ACS Publications. Most Trusted. Most Cited. Most Read
Substrate Recognition and Selection by the Initiation Module PheATE of Gramicidin S Synthetase
My Activity

Figure 1Loading Img
    Article

    Substrate Recognition and Selection by the Initiation Module PheATE of Gramicidin S Synthetase
    Click to copy article linkArticle link copied!

    View Author Information
    Contribution from the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115
    Other Access Options

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2001, 123, 45, 11208–11218
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja0166646
    Published October 11, 2001
    Copyright © 2001 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    The initiation module of non-ribosomal peptide synthetases (NRPS) selects and activates the first amino acid and serves as the aminoacyl donor in the first peptide bond-forming step of the NRPS assembly line. The gramicidin S synthetase initiation module (PheATE) is a three-domain subunit, recognizing l-phenylalanine (l-Phe) and activating it (by adenylation domain) as tightly bound l-phenylalanyl-adenosine-5‘-monophosphate diester (l-Phe-AMP), transferring it to the HS-phosphopantetheine arm of the holo-thiolation (holo-T) domain, and then epimerizing it (by epimerization domain) to the d-Phe-S-4‘-Ppant-acyl enzyme. In this study, we have assayed the selectivity of the PheATE adenylation domain with a number of proteinogenic amino acids and observed that three additional amino acids, l-Tyr, l-Trp, and l-Leu, were activated to the aminoacyl-AMPs and transferred to the HS-phosphopantetheine arm of the holo-T domain. Hydrolytic editing of noncognate aminoacyl-AMPs and/or aminoacyl-S-4‘-Ppant-acyl enzymes by the enzyme was not observed by three different assays for adenylation domain function. The microscopic reaction rates and thermodynamic equilibrium constants obtained from single-turnover studies of reactions of l-Phe, l-Trp, l-Tyr, and l-Leu with holoPheATE allowed us to construct free energy profiles for the reactions, revealing the kinetic and thermodynamic basis for substrate recognition and selection. In particular, the rates of epimerization of the l-aminoacyl-S-enzyme to the d-aminoacyl-S-enzyme intermediate showed reductions of 245-, 300-, and 540-fold for l-Trp, l-Tyr, and l-Leu respectively, suggesting that the epimerization domain is an important gatekeeper for generation of the d-Phe-S-enzyme that starts gramicidin S chain growth.

    Copyright © 2001 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Present address:  Institute of Biochemistry, Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str., 35032 Marburg, Germany.

    *

     To whom correspondence should be addressed. Phone:  (617) 432 1715. Fax:  (617) 432 0438. E-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 46 publications.

    1. Jiahui Yu, Juan Song, Changbiao Chi, Tan Liu, Tongtong Geng, Zonghui Cai, Weidong Dong, Cheng Shi, Xueyang Ma, Zhongyi Zhang, Xiaojie Ma, Baiying Xing, Hongwei Jin, Liangren Zhang, Suwei Dong, Donghui Yang, Ming Ma. Functional Characterization and Crystal Structure of the Bifunctional Thioesterase Catalyzing Epimerization and Cyclization in Skyllamycin Biosynthesis. ACS Catalysis 2021, 11 (18) , 11733-11741. https://doi.org/10.1021/acscatal.1c03064
    2. Mengyi Zhu, Lijuan Wang, Jing He. Chemical Diversification Based on Substrate Promiscuity of a Standalone Adenylation Domain in a Reconstituted NRPS System. ACS Chemical Biology 2019, 14 (2) , 256-265. https://doi.org/10.1021/acschembio.8b00938
    3. Wei-Hung Chen, Kunhua Li, Naga Sandhya Guntaka, and Steven D. Bruner . Interdomain and Intermodule Organization in Epimerization Domain Containing Nonribosomal Peptide Synthetases. ACS Chemical Biology 2016, 11 (8) , 2293-2303. https://doi.org/10.1021/acschembio.6b00332
    4. Xun Sun, Hao Li, Jonas Alfermann, Henning D. Mootz, and Haw Yang . Kinetics Profiling of Gramicidin S Synthetase A, a Member of Nonribosomal Peptide Synthetases. Biochemistry 2014, 53 (50) , 7983-7989. https://doi.org/10.1021/bi501156m
    5. Brian D. Ames and Christopher T. Walsh. Anthranilate-Activating Modules from Fungal Nonribosomal Peptide Assembly Lines. Biochemistry 2010, 49 (15) , 3351-3365. https://doi.org/10.1021/bi100198y
    6. Jin-Hee Lee, Bradley S. Evans, Gongyong Li, Neil L. Kelleher and Wilfred A. van der Donk . In Vitro Characterization of a Heterologously Expressed Nonribosomal Peptide Synthetase Involved in Phosphinothricin Tripeptide Biosynthesis. Biochemistry 2009, 48 (23) , 5054-5056. https://doi.org/10.1021/bi900164d
    7. Brian W. Stevens,, Ryan H. Lilien,, Ivelin Georgiev,, Bruce R. Donald, and, Amy C. Anderson. Redesigning the PheA Domain of Gramicidin Synthetase Leads to a New Understanding of the Enzyme's Mechanism and Selectivity. Biochemistry 2006, 45 (51) , 15495-15504. https://doi.org/10.1021/bi061788m
    8. Leslie M. Hicks, Michelle C. Moffitt, Laura L. Beer, Bradley S. Moore and Neil L. Kelleher . Structural Characterization of in Vitro and in Vivo Intermediates on the Loading Module of Microcystin Synthetase. ACS Chemical Biology 2006, 1 (2) , 93-102. https://doi.org/10.1021/cb500007v
    9. Fanqiang Meng, Zhaoxin Lu. Brevibacillus sp. and Brevibacillin: Biosynthesis, Classification, Bioactivity, and Potential Applications. 2024, 120-188. https://doi.org/10.2174/9789815256239124010007
    10. Anna‐Lena Feldberg, Florian Mayerthaler, Jennifer Rüschenbaum, Jonas Kröger, Henning D. Mootz. Carrier Protein Interaction with Competing Adenylation and Epimerization Domains in a Nonribosomal Peptide Synthetase Analyzed by FRET. Angewandte Chemie 2024, 136 (20) https://doi.org/10.1002/ange.202317753
    11. Anna‐Lena Feldberg, Florian Mayerthaler, Jennifer Rüschenbaum, Jonas Kröger, Henning D. Mootz. Carrier Protein Interaction with Competing Adenylation and Epimerization Domains in a Nonribosomal Peptide Synthetase Analyzed by FRET. Angewandte Chemie International Edition 2024, 63 (20) https://doi.org/10.1002/anie.202317753
    12. Xun Sun, Jonas Alfermann, Hao Li, Maxwell B. Watkins, Yi-Tsao Chen, Thomas E. Morrell, Florian Mayerthaler, Chia-Ying Wang, Tamiki Komatsuzaki, Jhih-Wei Chu, Nozomi Ando, Henning D. Mootz, Haw Yang. Subdomain dynamics enable chemical chain reactions in non-ribosomal peptide synthetases. Nature Chemistry 2024, 16 (2) , 259-268. https://doi.org/10.1038/s41557-023-01361-4
    13. Riccardo Iacovelli, Roel A L Bovenberg, Arnold J M Driessen. Nonribosomal peptide synthetases and their biotechnological potential in Penicillium rubens. Journal of Industrial Microbiology and Biotechnology 2021, 48 (7-8) https://doi.org/10.1093/jimb/kuab045
    14. Florian Mayerthaler, Anna-Lena Feldberg, Jonas Alfermann, Xun Sun, Wieland Steinchen, Haw Yang, Henning D. Mootz. Intermediary conformations linked to the directionality of the aminoacylation pathway of nonribosomal peptide synthetases. RSC Chemical Biology 2021, 2 (3) , 843-854. https://doi.org/10.1039/D0CB00220H
    15. Aleksa Stanišić, Hajo Kries. Adenylation Domains in Nonribosomal Peptide Engineering. ChemBioChem 2019, 20 (11) , 1347-1356. https://doi.org/10.1002/cbic.201800750
    16. Yasushi Ogasawara, Tohru Dairi. Peptide Epimerization Machineries Found in Microorganisms. Frontiers in Microbiology 2018, 9 https://doi.org/10.3389/fmicb.2018.00156
    17. Kristjan Bloudoff, T. Martin Schmeing. Structural and functional aspects of the nonribosomal peptide synthetase condensation domain superfamily: discovery, dissection and diversity. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2017, 1865 (11) , 1587-1604. https://doi.org/10.1016/j.bbapap.2017.05.010
    18. Matilda Šprung, Barbara Soldo, Stjepan Orhanović, Viljemka Bučević-Popović. Substrate-Induced Conformational Changes of the Tyrocidine Synthetase 1 Adenylation Domain Probed by Intrinsic Trp Fluorescence. The Protein Journal 2017, 36 (3) , 202-211. https://doi.org/10.1007/s10930-017-9714-1
    19. Marina Berditsch, Mareike Trapp, Sergii Afonin, Christian Weber, Julia Misiewicz, Joana Turkson, Anne S. Ulrich. Antimicrobial peptide gramicidin S is accumulated in granules of producer cells for storage of bacterial phosphagens. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep44324
    20. Christopher T. Walsh. Insights into the chemical logic and enzymatic machinery of NRPS assembly lines. Natural Product Reports 2016, 33 (2) , 127-135. https://doi.org/10.1039/C5NP00035A
    21. Jian Li, Jennifer Jaitzig, Lorenz Theuer, Ongey Elvis Legala, Roderich D. Süssmuth, Peter Neubauer. Type II thioesterase improves heterologous biosynthesis of valinomycin in Escherichia coli. Journal of Biotechnology 2015, 193 , 16-22. https://doi.org/10.1016/j.jbiotec.2014.10.037
    22. Silvia Hartwig, Christine Dovengerds, Christian Herrmann, Bernhard T. Hovemann. Drosophila Ebony: a novel type of nonribosomal peptide synthetase related enzyme with unusually fast peptide bond formation kinetics. The FEBS Journal 2014, 281 (22) , 5147-5158. https://doi.org/10.1111/febs.13054
    23. Tony Velkov, Alfons Lawen. Cyclosporines: Biosynthesis and Beyond. 2014, 65-88. https://doi.org/10.1007/978-1-4939-1191-2_4
    24. Viljemka Bučević‐Popović, Matilda Šprung, Barbara Soldo, Maja Pavela‐Vrančič. The A9 Core Sequence from NRPS Adenylation Domain Is Relevant for Thioester Formation. ChemBioChem 2012, 13 (13) , 1913-1920. https://doi.org/10.1002/cbic.201200309
    25. Georg Schoenafinger, Mohamed A. Marahiel. Nonribosomal Peptides. 2012, 109-125. https://doi.org/10.1002/9781118391815.ch4
    26. Gene H. Hur, Christopher R. Vickery, Michael D. Burkart. Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Natural Product Reports 2012, 29 (10) , 1074. https://doi.org/10.1039/c2np20025b
    27. Benoit Villiers, Florian Hollfelder. Directed Evolution of a Gatekeeper Domain in Nonribosomal Peptide Synthesis. Chemistry & Biology 2011, 18 (10) , 1290-1299. https://doi.org/10.1016/j.chembiol.2011.06.014
    28. Tony Velkov, James Horne, Martin J. Scanlon, Ben Capuano, Elizabeth Yuriev, Alfons Lawen. Characterization of the N-Methyltransferase Activities of the Multifunctional Polypeptide Cyclosporin Synthetase. Chemistry & Biology 2011, 18 (4) , 464-475. https://doi.org/10.1016/j.chembiol.2011.01.017
    29. Martijn J. Koetsier, Peter A. Jekel, Hein J. Wijma, Roel A.L. Bovenberg, Dick B. Janssen. Aminoacyl-coenzyme A synthesis catalyzed by a CoA ligase from Penicillium chrysogenum. FEBS Letters 2011, 585 (6) , 893-898. https://doi.org/10.1016/j.febslet.2011.02.018
    30. T. Verne Lee, Linda J. Johnson, Richard D. Johnson, Albert Koulman, Geoffrey A. Lane, J. Shaun Lott, Vickery L. Arcus. Structure of a Eukaryotic Nonribosomal Peptide Synthetase Adenylation Domain That Activates a Large Hydroxamate Amino Acid in Siderophore Biosynthesis. Journal of Biological Chemistry 2010, 285 (4) , 2415-2427. https://doi.org/10.1074/jbc.M109.071324
    31. Michelle L. Schaffer, Linda G. Otten. Substrate flexibility of the adenylation reaction in the Tyrocidine non-ribosomal peptide synthetase. Journal of Molecular Catalysis B: Enzymatic 2009, 59 (1-3) , 140-144. https://doi.org/10.1016/j.molcatb.2009.02.004
    32. Cheng-Yu Chen, Ivelin Georgiev, Amy C. Anderson, Bruce R. Donald. Computational structure-based redesign of enzyme activity. Proceedings of the National Academy of Sciences 2009, 106 (10) , 3764-3769. https://doi.org/10.1073/pnas.0900266106
    33. Benoit R. M. Villiers, Florian Hollfelder. Mapping the Limits of Substrate Specificity of the Adenylation Domain of TycA. ChemBioChem 2009, 10 (4) , 671-682. https://doi.org/10.1002/cbic.200800553
    34. Jordan L. Meier, Michael D. Burkart. The chemical biology of modular biosynthetic enzymes. Chemical Society Reviews 2009, 38 (7) , 2012. https://doi.org/10.1039/b805115c
    35. John A. Kalaitzis, Federico M. Lauro, Brett A. Neilan. Mining cyanobacterial genomes for genes encoding complex biosynthetic pathways. Natural Product Reports 2009, 26 (11) , 1447. https://doi.org/10.1039/b817074f
    36. Monica Brivio, Willem Verboom, David N. Reinhoudt. Simple Chip-based Interfaces for On-line Nanospray Mass Spectrometry. 2008, 201-236. https://doi.org/10.1039/BK9780854041299-00201
    37. Georg Schoenafinger, Mohamed A Marahiel. Nonribosomal Peptides: Biosynthesis. 2008, 1-9. https://doi.org/10.1002/9780470048672.wecb398
    38. Honggu Chun, Hee Chan Kim, Taek Dong Chung. Ultrafast active mixer using polyelectrolytic ion extractor. Lab on a Chip 2008, 8 (5) , 764. https://doi.org/10.1039/b715229a
    39. Linda G. Otten, Michelle L. Schaffer, Benoit R.M. Villiers, Torsten Stachelhaus, Florian Hollfelder. An optimized ATP/PP i ‐exchange assay in 96‐well format for screening of adenylation domains for applications in combinatorial biosynthesis. Biotechnology Journal 2007, 2 (2) , 232-240. https://doi.org/10.1002/biot.200600220
    40. Martin Welker, Hans Von Döhren. Cyanobacterial peptides — Nature's own combinatorial biosynthesis. FEMS Microbiology Reviews 2006, 30 (4) , 530-563. https://doi.org/10.1111/j.1574-6976.2006.00022.x
    41. Shwan Rachid, Daniel Krug, Brigitte Kunze, Irene Kochems, Maren Scharfe, T. Mark Zabriskie, Helmut Blöcker, Rolf Müller. Molecular and Biochemical Studies of Chondramide Formation—Highly Cytotoxic Natural Products from Chondromyces crocatus Cm c5. Chemistry & Biology 2006, 13 (6) , 667-681. https://doi.org/10.1016/j.chembiol.2006.06.002
    42. Leah M. Miller, Matthew T. Mazur, Shaun M. McLoughlin, Neil L. Kelleher. Parallel interrogation of covalent intermediates in the biosynthesis of gramicidin S using high‐resolution mass spectrometry. Protein Science 2005, 14 (10) , 2702-2712. https://doi.org/10.1110/ps.051553705
    43. Daniel B. Stein, Uwe Linne, Mohamed A. Marahiel. Utility of epimerization domains for the redesign of nonribosomal peptide synthetases. The FEBS Journal 2005, 272 (17) , 4506-4520. https://doi.org/10.1111/j.1742-4658.2005.04871.x
    44. Ellen Yeh, Rahul M. Kohli, Steven D. Bruner, Christopher T. Walsh. Type II Thioesterase Restores Activity of a NRPS Module Stalled with an Aminoacyl‐S‐enzyme that Cannot Be Elongated. ChemBioChem 2004, 5 (9) , 1290-1293. https://doi.org/10.1002/cbic.200400077
    45. Uwe Linne, Mohamed A Marahiel. Reactions Catalyzed by Mature and Recombinant Nonribosomal Peptide Synthetases. 2004, 293-315. https://doi.org/10.1016/S0076-6879(04)88024-8
    46. Christopher D. Reeves. The Enzymology of Combinatorial Biosynthesis. Critical Reviews in Biotechnology 2003, 23 (2) , 95-147. https://doi.org/10.1080/713609311

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2001, 123, 45, 11208–11218
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja0166646
    Published October 11, 2001
    Copyright © 2001 American Chemical Society

    Article Views

    850

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.