ACS Publications. Most Trusted. Most Cited. Most Read
Crystal Structure of Double Helical Hexitol Nucleic Acids
My Activity

Figure 1Loading Img
    Article

    Crystal Structure of Double Helical Hexitol Nucleic Acids
    Click to copy article linkArticle link copied!

    View Author Information
    Contribution from Biomolecular Architecture, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001 Leuven (Heverlee), Belgium, Laboratory of Medicinal Chemistry, Rega Institute, Katholieke Universiteit Leuven, Minderbroederstraat 10, B-3000 Leuven, Belgium, and Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 2XY, U.K.
    Other Access Options

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2002, 124, 6, 928–933
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja016570w
    Published January 15, 2002
    Copyright © 2002 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A huge variety of chemically modified oligonucleotide derivatives has been synthesized for possible antisense applications. One such derivative, hexitol nucleic acid (HNA), is a DNA analogue containing the standard nucleoside bases, but with a phosphorylated 1‘,5‘-anhydrohexitol backbone. Hexitol nucleic acids are some of the strongest hybridizing antisense compounds presently known, but HNA duplexes are even more stable. We present here the first high-resolution structure of a double helical nucleic acid with all sugars being hexitols. Although designed to have a restricted conformational flexibility, the hexitol oligomer h(GTGTACAC) is able to crystallize in two different double helical conformations. Both structures display a high x-displacement, normal Watson−Crick base pairing, similar base stacking patterns, and a very deep major groove together with a minor groove with increased hydrophobicity. One of the conformations displays a major groove which is wide enough to accommodate a second HNA double helix resulting in the formation of a double helix of HNA double helices. Both structures show most similarities with the A-type helical structure, the anhydrohexitol chair conformation thereby acting as a good mimic for the furanose C3‘-endo conformation observed in RNA. As compared to the quasi-linear structure of homo-DNA, the axial position of the base in HNA allows efficient base stacking and hence double helix formation.

    Copyright © 2002 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Department of Chemistry, Katholieke Universiteit Leuven.

     Rega Institute, Katholieke Universiteit Leuven.

    §

     University of Cambridge.

    *

     To whom correspondence should be addressed. Telephone:  +32 16 327609. Fax:  +32 16 327990. E-mail:  Luc.VanMeervelt@ chem.kuleuven.ac.be.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 71 publications.

    1. Debanjana Chakraborty, Chao Yang, Lijuan Wang, Dongping Zhong. Role of Substrate Binding Interactions on DNA Repair by Photolyase. The Journal of Physical Chemistry Letters 2023, 14 (29) , 6672-6678. https://doi.org/10.1021/acs.jpclett.3c01128
    2. Michał Piotrowicz, Aleksandra Kowalczyk, Damian Trzybiński, Krzysztof Woźniak, Konrad Kowalski. Redox-Active Glycol Nucleic Acid (GNA) Components: Synthesis and Properties of the Ferrocenyl-GNA Nucleoside, Phosphoramidite, and Semicanonical Dinucleoside Phosphate. Organometallics 2020, 39 (6) , 813-823. https://doi.org/10.1021/acs.organomet.9b00851
    3. W. Brad Wan and Punit P. Seth . The Medicinal Chemistry of Therapeutic Oligonucleotides. Journal of Medicinal Chemistry 2016, 59 (21) , 9645-9667. https://doi.org/10.1021/acs.jmedchem.6b00551
    4. Michael E. Østergaard, Timothy Dwight, Andres Berdeja, Eric E. Swayze, Michael E. Jung, and Punit P. Seth . Comparison of Duplex Stabilizing Properties of 2′-Fluorinated Nucleic Acid Analogues with Furanose and Non-Furanose Sugar Rings. The Journal of Organic Chemistry 2014, 79 (18) , 8877-8881. https://doi.org/10.1021/jo501381q
    5. Eric Meggers and Lilu Zhang. Synthesis and Properties of the Simplified Nucleic Acid Glycol Nucleic Acid. Accounts of Chemical Research 2010, 43 (8) , 1092-1102. https://doi.org/10.1021/ar900292q
    6. Mark K. Schlegel, Lars-Oliver Essen and Eric Meggers. Duplex Structure of a Minimal Nucleic Acid. Journal of the American Chemical Society 2008, 130 (26) , 8158-8159. https://doi.org/10.1021/ja802788g
    7. Koen Robeyns,, Piet Herdewijn, and, Luc Van Meervelt. Structure of the Fully Modified Left-Handed Cyclohexene Nucleic Acid Sequence GTGTACAC. Journal of the American Chemical Society 2008, 130 (6) , 1979-1984. https://doi.org/10.1021/ja077313f
    8. Shi Jin,, Kwang-Un Jeong,, Yingfeng Tu,, Matthew J. Graham,, Jing Wang,, Frank W. Harris, and, Stephen Z. D. Cheng. Structure of Macroscopic Monodomains and Its Soft Confinements of Chiral Smectic Phases on Crystallization in a Main-Chain Nonracemic Liquid Crystalline Polyester. Macromolecules 2007, 40 (15) , 5450-5459. https://doi.org/10.1021/ma070821p
    9. Martin Egli,, Pradeep S. Pallan,, Rekha Pattanayek,, Christopher J. Wilds,, Paolo Lubini,, George Minasov,, Max Dobler,, Christian J. Leumann, and, Albert Eschenmoser. Crystal Structure of Homo-DNA and Nature's Choice of Pentose over Hexose in the Genetic System. Journal of the American Chemical Society 2006, 128 (33) , 10847-10856. https://doi.org/10.1021/ja062548x
    10. Stefan Jäger,, Goran Rasched,, Hagit Kornreich-Leshem,, Marianne Engeser,, Oliver Thum, and, Michael Famulok. A Versatile Toolbox for Variable DNA Functionalization at High Density. Journal of the American Chemical Society 2005, 127 (43) , 15071-15082. https://doi.org/10.1021/ja051725b
    11. Pascal Y. Vuillaume,, Mélanie Brunelle,, Marie-Rose Van Calsteren,, Sylvette Laurent-Lewandowski,, André Bégin,, Raymond Lewandowski,, Brian G. Talbot, and, Youssef ElAzhary. Synthesis and Characterization of New Permanently Charged Poly(amidoammonium) Salts and Evaluation of Their DNA Complexes for Gene Transport. Biomacromolecules 2005, 6 (3) , 1769-1781. https://doi.org/10.1021/bm050072o
    12. Kwang-Un Jeong,, Shi Jin,, Jason J. Ge,, Brian S. Knapp,, Matthew J. Graham,, Jrjeng Ruan,, Mingming Guo,, Huiming Xiong,, Frank W. Harris, and, Stephen Z. D. Cheng. Phase Structures and Self-assembled Helical Suprastructures via Hydrogen Bonding in a Series of Achiral 4-Biphenyl Carboxylic Acid Compounds. Chemistry of Materials 2005, 17 (11) , 2852-2865. https://doi.org/10.1021/cm050338y
    13. Gaëlle Kolb,, Sandrine Reigadas,, Claudine Boiziau,, Arthur van Aerschot,, Andrey Arzumanov,, Michael J. Gait,, Piet Herdewijn, and, Jean-Jacques Toulmé. Hexitol Nucleic Acid-Containing Aptamers Are Efficient Ligands of HIV-1 TAR RNA. Biochemistry 2005, 44 (8) , 2926-2933. https://doi.org/10.1021/bi048393s
    14. Kai Tang,, Mark M. Green,, Kap Soo Cheon,, Jonathan V. Selinger, and, Bruce A. Garetz. Chiral Conflict. The Effect of Temperature on the Helical Sense of a Polymer Controlled by the Competition between Structurally Different Enantiomers:  From Dilute Solution to the Lyotropic Liquid Crystal State. Journal of the American Chemical Society 2003, 125 (24) , 7313-7323. https://doi.org/10.1021/ja030065c
    15. Cédric Gutfreund, Karin Betz, Mikhail Abramov, Frédérick Coosemans, Phillipp Holliger, Piet Herdewijn, Andreas Marx. Structural insights into a DNA polymerase reading the xeno nucleic acid HNA. Nucleic Acids Research 2025, 53 (1) https://doi.org/10.1093/nar/gkae1156
    16. Tianyuan Bian, Yufeng Pei, Shitao Gao, Songtao Zhou, Xinyu Sun, Mingdong Dong, Jie Song. Xeno Nucleic Acids as Functional Materials: From Biophysical Properties to Application. Advanced Healthcare Materials 2024, 13 (28) https://doi.org/10.1002/adhm.202401207
    17. Peter Schofield, Alexander I Taylor, Jérôme Rihon, Cristian D Peña Martinez, Sacha Zinn, Charles-Alexandre Mattelaer, Jennifer Jackson, Gurpreet Dhaliwal, Guy Schepers, Piet Herdewijn, Eveline Lescrinier, Daniel Christ, Philipp Holliger. Characterization of an HNA aptamer suggests a non-canonical G-quadruplex motif. Nucleic Acids Research 2023, 51 (15) , 7736-7748. https://doi.org/10.1093/nar/gkad592
    18. Ajaz Ahmed, Norein Sakander, Debaraj Mukherjee. Lewis Acid Catalysed Regioselective Access of Novel C‐2 Homo‐Pyranose Nucleosides From 2‐Acetoxy Methyl Glycals. ChemistrySelect 2023, 8 (10) https://doi.org/10.1002/slct.202300578
    19. Elisabetta Groaz, Piet Herdewijn. Hexitol Nucleic Acid (HNA): From Chemical Design to Functional Genetic Polymer. 2023, 1-34. https://doi.org/10.1007/978-981-16-1313-5_15-1
    20. Elisabetta Groaz, Piet Herdewijn. Hexitol Nucleic Acid (HNA): From Chemical Design to Functional Genetic Polymer. 2023, 401-434. https://doi.org/10.1007/978-981-19-9776-1_15
    21. Lauriane Rietmeyer, Inès Li De La Sierra-Gallay, Guy Schepers, Delphine Dorchêne, Laura Iannazzo, Delphine Patin, Thierry Touzé, Herman van Tilbeurgh, Piet Herdewijn, Mélanie Ethève-Quelquejeu, Matthieu Fonvielle. Amino-acyl tXNA as inhibitors or amino acid donors in peptide synthesis. Nucleic Acids Research 2022, 50 (20) , 11415-11425. https://doi.org/10.1093/nar/gkac1023
    22. Gan Zhu, Ping Song, Jing Wu, Minglan Luo, Zhipeng Chen, Tingjian Chen. Application of Nucleic Acid Frameworks in the Construction of Nanostructures and Cascade Biocatalysts: Recent Progress and Perspective. Frontiers in Bioengineering and Biotechnology 2022, 9 https://doi.org/10.3389/fbioe.2021.792489
    23. Rupesh Maurya, Nisarg Gohil, Gargi Bhattacharjee, Navya L. Lam, Khalid J. Alzahrani, Vijai Singh. Recent development and applications of xeno nucleic acids. 2022, 415-422. https://doi.org/10.1016/B978-0-12-824469-2.00019-1
    24. Esther Chingbiaknem, R. H. Duncan Lyngdoh. Isomorphic building blocks for information-bearing duplexes—part 2: pyrimidine base pairs with sugar phosphate backbones. Structural Chemistry 2021, 32 (5) , 1763-1774. https://doi.org/10.1007/s11224-021-01739-5
    25. Mallikarjunachari V.N. Uppuladinne, Dikshita Dowerah, Uddhavesh B. Sonavane, Suvendra Kumar Ray, Ramesh C. Deka, Rajendra R. Joshi. Structural insight into locked nucleic acid based novel antisense modifications: A DFT calculations at monomer and MD simulations at oligomer level. Journal of Molecular Graphics and Modelling 2021, 107 , 107945. https://doi.org/10.1016/j.jmgm.2021.107945
    26. Joanna Skiba, Aleksandra Kowalczyk, Damian Trzybiński, Krzysztof Woźniak, Valerije Vrček, Magdalena Gapińska, Konrad Kowalski. Stereo‐Defined Ferrocenyl Glycol Nucleic Acid (Fc‐GNA) Constituents: Synthesis, Electrochemistry, Mechanism of Formation, and Anticancer Activity Studies. European Journal of Inorganic Chemistry 2021, 2021 (22) , 2171-2181. https://doi.org/10.1002/ejic.202100193
    27. Luke K. McKenzie, Roberto El-Khoury, James D. Thorpe, Masad J. Damha, Marcel Hollenstein. Recent progress in non-native nucleic acid modifications. Chemical Society Reviews 2021, 50 (8) , 5126-5164. https://doi.org/10.1039/D0CS01430C
    28. Rodrigo Galindo-Murillo, Jack S. Cohen, Barak Akabayov. Molecular dynamics simulations of acyclic analogs of nucleic acids for antisense inhibition. Molecular Therapy - Nucleic Acids 2021, 23 , 527-535. https://doi.org/10.1016/j.omtn.2020.11.023
    29. John C. Chaput, Piet Herdewijn, Marcel Hollenstein. Orthogonal Genetic Systems. ChemBioChem 2020, 21 (10) , 1408-1411. https://doi.org/10.1002/cbic.201900725
    30. Joanna Skiba, Aleksandra Kowalczyk, Marta A. Fik, Magdalena Gapiñska, Damian Trzybiñski, Krzysztof Woźniak, Valerije Vrček, Rafai Czerwieniec, Konrad Kowalski. Luminescent pyrenyl-GNA nucleosides: synthesis, photophysics and confocal microscopy studies in cancer HeLa cells. Photochemical & Photobiological Sciences 2019, 18 (10) , 2449-2460. https://doi.org/10.1039/c9pp00271e
    31. Michiel Vanmeert, Jamoliddin Razzokov, Muhammad Usman Mirza, Stephen D Weeks, Guy Schepers, Annemie Bogaerts, Jef Rozenski, Mathy Froeyen, Piet Herdewijn, Vitor B Pinheiro, Eveline Lescrinier. Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins. Nucleic Acids Research 2019, 47 (13) , 7130-7142. https://doi.org/10.1093/nar/gkz551
    32. Mallikarjunachari V. N. Uppuladinne, Uddhavesh B. Sonavane, Ramesh Ch. Deka, Rajendra R. Joshi. Structural insight into antisense gapmer-RNA oligomer duplexes through molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics 2019, 37 (11) , 2823-2836. https://doi.org/10.1080/07391102.2018.1498390
    33. Andrei Istrate, Silke Johannsen, Alena Istrate, Roland K O Sigel, Christian J Leumann. NMR solution structure of tricyclo-DNA containing duplexes: insight into enhanced thermal stability and nuclease resistance. Nucleic Acids Research 2019, 47 (9) , 4872-4882. https://doi.org/10.1093/nar/gkz197
    34. Anuj Kumar, G. Naresh Patwari. Probing the role of dispersion energy on structural transformation of double-stranded xylo- and ribo-nucleic acids. Physical Chemistry Chemical Physics 2019, 21 (7) , 3842-3848. https://doi.org/10.1039/C8CP06305B
    35. Joanna Skiba, Qing Yuan, Alexander Hildebrandt, Heinrich Lang, Damian Trzybiński, Krzysztof Woźniak, Ria K. Balogh, Béla Gyurcsik, Valerije Vrček, Konrad Kowalski. Ferrocenyl GNA Nucleosides: A Bridge between Organic and Organometallic Xeno‐nucleic Acids. ChemPlusChem 2018, 83 (2) , 77-86. https://doi.org/10.1002/cplu.201700551
    36. Steven A. Benner, Nilesh B. Karalkar, Shuichi Hoshika, Roberto Laos, Ryan W. Shaw, Mariko Matsuura, Diego Fajardo, Patricia Moussatche. Alternative Watson–Crick Synthetic Genetic Systems. Cold Spring Harbor Perspectives in Biology 2016, 8 (11) , a023770. https://doi.org/10.1101/cshperspect.a023770
    37. Matheus Froeyen, Rania Abu el Asrar, Mikhail Abramov, Piet Herdewijn. Molecular simulation of cyclohexanyl nucleic acid (CNA) duplexes with CNA, DNA and RNA and CNA triloop and tetraloop hairpin structures. Bioorganic & Medicinal Chemistry 2016, 24 (8) , 1778-1785. https://doi.org/10.1016/j.bmc.2016.03.007
    38. Irina Anosova, Ewa A. Kowal, Matthew R. Dunn, John C. Chaput, Wade D. Van Horn, Martin Egli. The structural diversity of artificial genetic polymers. Nucleic Acids Research 2016, 44 (3) , 1007-1021. https://doi.org/10.1093/nar/gkv1472
    39. Vivek K Sharma, Jonathan K Watts. Oligonucleotide Therapeutics: Chemistry, Delivery and Clinical Progress. Future Medicinal Chemistry 2015, 7 (16) , 2221-2242. https://doi.org/10.4155/fmc.15.144
    40. Marcel Hollenstein, Christian J. Leumann. Synthesis and Biochemical Characterization of Tricyclothymidine Triphosphate (tc‐TTP). ChemBioChem 2014, 15 (13) , 1901-1904. https://doi.org/10.1002/cbic.201402116
    41. Mallikarjunachari V. N. Uppuladinne, Vinod Jani, Uddhavesh B. Sonavane, Rajendra R. Joshi. Quantum chemical studies of novel 2′-4′ conformationally restricted antisense monomers. International Journal of Quantum Chemistry 2013, 113 (23) , 2523-2533. https://doi.org/10.1002/qua.24492
    42. Samuel L.C. Moors, Piet Herdewijn, Johan Robben, Arnout Ceulemans. Cooperative dynamics of a DNA polymerase replicating complex. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2013, 1834 (12) , 2554-2563. https://doi.org/10.1016/j.bbapap.2013.09.003
    43. Jun Zhou, Michael Abramov, Fengwu Liu, Samir Amrane, Anne Bourdoncle, Piet Herdewijn, Jean‐Louis Mergny. Effects of Six‐Membered Carbohydrate Rings on Structure, Stability, and Kinetics of G‐Quadruplexes. Chemistry – A European Journal 2013, 19 (43) , 14719-14725. https://doi.org/10.1002/chem.201301743
    44. John C. Chaput, Hanyang Yu, Su Zhang. The Emerging World of Synthetic Genetics. Chemistry & Biology 2012, 19 (11) , 1360-1371. https://doi.org/10.1016/j.chembiol.2012.10.011
    45. Lei Pei, Shlomiya Bar‐Yam, Jennifer Byers‐Corbin, Rocco Casagrande, Florentine Eichler, Allen Lin, Martin Österreicher, Pernilla C. Regardh, Ralph D. Turlington, Kenneth A. Oye, Helge Torgersen, Zheng‐Jun Guan, Wei Wei, Markus Schmidt. Regulatory Frameworks for Synthetic Biology. 2012, 157-226. https://doi.org/10.1002/9783527659296.ch5
    46. Albert Eschenmoser. Ätiologie potentiell primordialer Biomolekül‐Strukturen: Vom Vitamin B 12 zu den Nukleinsäuren und der Frage nach der Chemie der Entstehung des Lebens – ein Rückblick. Angewandte Chemie 2011, 123 (52) , 12618-12681. https://doi.org/10.1002/ange.201103672
    47. Albert Eschenmoser. Etiology of Potentially Primordial Biomolecular Structures: From Vitamin B 12 to the Nucleic Acids and an Inquiry into the Chemistry of Life’s Origin: A Retrospective. Angewandte Chemie International Edition 2011, 50 (52) , 12412-12472. https://doi.org/10.1002/anie.201103672
    48. Markus Schmidt, Malcolm Dando, Anna Deplazes. Dealing with the Outer Reaches of Synthetic Biology Biosafety, Biosecurity, IPR, and Ethical Challenges of Chemical Synthetic Biology. 2011, 321-342. https://doi.org/10.1002/9780470977873.ch13
    49. M. Schmidt, L. Pei. Synthetic Toxicology: Where Engineering Meets Biology and Toxicology. Toxicological Sciences 2011, 120 (Supplement 1) , S204-S224. https://doi.org/10.1093/toxsci/kfq339
    50. Daniele D'Alonzo, Annalisa Guaragna, Giovanni Palumbo. Exploring the Role of Chirality in Nucleic Acid Recognition. Chemistry & Biodiversity 2011, 8 (3) , 373-413. https://doi.org/10.1002/cbdv.201000303
    51. Mohitosh Maiti, Koen Nauwelaerts, Eveline Lescrinier, Piet Herdewijn. Structural and Binding Study of Modified siRNAs with the Argonaute 2 PAZ Domain by NMR Spectroscopy. Chemistry – A European Journal 2011, 17 (5) , 1519-1528. https://doi.org/10.1002/chem.201000765
    52. Margriet Ovaere, Arthur Van Aerschot, Mikhail Abramov, Piet Herdewijn, Luc Van Meervelt. Crystallization and preliminary X-ray study of the D -altritol oligonucleotide GTGTACAC. Acta Crystallographica Section F Structural Biology and Crystallization Communications 2010, 66 (4) , 460-462. https://doi.org/10.1107/S1744309110007050
    53. Su Zhang, Christopher Switzer, John C. Chaput. The Resurgence of Acyclic Nucleic Acids. Chemistry & Biodiversity 2010, 7 (2) , 245-258. https://doi.org/10.1002/cbdv.200900281
    54. Piet Herdewijn. Nucleic Acids with a Six‐Membered ‘Carbohydrate’ Mimic in the Backbone. Chemistry & Biodiversity 2010, 7 (1) , 1-59. https://doi.org/10.1002/cbdv.200900185
    55. Mark K. Schlegel, Lars-Oliver Essen, Eric Meggers. Atomic resolution duplex structure of the simplified nucleic acidGNA. Chem. Commun. 2010, 46 (7) , 1094-1096. https://doi.org/10.1039/B916851F
    56. Daniele D'Alonzo, Arthur Van Aerschot, Annalisa Guaragna, Giovanni Palumbo, Guy Schepers, Stefania Capone, Jef Rozenski, Piet Herdewijn. Synthesis and Base Pairing Properties of 1′,5′‐Anhydro‐ L ‐Hexitol Nucleic Acids ( L ‐HNA). Chemistry – A European Journal 2009, 15 (39) , 10121-10131. https://doi.org/10.1002/chem.200901847
    57. Debasish Haldar, Carsten Schmuck. Metal-free double helices from abiotic backbones. Chem. Soc. Rev. 2009, 38 (2) , 363-371. https://doi.org/10.1039/B803553A
    58. David Loakes, Philipp Holliger. Polymerase engineering: towards the encoded synthesis of unnatural biopolymers. Chemical Communications 2009, 27 (31) , 4619. https://doi.org/10.1039/b903307f
    59. David Loakes, Philipp Holliger. Darwinian chemistry: towards the synthesis of a simple cell. Molecular BioSystems 2009, 5 (7) , 686. https://doi.org/10.1039/b904024b
    60. Martin Egli, Pradeep S. Pallan. Insights from Crystallographic Studies into the Structural and Pairing Properties of Nucleic Acid Analogs and Chemically Modified DNA and RNA Oligonucleotides. Annual Review of Biophysics and Biomolecular Structure 2007, 36 (1) , 281-305. https://doi.org/10.1146/annurev.biophys.36.040306.132556
    61. Raffaele Saladino, Claudia Crestini, Fabiana Ciciriello, Giovanna Costanzo, Ernesto Di Mauro. Formamide Chemistry and the Origin of Informational Polymers. Chemistry & Biodiversity 2007, 4 (4) , 694-720. https://doi.org/10.1002/cbdv.200790059
    62. Michael Fisher, Mikhail Abramov, Arthur Van Aerschot, Dong Xu, Rudolph L. Juliano, Piet Herdewijn. Inhibition of MDR1 expression with altritol-modified siRNAs. Nucleic Acids Research 2007, 35 (4) , 1064-1074. https://doi.org/10.1093/nar/gkl1126
    63. Koen Nauwelaerts, Eveline Lescrinier, Piet Herdewijn. Structure of the α‐Homo‐DNA:RNA Duplex and the Function of Twist and Slide To Catalogue Nucleic Acid Duplexes. Chemistry – A European Journal 2007, 13 (1) , 90-98. https://doi.org/10.1002/chem.200600363
    64. Pradeep S. Pallan, Paolo Lubini, Martin Egli. A left-handed supramolecular assembly around a right-handed screw axis in the crystal structure of homo-DNA. Chemical Communications 2007, 79 (14) , 1447. https://doi.org/10.1039/b614983a
    65. Ingo Tamm. Antisense therapy in malignant diseases: status quo and quo vadis?. Clinical Science 2006, 110 (4) , 427-442. https://doi.org/10.1042/CS20050284
    66. Steven A. Benner, A. Michael Sismour. Synthetic biology. Nature Reviews Genetics 2005, 6 (7) , 533-543. https://doi.org/10.1038/nrg1637
    67. Ulf Diederichsen, Daniel Weicherding, Nicola Diezemann. Side chain homologation of alanyl peptide nucleic acids: pairing selectivity and stacking. Organic & Biomolecular Chemistry 2005, 3 (6) , 1058. https://doi.org/10.1039/b411545g
    68. Jesper Wengel. Nucleic acid nanotechnology—towards Ångström-scale engineering. Org. Biomol. Chem. 2004, 2 (3) , 277-280. https://doi.org/10.1039/B313986G
    69. Jürgen Schmidt, Bernd Eschgfäller, Steven A. Benner. A Direct Synthesis of Nucleoside Analogs Homologated at the 3′‐ and 5′‐Positions. Helvetica Chimica Acta 2003, 86 (9) , 2937-2958. https://doi.org/10.1002/hlca.200390243
    70. Randy J. Read. Strengthening molecular replacement with maximum likelihood in Beast. Crystallography Reviews 2003, 9 (1) , 33-41. https://doi.org/10.1080/0889311031000068822
    71. Peter Sazani, Marla M Vacek, Ryszard Kole. Short-term and long-term modulation of gene expression by antisense therapeutics. Current Opinion in Biotechnology 2002, 13 (5) , 468-472. https://doi.org/10.1016/S0958-1669(02)00366-X

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2002, 124, 6, 928–933
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja016570w
    Published January 15, 2002
    Copyright © 2002 American Chemical Society

    Article Views

    1784

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.