ACS Publications. Most Trusted. Most Cited. Most Read
Vapor−Liquid Interfacial Properties of Mutually Saturated Water/1-Butanol Solutions
My Activity

Figure 1Loading Img
    Article

    Vapor−Liquid Interfacial Properties of Mutually Saturated Water/1-Butanol Solutions
    Click to copy article linkArticle link copied!

    View Author Information
    Contribution from the Center for Molecular Modeling and Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, Pennsylvania 19104-6323, and Department of Chemistry and Department of Chemical Engineering and Materials Science, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455-0431
    Other Access Options

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2002, 124, 41, 12232–12237
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja027130n
    Published September 21, 2002
    Copyright © 2002 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Adsorption and ordering at the vapor−liquid interfaces of mutually saturated water/1-butanol solutions at a temperature of 298.15 K were investigated using configurational-bias Monte Carlo simulations in the Gibbs ensemble and compared to the surface properties of neat water and 1-butanol liquids. A dense 1-butanol monolayer is observed at the surface of the water-rich phase, which results in a substantial decrease of its surface tension. In contrast, there is no enrichment of water molecules at the surface of the butanol-rich phase, and its surface tension is not significantly changed. Analysis of the interfacial structures reveals that these systems exhibit orientational ordering and composition heterogeneity. Analysis of the hydrogen-bonding distributions suggests that the formation of the 1-butanol monolayer is driven by an excellent match between water and the primary alcohol; that is, additional hydrogen bonds are formed between the excess free hydrogens of surface water and the excess hydrogen-bond acceptor sites of 1-butanol.

    Copyright © 2002 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     To whom correspondence should be addressed. E-mail:  binchen@ cmm.chem.upenn.edu.

     University of Pennsylvania.

     University of Minnesota.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 71 publications.

    1. Yuwen Ji, Zhen Guo, Tingyuan Tan, Yujiao Wang, Lijuan Zhang, Jun Hu, Yi Zhang. Generating Bulk Nanobubbles in Alcohol Systems. ACS Omega 2021, 6 (4) , 2873-2881. https://doi.org/10.1021/acsomega.0c05222
    2. N. Nirmalkar, A. W. Pacek, M. Barigou. Bulk Nanobubbles from Acoustically Cavitated Aqueous Organic Solvent Mixtures. Langmuir 2019, 35 (6) , 2188-2195. https://doi.org/10.1021/acs.langmuir.8b03113
    3. Gerhard König, Manfred T. Reetz, Walter Thiel. 1-Butanol as a Solvent for Efficient Extraction of Polar Compounds from Aqueous Medium: Theoretical and Practical Aspects. The Journal of Physical Chemistry B 2018, 122 (27) , 6975-6988. https://doi.org/10.1021/acs.jpcb.8b02877
    4. Xiangrui Kong, Céline Toubin, Alena Habartova, Eva Pluharova, Martina Roeselova, Jan B. C. Pettersson. Rapid Water Transport through Organic Layers on Ice. The Journal of Physical Chemistry A 2018, 122 (21) , 4861-4868. https://doi.org/10.1021/acs.jpca.8b01951
    5. Peng Bai and J. Ilja Siepmann . Assessment and Optimization of Configurational-Bias Monte Carlo Particle Swap Strategies for Simulations of Water in the Gibbs Ensemble. Journal of Chemical Theory and Computation 2017, 13 (2) , 431-440. https://doi.org/10.1021/acs.jctc.6b00973
    6. Robert F. DeJaco, Peng Bai, Michael Tsapatsis, and J. Ilja Siepmann . Adsorptive Separation of 1-Butanol from Aqueous Solutions Using MFI- and FER-Type Zeolite Frameworks: A Monte Carlo Study. Langmuir 2016, 32 (8) , 2093-2101. https://doi.org/10.1021/acs.langmuir.5b04483
    7. Daniel K. Burden, Alexis M. Johnson, James M. Krier, and Gilbert M. Nathanson . The Entry of HCl through Soluble Surfactants on Sulfuric Acid: Effects of Chain Branching. The Journal of Physical Chemistry B 2014, 118 (28) , 7993-8001. https://doi.org/10.1021/jp501080g
    8. Pritha Ghosh, Ki Chul Kim, and Randall Q. Snurr . Modeling Water and Ammonia Adsorption in Hydrophobic Metal–Organic Frameworks: Single Components and Mixtures. The Journal of Physical Chemistry C 2014, 118 (2) , 1102-1110. https://doi.org/10.1021/jp410758t
    9. Kaustubh S. Rane, Sabharish Murali, and Jeffrey R. Errington . Monte Carlo Simulation Methods for Computing Liquid–Vapor Saturation Properties of Model Systems. Journal of Chemical Theory and Computation 2013, 9 (6) , 2552-2566. https://doi.org/10.1021/ct400074p
    10. Suguru Sakaguchi and Akihiro Morita . Molecular Dynamics Study of Water Transfer at Supercooled Sulfuric Acid Solution Surface Covered with Butanol. The Journal of Physical Chemistry A 2013, 117 (22) , 4602-4610. https://doi.org/10.1021/jp310305a
    11. Panos Papagiannakopoulos, Xiangrui Kong, Erik S. Thomson, Nikola Marković, and Jan B. C. Pettersson . Surface Transformations and Water Uptake on Liquid and Solid Butanol near the Melting Temperature. The Journal of Physical Chemistry C 2013, 117 (13) , 6678-6685. https://doi.org/10.1021/jp4003627
    12. Peng Bai, Michael Tsapatsis, and J. Ilja Siepmann . Multicomponent Adsorption of Alcohols onto Silicalite-1 from Aqueous Solution: Isotherms, Structural Analysis, and Assessment of Ideal Adsorbed Solution Theory. Langmuir 2012, 28 (44) , 15566-15576. https://doi.org/10.1021/la303247c
    13. Samantha A. Sanders, Maria Sammalkorpi, and Athanassios Z. Panagiotopoulos . Atomistic Simulations of Micellization of Sodium Hexyl, Heptyl, Octyl, and Nonyl Sulfates. The Journal of Physical Chemistry B 2012, 116 (8) , 2430-2437. https://doi.org/10.1021/jp209207p
    14. Zoran D. Zujovic and James B. Metson . Nanostructured Aniline Oxidation Products: Self-Assembled Films at the Air/Liquid Interface. Langmuir 2011, 27 (12) , 7776-7782. https://doi.org/10.1021/la102684d
    15. Katie A. Maerzke and J. Ilja Siepmann . Transferable Potentials for Phase Equilibria−Coarse-Grain Description for Linear Alkanes. The Journal of Physical Chemistry B 2011, 115 (13) , 3452-3465. https://doi.org/10.1021/jp1063935
    16. Collin D. Wick, Bin Chen and Kalliat T. Valsaraj. Computational Investigation of the Influence of Surfactants on the Air−Water Interfacial Behavior of Polycylic Aromatic Hydrocarbons. The Journal of Physical Chemistry C 2010, 114 (34) , 14520-14527. https://doi.org/10.1021/jp1039578
    17. Shawn M. Kathmann, Gregory K. Schenter, Bruce C. Garrett, Bin Chen and J. Ilja Siepmann. Thermodynamics and Kinetics of Nanoclusters Controlling Gas-to-Particle Nucleation. The Journal of Physical Chemistry C 2009, 113 (24) , 10354-10370. https://doi.org/10.1021/jp8092226
    18. Katie A. Maerzke, Nathan E. Schultz, Richard B. Ross and J. Ilja Siepmann. TraPPE-UA Force Field for Acrylates and Monte Carlo Simulations for Their Mixtures with Alkanes and Alcohols. The Journal of Physical Chemistry B 2009, 113 (18) , 6415-6425. https://doi.org/10.1021/jp810558v
    19. Kandice Harper, Babak Minofar, M. Roxana Sierra-Hernandez, Nadia N. Casillas-Ituarte, Martina Roeselova and Heather C. Allen. Surface Residence and Uptake of Methyl Chloride and Methyl Alcohol at the Air/Water Interface Studied by Vibrational Sum Frequency Spectroscopy and Molecular Dynamics. The Journal of Physical Chemistry A 2009, 113 (10) , 2015-2024. https://doi.org/10.1021/jp808630v
    20. Olivia J. Maselli, Jason R. Gascooke, Warren D. Lawrance and Mark A. Buntine . Benzene Internal Energy Distributions Following Spontaneous Evaporation from a Water−Ethanol Solution. The Journal of Physical Chemistry C 2009, 113 (2) , 637-643. https://doi.org/10.1021/jp804270v
    21. I.-F. William Kuo, Christopher J. Mundy, Matthew J. McGrath and J. Ilja Siepmann . Structure of the Methanol Liquid−Vapor Interface: A Comprehensive Particle-Based Simulation Study. The Journal of Physical Chemistry C 2008, 112 (39) , 15412-15418. https://doi.org/10.1021/jp8037126
    22. Feng Chen and Paul E. Smith . Theory and Computer Simulation of Solute Effects on the Surface Tension of Liquids. The Journal of Physical Chemistry B 2008, 112 (30) , 8975-8984. https://doi.org/10.1021/jp711062a
    23. Ricky B. Nellas,, Samuel J. Keasler, and, Bin Chen. Molecular Content and Structure of Aqueous Organic Nanodroplets from the Vapor−Liquid Nucleation Study of the Water/n-Nonane/1-Alcohol Series. The Journal of Physical Chemistry A 2008, 112 (13) , 2930-2939. https://doi.org/10.1021/jp711452r
    24. Becky L. Eggimann and, J. Ilja Siepmann. Size Effects on the Solvation of Anions at the Aqueous Liquid−Vapor Interface. The Journal of Physical Chemistry C 2008, 112 (1) , 210-218. https://doi.org/10.1021/jp076054d
    25. Maria J. Krisch,, Raffaella D'Auria,, Matthew A. Brown,, Douglas J. Tobias, and, John C. Hemminger, , Markus Ammann, , David E. Starr and, Hendrik Bluhm. The Effect of an Organic Surfactant on the Liquid−Vapor Interface of an Electrolyte Solution. The Journal of Physical Chemistry C 2007, 111 (36) , 13497-13509. https://doi.org/10.1021/jp073078b
    26. Wei Shi and, Edward J. Maginn. Continuous Fractional Component Monte Carlo:  An Adaptive Biasing Method for Open System Atomistic Simulations. Journal of Chemical Theory and Computation 2007, 3 (4) , 1451-1463. https://doi.org/10.1021/ct7000039
    27. Seong-Chan Park,, Daniel K. Burden, and, Gilbert M. Nathanson. The Inhibition of N2O5 Hydrolysis in Sulfuric Acid by 1-Butanol and 1-Hexanol Surfactant Coatings. The Journal of Physical Chemistry A 2007, 111 (15) , 2921-2929. https://doi.org/10.1021/jp068228h
    28. Samuel V. Glass,, Seong-Chan Park, and, Gilbert M. Nathanson. Evaporation of Water and Uptake of HCl and HBr through Hexanol Films at the Surface of Supercooled Sulfuric Acid. The Journal of Physical Chemistry A 2006, 110 (24) , 7593-7601. https://doi.org/10.1021/jp057260t
    29. Ilan Benjamin. Static and Dynamic Electronic Spectroscopy at Liquid Interfaces. Chemical Reviews 2006, 106 (4) , 1212-1233. https://doi.org/10.1021/cr040362f
    30. Jiří Janeček,, Hartmut Krienke, and, Georg Schmeer. Interfacial Properties of Cyclic Hydrocarbons:  A Monte Carlo Study. The Journal of Physical Chemistry B 2006, 110 (13) , 6916-6923. https://doi.org/10.1021/jp055558d
    31. Bin Chen and, J. Ilja Siepmann. Microscopic Structure and Solvation in Dry and Wet Octanol. The Journal of Physical Chemistry B 2006, 110 (8) , 3555-3563. https://doi.org/10.1021/jp0548164
    32. I-F. Will Kuo,, Christopher J. Mundy,, Becky L. Eggimann,, Matthew J. McGrath,, J. Ilja Siepmann,, Bin Chen,, John Vieceli, and, Douglas J. Tobias. Structure and Dynamics of the Aqueous Liquid−Vapor Interface:  A Comprehensive Particle-Based Simulation Study. The Journal of Physical Chemistry B 2006, 110 (8) , 3738-3746. https://doi.org/10.1021/jp056330t
    33. C. Heath Turner. Monte Carlo Simulation of Equilibrium Reactions at Vapor−Liquid Interfaces. The Journal of Physical Chemistry B 2005, 109 (49) , 23588-23595. https://doi.org/10.1021/jp0528156
    34. Masayoshi Takahashi. ζ Potential of Microbubbles in Aqueous Solutions:  Electrical Properties of the Gas−Water Interface. The Journal of Physical Chemistry B 2005, 109 (46) , 21858-21864. https://doi.org/10.1021/jp0445270
    35. Jennifer R. Lawrence,, Samuel V. Glass, and, Gilbert M. Nathanson. Evaporation of Water through Butanol Films at the Surface of Supercooled Sulfuric Acid. The Journal of Physical Chemistry A 2005, 109 (33) , 7449-7457. https://doi.org/10.1021/jp050042f
    36. Bin Chen,, J. Ilja Siepmann, and, Michael L. Klein. Simulating Vapor−Liquid Nucleation of Water:  A Combined Histogram-Reweighting and Aggregation-Volume-Bias Monte Carlo Investigation for Fixed-Charge and Polarizable Models. The Journal of Physical Chemistry A 2005, 109 (6) , 1137-1145. https://doi.org/10.1021/jp0463722
    37. Subhadip Chakraborty, Partha Pyne, Rajib Kumar Mitra, Debasish Das Mahanta. A subtle interplay between hydrophilic and hydrophobic hydration governs butanol (de)mixing in water. Chemical Physics Letters 2022, 807 , 140080. https://doi.org/10.1016/j.cplett.2022.140080
    38. Iyman Abrar, Ashok N. Bhaskarwar. Effect of alcohols on water solubilization in surfactant-free diesel microemulsions. Energy Reports 2022, 8 , 504-512. https://doi.org/10.1016/j.egyr.2022.10.157
    39. Xinyue JIANG, Duanji WAN, Fuping ZHENG, Yuqun XIE. Ionization Equilibrium of Water Molecule Dominated Ethanol-water Binary Solution Self-assemble. Electrochemistry 2022, 90 (6) , 067007-067007. https://doi.org/10.5796/electrochemistry.22-00054
    40. Lucía Pérez Ramírez, Anthony Boucly, Florent Saudrais, Fabrice Bournel, Jean-Jacques Gallet, Emmanuel Maisonhaute, Aleksandar R. Milosavljević, Christophe Nicolas, François Rochet. The Fermi level as an energy reference in liquid jet X-ray photoelectron spectroscopy studies of aqueous solutions. Physical Chemistry Chemical Physics 2021, 23 (30) , 16224-16233. https://doi.org/10.1039/D1CP01511G
    41. Michael J. Servis, Ernesto Martinez-Baez, Aurora E. Clark. Hierarchical phenomena in multicomponent liquids: simulation methods, analysis, chemistry. Physical Chemistry Chemical Physics 2020, 22 (18) , 9850-9874. https://doi.org/10.1039/D0CP00164C
    42. Mohammad Soroush Barhaghi, Korosh Torabi, Younes Nejahi, Loren Schwiebert, Jeffrey J. Potoff. Molecular exchange Monte Carlo: A generalized method for identity exchanges in grand canonical Monte Carlo simulations. The Journal of Chemical Physics 2018, 149 (7) https://doi.org/10.1063/1.5025184
    43. M. Vega, M.S. Perez, P. Granell, F. Golmar, C. Wloka, G. Maglia, M.J. Dieguez, E.M. Del Valle, C. Lasorsa, B. Lerner, . Effect of butanol and salt concentration on solid-state nanopores resistance. Cogent Chemistry 2016, 2 (1) , 1225345. https://doi.org/10.1080/23312009.2016.1225345
    44. David B. Harwood, Cornelis J. Peters, J. Ilja Siepmann. A Monte Carlo simulation study of the liquid–liquid equilibria for binary dodecane/ethanol and ternary dodecane/ethanol/water mixtures. Fluid Phase Equilibria 2016, 407 , 269-279. https://doi.org/10.1016/j.fluid.2015.07.011
    45. Benjamin J. Sikora, Yamil J. Colón, Randall Q. Snurr. Continuous fractional component Monte Carlo simulations of high-density adsorption in metal–organic frameworks. Molecular Simulation 2015, 41 (16-17) , 1339-1347. https://doi.org/10.1080/08927022.2015.1043629
    46. Ahmadreza F. Ghobadi, J. Richard Elliott. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. III. Molecules with partial charges at bulk phases, confined geometries and interfaces. The Journal of Chemical Physics 2014, 141 (9) https://doi.org/10.1063/1.4893966
    47. Jian Wang, Anthony S. Wexler. Adsorption of organic molecules may explain growth of newly nucleated clusters and new particle formation. Geophysical Research Letters 2013, 40 (11) , 2834-2838. https://doi.org/10.1002/grl.50455
    48. Emmy C. Wijaya, Tamar L. Greaves, Calum J. Drummond. Linking molecular/ion structure, solvent mesostructure, the solvophobic effect and the ability of amphiphiles to self-assemble in non-aqueous liquids. Faraday Discussions 2013, 167 , 191. https://doi.org/10.1039/c3fd00077j
    49. E. S. Thomson, X. Kong, N. Marković, P. Papagiannakopoulos, J. B. C. Pettersson. Collision dynamics and uptake of water on alcohol-covered ice. Atmospheric Chemistry and Physics 2013, 13 (4) , 2223-2233. https://doi.org/10.5194/acp-13-2223-2013
    50. Yen Wei, Meixiang Wan, Ten‐Chin Wen, Tang‐Kuei Chang, Gaoquan Shi, Hongxu Qi, Lei Tao, Ester Segal, Moshe Narkis. Nanostructured Conducting Polymers for Sensor Development. 2012, 489-521. https://doi.org/10.1002/9783527648689.ch17
    51. K. Hall, M. Ashtari, N. M. Cann. On simulations of complex interfaces: Molecular dynamics simulations of stationary phases. The Journal of Chemical Physics 2012, 136 (11) https://doi.org/10.1063/1.3693516
    52. Abdolhamid Firooz, P. Chen. Surface tension and adsorption kinetics of amphiphiles in aqueous solutions: The role of carbon chain length and temperature. Journal of Colloid and Interface Science 2012, 370 (1) , 183-191. https://doi.org/10.1016/j.jcis.2011.12.062
    53. Olivia J. Maselli, Jason R. Gascooke, Makoto Shoji, Mark A. Buntine. Translational and rotational energy content of benzene molecules IR-desorbed from an in vacuo liquid surface. Physical Chemistry Chemical Physics 2012, 14 (25) , 9185. https://doi.org/10.1039/c2cp40180k
    54. Peng Bai, J. Ilja Siepmann. Gibbs ensemble Monte Carlo simulations for the liquid–liquid phase equilibria of dipropylene glycol dimethyl ether and water: A preliminary report. Fluid Phase Equilibria 2011, 310 (1-2) , 11-18. https://doi.org/10.1016/j.fluid.2011.06.003
    55. Olivia J. Maselli, Jason R. Gascooke, Warren D. Lawrance, Mark A. Buntine. The dynamics of evaporation from a liquid surface. Chemical Physics Letters 2011, 513 (1-3) , 1-11. https://doi.org/10.1016/j.cplett.2011.06.010
    56. Ricky B. Nellas, Samuel J. Keasler, J. Ilja Siepmann, Bin Chen. Exploring the discrepancies between experiment, theory, and simulation for the homogeneous gas-to-liquid nucleation of 1-pentanol. The Journal of Chemical Physics 2010, 132 (16) https://doi.org/10.1063/1.3368116
    57. Mária Darvas, Lívia B. Pártay, Pál Jedlovszky, George Horvai. Computer simulation and ITIM analysis of the surface of water–methanol mixtures containing traces of water. Journal of Molecular Liquids 2010, 153 (1) , 88-93. https://doi.org/10.1016/j.molliq.2009.06.004
    58. Lin Xia, Zhixiang Wei, Meixiang Wan. Conducting polymer nanostructures and their application in biosensors. Journal of Colloid and Interface Science 2010, 341 (1) , 1-11. https://doi.org/10.1016/j.jcis.2009.09.029
    59. Meixiang Wan. Some Issues Related to Polyaniline Micro‐/Nanostructures. Macromolecular Rapid Communications 2009, 30 (12) , 963-975. https://doi.org/10.1002/marc.200800817
    60. Ying Zhu, Haiyong He, Meixiang Wan, Lei Jiang. Rose‐Like Microstructures of Polyaniline by Using a Simplified Template‐Free Method under a High Relative Humidity. Macromolecular Rapid Communications 2008, 29 (21) , 1705-1710. https://doi.org/10.1002/marc.200800294
    61. Jorge López-Lemus, Gustavo A. Chapela, José Alejandre. Effect of flexibility on surface tension and coexisting densities of water. The Journal of Chemical Physics 2008, 128 (17) https://doi.org/10.1063/1.2907845
    62. Ricky B. Nellas, Bin Chen. Towards understanding the nucleation mechanism for multi-component systems: an atomistic simulation of the ternary nucleation of water/n-nonane/1-butanol. Phys. Chem. Chem. Phys. 2008, 10 (4) , 506-514. https://doi.org/10.1039/B713189E
    63. Neeraj Rai, Jake L. Rafferty, Amitesh Maiti, J. Ilja Siepmann. Prediction of the bubble point pressure for the binary mixture of ethanol and 1,1,1,2,3,3,3-heptafluoropropane from Gibbs ensemble Monte Carlo simulations using the TraPPE force field. Fluid Phase Equilibria 2007, 260 (2) , 199-211. https://doi.org/10.1016/j.fluid.2007.06.034
    64. Philippe Ungerer, Carlos Nieto-Draghi, Bernard Rousseau, Göktug Ahunbay, Véronique Lachet. Molecular simulation of the thermophysical properties of fluids: From understanding toward quantitative predictions. Journal of Molecular Liquids 2007, 134 (1-3) , 71-89. https://doi.org/10.1016/j.molliq.2006.12.019
    65. P. Ungerer, C. Nieto-Draghi, V. Lachet, A. Wender, A. di Lella, A. Boutin, B. Rousseau, A. H. Fuchs. Molecular simulation applied to fluid properties in the oil and gas industry. Molecular Simulation 2007, 33 (4-5) , 287-304. https://doi.org/10.1080/08927020701245509
    66. Gerald Wilemski. Homogeneous Binary Nucleation Theory and the Structure of Binary Nanodroplets. 2007, 267-277. https://doi.org/10.1007/978-1-4020-6475-3_55
    67. Ricky B. Nellas, Bin Chen, J. Ilja Siepmann. Insights from the Atomistic Simulations of a Ternary Nucleating System. 2007, 306-309. https://doi.org/10.1007/978-1-4020-6475-3_62
    68. Ling Zhang, Jake L. Rafferty, J.Ilja Siepmann, Bin Chen, Mark R. Schure. Chain conformation and solvent partitioning in reversed-phase liquid chromatography: Monte Carlo simulations for various water/methanol concentrations. Journal of Chromatography A 2006, 1126 (1-2) , 219-231. https://doi.org/10.1016/j.chroma.2006.06.003
    69. J. Wei, H. Zhu, Y. Li, B. Chen, Y. Jia, K. Wang, Z. Wang, W. Liu, J. Luo, M. Zheng, D. Wu, Y. Zhu, B. Wei. Ultrathin Single–Layered Membranes from Double–Walled Carbon Nanotubes. Advanced Materials 2006, 18 (13) , 1695-1700. https://doi.org/10.1002/adma.200501841
    70. Barbara E. Wyslouzil, Gerald Wilemski, Reinhard Strey, Christopher H. Heath, Uta Dieregsweiler. Experimental evidence for internal structure in aqueous–organic nanodroplets. Phys. Chem. Chem. Phys. 2006, 8 (1) , 54-57. https://doi.org/10.1039/B514824C
    71. Jin-Song Li, Gerald Wilemski. A structural phase diagram for model aqueous organic nanodroplets. Physical Chemistry Chemical Physics 2006, 8 (11) , 1266. https://doi.org/10.1039/b518305g

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2002, 124, 41, 12232–12237
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja027130n
    Published September 21, 2002
    Copyright © 2002 American Chemical Society

    Article Views

    1619

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.