Fellipe F. S. Farias, Gustavo H. Weimer, João P. P. Copetti, Helio G. Bonacorso, Nilo Zanatta, Manfredo Hoerner, José Berná, Marcos A. P. Martins. Crystallization Mechanisms Applied to Understand the Crystal Formation of Rotaxanes. European Journal of Organic Chemistry 2019, 2019 (21) , 3451-3463. https://doi.org/10.1002/ejoc.201801870
    20. Paulo R. S. Salbego, Tainára Orlando, Fellipe F. S. Farias, Helio G. Bonacorso, Marcos A. P. Martins. [2]Rotaxanes Bearing a Tetralactam Macrocycle: The Role of a Trifurcated Hydrogen Bond in the Crystalline State. European Journal of Organic Chemistry 2019, 2019 (21) , 3464-3471. https://doi.org/10.1002/ejoc.201900216
    21. C. Lopez-Leonardo, A. Martinez-Cuezva, D. Bautista, M. Alajarin, J. Berna. Homo and heteroassembly of amide-based [2]rotaxanes using α,α′-dimethyl- p -xylylenediamines. Chemical Communications 2019, 55 (47) , 6787-6790. https://doi.org/10.1039/C9CC02701G
    22. Dolores Santa María, Rosa M. Claramunt, M. Carmen Torralba, M. Rosario Torres, José Elguero. Synthesis of a new 24-membered tetramide macrocycle and X-ray crystal structure determination. Tetrahedron Letters 2019, 60 (17) , 1206-1209. https://doi.org/10.1016/j.tetlet.2019.03.066
    23. Jooyeok Seo, Sungho Nam, Hwajeong Kim, Donal D. C. Bradley, Youngkyoo Kim. Nano-crater morphology in hybrid electron-collecting buffer layers for high efficiency polymer:nonfullerene solar cells with enhanced stability. Nanoscale Horizons 2019, 4 (2) , 464-471. https://doi.org/10.1039/C8NH00319J
    24. Dong-Hao Li, Bradley D Smith. Molecular recognition using tetralactam macrocycles with parallel aromatic sidewalls. Beilstein Journal of Organic Chemistry 2019, 15 , 1086-1095. https://doi.org/10.3762/bjoc.15.105
    25. Arundhati Roy, Amitosh Gautam, Javid Ahmad Malla, Sohini Sarkar, Arnab Mukherjee, Pinaki Talukdar. Self-assembly of small-molecule fumaramides allows transmembrane chloride channel formation. Chemical Communications 2018, 54 (16) , 2024-2027. https://doi.org/10.1039/C7CC08693H
    26. . The Fundamentals of Making Mechanical Bonds. 2016, 55-268. https://doi.org/10.1002/9781119044123.ch2
    27. Natalia Prusinowska, Wioletta Bendzińska-Berus, Maciej Jelecki, Urszula Rychlewska, Marcin Kwit. Triphenylacetic Acid Amides: Molecular Propellers with Induced Chirality. European Journal of Organic Chemistry 2015, 2015 (4) , 738-749. https://doi.org/10.1002/ejoc.201403182
    28. Alberto Martinez‐Cuezva, Jose Berna, Raul‐Angel Orenes, Aurelia Pastor, Mateo Alajarin. Small‐Molecule Recognition for Controlling Molecular Motion in Hydrogen‐Bond‐Assembled Rotaxanes. Angewandte Chemie International Edition 2014, 53 (26) , 6762-6767. https://doi.org/10.1002/anie.201402962
    29. Alberto Martinez‐Cuezva, Jose Berna, Raul‐Angel Orenes, Aurelia Pastor, Mateo Alajarin. Small‐Molecule Recognition for Controlling Molecular Motion in Hydrogen‐Bond‐Assembled Rotaxanes. Angewandte Chemie 2014, 126 (26) , 6880-6885. https://doi.org/10.1002/ange.201402962
    30. Xiange Zheng, Karl Sohlberg. Switchable Catenanes: Computational Analysis. 2014, 4834-4842. https://doi.org/10.1081/E-ENN3-120024147
    31. Caroline Clavel, Karine Fournel-Marotte, Frédéric Coutrot. A pH-Sensitive Peptide-Containing Lasso Molecular Switch. Molecules 2013, 18 (9) , 11553-11575. https://doi.org/10.3390/molecules180911553
    32. Andrea Altieri, Vincent Aucagne, Romen Carrillo, Guy J. Clarkson, Daniel M. D'Souza, Jennifer A. Dunnett, David A. Leigh, Kathleen M. Mullen. Sulfur-containing amide-based [2]rotaxanes and molecular shuttles. Chemical Science 2011, 2 (10) , 1922. https://doi.org/10.1039/c1sc00335f
    33. Alessandro Moretto, Ileana Menegazzo, Marco Crisma, Elizabeth J. Shotton, Harriott Nowell, Stefano Mammi, Claudio Toniolo. A Rigid Helical Peptide Axle for a [2]Rotaxane Molecular Machine. Angewandte Chemie 2009, 121 (47) , 9148-9151. https://doi.org/10.1002/ange.200904749
    34. Alessandro Moretto, Ileana Menegazzo, Marco Crisma, Elizabeth J. Shotton, Harriott Nowell, Stefano Mammi, Claudio Toniolo. A Rigid Helical Peptide Axle for a [2]Rotaxane Molecular Machine. Angewandte Chemie International Edition 2009, 48 (47) , 8986-8989. https://doi.org/10.1002/anie.200904749
    35. Bengt Nölting. References. 2009, 231-261. https://doi.org/10.1007/978-3-642-03022-2_16
    36. Karl Sohlberg, Xiange Zheng. Computational Analysis of Switchable Catenanes. 2008, 930-938. https://doi.org/10.1201/NOE0849396397.ch81
    37. Karl Sohlberg, Xiange Zheng. Computational Analysis of Switchable Rotaxanes. 2008, 939-953. https://doi.org/10.1201/NOE0849396397.ch82
    38. Dhiredj C. Jagesar, František Hartl, Wybren Jan Buma, Albert M. Brouwer. Infrared Study of Intercomponent Interactions in a Switchable Hydrogen‐Bonded Rotaxane. Chemistry – A European Journal 2008, 14 (6) , 1935-1946. https://doi.org/10.1002/chem.200701531
    39. A. Senning. Furans and their Benzo Derivatives: Structure. 2008, 389-406. https://doi.org/10.1016/B978-008044992-0.00305-9
    40. Vincent Aucagne, José Berná, James D. Crowley, Stephen M. Goldup, Kevin D. Hänni, David A. Leigh, Paul J. Lusby, Vicki E. Ronaldson, Alexandra M. Z. Slawin, Aurélien Viterisi, D. Barney Walker. Catalytic “Active-Metal” Template Synthesis of [2]Rotaxanes, [3]Rotaxanes, and Molecular Shuttles, and Some Observations on the Mechanism of the Cu(I)-Catalyzed Azide−Alkyne 1,3-Cycloaddition. Journal of the American Chemical Society 2007, 129 (39) , 11950-11963. https://doi.org/10.1021/ja073513f
    41. Alan A. Farrell, Euan R. Kay, Giovanni Bottari, David A. Leigh, Suzanne P. Jarvis. The effect of solvent upon molecularly thin rotaxane film formation. Applied Surface Science 2007, 253 (14) , 6090-6095. https://doi.org/10.1016/j.apsusc.2007.01.006
    42. L. Sardone, C. C. Williams, H. L. Anderson, G. Marletta, F. Cacialli, P. Samorì. Phase Segregation in Thin Films of Conjugated Polyrotaxane– Poly(ethylene oxide) Blends: A Scanning Force Microscopy Study. Advanced Functional Materials 2007, 17 (6) , 927-932. https://doi.org/10.1002/adfm.200600181
    43. Jos? Bern?, Albert M. Brouwer, Sandro M. Fazio, Natalia Haraszkiewicz, David A. Leigh, Claire M. Lennon (ne? Keaveney). A rotaxane mimic of the photoactive yellow protein chromophore environment: effects of hydrogen bonding and mechanical interlocking on a coumaric amide derivative. Chemical Communications 2007, 63 (19) , 1910. https://doi.org/10.1039/b618781a
    44. Euan R. Kay, David A. Leigh, Francesco Zerbetto. Synthetische molekulare Motoren und mechanische Maschinen. Angewandte Chemie 2007, 119 (1-2) , 72-196. https://doi.org/10.1002/ange.200504313
    45. Euan R. Kay, David A. Leigh, Francesco Zerbetto. Synthetic Molecular Motors and Mechanical Machines. Angewandte Chemie International Edition 2007, 46 (1-2) , 72-191. https://doi.org/10.1002/anie.200504313
    46. F. Biscarini, M. Cavallini, R. Kshirsagar, G. Bottari, D. A. Leigh, S. Leon, F. Zerbetto. Self-organization of nano-lines and dots triggered by a local mechanical stimulus. Proceedings of the National Academy of Sciences 2006, 103 (47) , 17650-17654. https://doi.org/10.1073/pnas.0605192103
    47. Jean-François Moulin, Jean Crispin Kengne, Rajendra Kshirsagar, Massimilliano Cavallini, Fabio Biscarini, Salvador León, Francesco Zerbetto, Giovanni Bottari, David A. Leigh. Self-organization of Rotaxane Thin Films into Spatially Correlated Nanostructures:  Morphological and Structural Aspects. Journal of the American Chemical Society 2006, 128 (2) , 526-532. https://doi.org/10.1021/ja054886o
    48. Alan A. Farrell, Takeshi Fukuma, Takayuki Uchihashi, Euan R. Kay, Giovanni Bottari, David A. Leigh, Hirofumi Yamada, Suzanne P. Jarvis. Conservative and dissipative force imaging of switchable rotaxanes with frequency-modulation atomic force microscopy. Physical Review B 2005, 72 (12) https://doi.org/10.1103/PhysRevB.72.125430
    49. Bruno Trebbi, Francois Dehez, Patrick W. Fowler, Francesco Zerbetto. Favorable Entropy of Aromatic Clusters in Thermophilic Proteins. The Journal of Physical Chemistry B 2005, 109 (38) , 18184-18188. https://doi.org/10.1021/jp052333u
    50. Fabio Aricó, Theresa Chang, Stuart J. Cantrill, Saeed I. Khan, J. Fraser Stoddart. Template-Directed Synthesis of Multiply Mechanically Interlocked Molecules Under Thermodynamic Control. Chemistry - A European Journal 2005, 11 (16) , 4655-4666. https://doi.org/10.1002/chem.200500148
    51. David A. Leigh, Paul J. Lusby, Alexandra M. Z. Slawin, D. Barney Walker. Rare and Diverse Binding Modes Introduced through Mechanical Bonding. Angewandte Chemie International Edition 2005, 44 (29) , 4557-4564. https://doi.org/10.1002/anie.200500004
    52. David A. Leigh, Paul J. Lusby, Alexandra M. Z. Slawin, D. Barney Walker. Rare and Diverse Binding Modes Introduced through Mechanical Bonding. Angewandte Chemie 2005, 117 (29) , 4633-4640. https://doi.org/10.1002/ange.200500004
    53. Gilberto Teobaldi, Francesco Zerbetto. Simulation of some dynamical aspects of the photophysics of dye molecules encapsulated in a dendrimer. Journal of Luminescence 2005, 111 (4) , 335-342. https://doi.org/10.1016/j.jlumin.2004.10.013
    54. Gilberto Teobaldi, Manuel Melle-Franco, Francesco Zerbetto. Understanding the Cosolvation Effect of Dendrimers. Journal of Chemical Theory and Computation 2005, 1 (2) , 194-200. https://doi.org/10.1021/ct0499332
    55. Avril R. Williams, Brian H. Northrop, Kendall N. Houk, J. Fraser Stoddart, David J. Williams. The Influence of Constitutional Isomerism and Change on Molecular Recognition Processes. Chemistry – A European Journal 2004, 10 (21) , 5406-5421. https://doi.org/10.1002/chem.200400221
    56. David A. Leigh, Alessandro Venturini, Andrew J. Wilson, Jenny K. Y. Wong, Francesco Zerbetto. The Mechanism of Formation of Amide‐Based Interlocked Compounds: Prediction of a New Rotaxane‐Forming Motif. Chemistry – A European Journal 2004, 10 (20) , 4960-4969. https://doi.org/10.1002/chem.200305662
    57. Dimitrios Gournis, Vasilios Georgakilas, Michael A. Karakassides, Thomas Bakas, Konstantinos Kordatos, Maurizio Prato, Marianna Fanti, Francesco Zerbetto. Incorporation of Fullerene Derivatives into Smectite Clays:  A New Family of Organic−Inorganic Nanocomposites. Journal of the American Chemical Society 2004, 126 (27) , 8561-8568. https://doi.org/10.1021/ja049237b
    58. Yoshihiko Inoue, Takaki Kanbara, Takakazu Yamamoto. Construction of new [2]pseudorotaxanes by hydrogen bonding assembly of macrocyclic tetrathiolactam with amides and an ester. Tetrahedron Letters 2004, 45 (24) , 4603-4606. https://doi.org/10.1016/j.tetlet.2004.04.114
    59. Sagar S. Rane, Wayne L. Mattice, Coleen Pugh. Modification of statistical threading in two-component pseudorotaxane melts using the amphiphilic approach and variations in the confinement geometry. The Journal of Chemical Physics 2004, 120 (21) , 10299-10306. https://doi.org/10.1063/1.1724818
    60. Siegfried Höfinger, Francesco Zerbetto. The Free Energy of Nanobubbles in Organic Liquids. The Journal of Physical Chemistry A 2003, 107 (50) , 11253-11257. https://doi.org/10.1021/jp036392o
    61. Matthias Horn, Johannes Ihringer, Peter T. Glink, J. Fraser Stoddart. Kinetic versus Thermodynamic Control During the Formation of [2]Rotaxanes by a Dynamic Template‐Directed Clipping Process. Chemistry – A European Journal 2003, 9 (17) , 4046-4054. https://doi.org/10.1002/chem.200204479
    62. Xavi Grabuleda, Petko Ivanov, Carlos Jaime. Shuttling Process in [2]Rotaxanes. Modeling by Molecular Dynamics and Free Energy Perturbation Simulations. The Journal of Physical Chemistry B 2003, 107 (31) , 7582-7588. https://doi.org/10.1021/jp034658l
    63. HJ Peter de Lijser, Jason S Kim, Suzanne M McGrorty, Erin M Ulloa. Substituent effects in oxime radical cations. 1. Photosensitized reactions of acetophenone oximes. Canadian Journal of Chemistry 2003, 81 (6) , 575-585. https://doi.org/10.1139/v03-052
    64. Andrea Altieri, Giovanni Bottari, Francois Dehez, David A. Leigh, Jenny K. Y. Wong, Francesco Zerbetto. Remarkable Positional Discrimination in Bistable Light‐ and Heat‐Switchable Hydrogen‐Bonded Molecular Shuttles. Angewandte Chemie 2003, 115 (20) , 2398-2402. https://doi.org/10.1002/ange.200250745
    65. Andrea Altieri, Giovanni Bottari, Francois Dehez, David A. Leigh, Jenny K. Y. Wong, Francesco Zerbetto. Remarkable Positional Discrimination in Bistable Light‐ and Heat‐Switchable Hydrogen‐Bonded Molecular Shuttles. Angewandte Chemie International Edition 2003, 42 (20) , 2296-2300. https://doi.org/10.1002/anie.200250745
    66. Xiange Zheng, Karl Sohlberg. Modeling of a Rotaxane-Based Molecular Device. The Journal of Physical Chemistry A 2003, 107 (8) , 1207-1215. https://doi.org/10.1021/jp0267611
    67. Massimiliano Cavallini, Fabio Biscarini, Salvador Léon, Francesco Zerbetto, Giovanni Bottari, David A. Leigh. Information Storage Using Supramolecular Surface Patterns. Science 2003, 299 (5606) , 531-531. https://doi.org/10.1126/science.1078012
    68. Siegfried Höfinger, Francesco Zerbetto. On the Cavitation Energy of Water. Chemistry – A European Journal 2003, 9 (2) , 566-569. https://doi.org/10.1002/chem.200390060
    69. Francesco G. Gatti, Salvador León, Jenny K. Y. Wong, Giovanni Bottari, Andrea Altieri, M. Angeles Farran Morales, Simon J. Teat, Céline Frochot, David A. Leigh, Albert M. Brouwer, Francesco Zerbetto. Photoisomerization of a rotaxane hydrogen bonding template: Light-induced acceleration of a large amplitude rotational motion. Proceedings of the National Academy of Sciences 2003, 100 (1) , 10-14. https://doi.org/10.1073/pnas.0134757100
    70. Gilberto Teobaldi, Francesco Zerbetto. Dynamics of Eosin Y Encapsulated in a Fourth Generation Functionalised POPAM Dendrimer. 2003, 207-216. https://doi.org/10.1007/978-94-010-0103-8_19
    71. David A. Leigh. Molecules in Motion: Towards Hydrogen Bond-Assembled Molecular Machines. 2003, 47-56. https://doi.org/10.1007/978-94-010-0103-8_5
    72. Giovanni Bottari, Roberto Caciuffo, Marianna Fanti, David A. Leigh, Stewart F. Parker, Francesco Zerbetto. Solid-State Fingerprints of Molecular Threading Detected by Inelastic Neutron Scattering. ChemPhysChem 2002, 3 (12) , 1038-1041. https://doi.org/10.1002/cphc.200290007

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2002, 124, 2, 225–233
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja0159362
    Published December 13, 2001
    Copyright © 2002 American Chemical Society

    Article Views

    1208

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.