Substrate-Based Design of the First Class of Angiotensin-Converting Enzyme-Related Carboxypeptidase (ACE2) Inhibitors
- Natalie A. Dales
- ,
- Alexandra E. Gould
- ,
- James A. Brown
- ,
- Emily F. Calderwood
- ,
- Bing Guan
- ,
- Charles A. Minor
- ,
- James M. Gavin
- ,
- Paul Hales
- ,
- Virendar K. Kaushik
- ,
- Michael Stewart
- ,
- Peter J. Tummino
- ,
- Chad S. Vickers
- ,
- Timothy D. Ocain
- , and
- Michael A. Patane
Abstract

Angiotensin-converting enzyme-related carboxypeptidase (ACE2) is a recently identified zinc metalloprotease with carboxypeptidase activity that was identified using our genomics platform. We implemented a rational design approach to identify potent and selective ACE2 inhibitors. To this end, picomolar inhibitors of ACE2 were designed and synthesized.
†
Medicinal Chemistry.
‡
Lead Discovery.
§
Biochemistry/Enzymology.
*
To whom correspondence should be addressed. E-mail: [email protected].
Cited By
This article is cited by 140 publications.
- Maximilian A. J. Harman, Steven J. Stanway, Heather Scott, Yuliya Demydchuk, Gustavo Arruda Bezerra, Simone Pellegrino, Liuhong Chen, Paul Brear, Aleksei Lulla, Marko Hyvönen, Paul J. Beswick, Michael J. Skynner. Structure-Guided Chemical Optimization of Bicyclic Peptide (Bicycle) Inhibitors of Angiotensin-Converting Enzyme 2. Journal of Medicinal Chemistry 2023, 66 (14) , 9881-9893. https://doi.org/10.1021/acs.jmedchem.3c00710
- Gaurav Sharma, Lin Frank Song, Kenneth M. Merz. Effect of an Inhibitor on the ACE2-Receptor-Binding Domain of SARS-CoV-2. Journal of Chemical Information and Modeling 2022, 62 (24) , 6574-6585. https://doi.org/10.1021/acs.jcim.1c01283
- Apurba Bhattarai, Shristi Pawnikar, Yinglong Miao. Mechanism of Ligand Recognition by Human ACE2 Receptor. The Journal of Physical Chemistry Letters 2021, 12 (20) , 4814-4822. https://doi.org/10.1021/acs.jpclett.1c01064
- Billy J. Williams-Noonan, Nevena Todorova, Ketav Kulkarni, Marie-Isabel Aguilar, Irene Yarovsky. An Active Site Inhibitor Induces Conformational Penalties for ACE2 Recognition by the Spike Protein of SARS-CoV-2. The Journal of Physical Chemistry B 2021, 125 (10) , 2533-2550. https://doi.org/10.1021/acs.jpcb.0c11321
- Zon W. Lai, Iresha Hanchapola, David L. Steer, and A. Ian Smith . Angiotensin-Converting Enzyme 2 Ectodomain Shedding Cleavage-Site Identification: Determinants and Constraints. Biochemistry 2011, 50 (23) , 5182-5194. https://doi.org/10.1021/bi200525y
- Andreas Mores, Magdalini Matziari, Fabrice Beau, Philippe Cuniasse, Athanasios Yiotakis and Vincent Dive . Development of Potent and Selective Phosphinic Peptide Inhibitors of Angiotensin-Converting Enzyme 2. Journal of Medicinal Chemistry 2008, 51 (7) , 2216-2226. https://doi.org/10.1021/jm701275z
- Francesca Arrighi, Emanuela Berrino, Daniela Secci. Angiotensin-converting enzyme. 2024, 239-253. https://doi.org/10.1016/B978-0-12-823974-2.00017-6
- Amie Jobe, Priya Antony, Suhib Altabbal, Yusra Al Dhaheri, Ranjit Vijayan. Interaction of hemorphins with ACE homologs. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-30771-0
- Hristo L. Svilenov, Florent Delhommel, Till Siebenmorgen, Florian Rührnößl, Grzegorz M. Popowicz, Alwin Reiter, Michael Sattler, Carsten Brockmeyer, Johannes Buchner. Extrinsic stabilization of antiviral ACE2-Fc fusion proteins targeting SARS-CoV-2. Communications Biology 2023, 6 (1) https://doi.org/10.1038/s42003-023-04762-w
- Dhiman Chandra Paul, Minakshi Bhattacharjee, Dhani Ram Mahato, Manash Pratim Sarma. Natural furin inhibitor(s) as potent therapeutic molecule to mitigate SARS-CoV-2 infection. Journal of Biomolecular Structure and Dynamics 2023, 41 (15) , 7365-7371. https://doi.org/10.1080/07391102.2022.2121760
- Yizhou Liu, Benjamin Jian Wen Liang, Naphak Modhiran, G. Paul Savage, Daniel Watterson, Craig M. Williams. Cubane and Cyclooctatetraene Pirfenidones – Synthesis and Biological Evaluation. Asian Journal of Organic Chemistry 2023, 12 (8) https://doi.org/10.1002/ajoc.202300238
- Xuhua Xia. Identification of host receptors for viral entry and beyond: a perspective from the spike of SARS-CoV-2. Frontiers in Microbiology 2023, 14 https://doi.org/10.3389/fmicb.2023.1188249
- Hongyin Chen, Jiangyun Peng, Tengyao Wang, Jielu Wen, Sifan Chen, Yu Huang, Yang Zhang. Counter-regulatory renin-angiotensin system in hypertension: Review and update in the era of COVID-19 pandemic. Biochemical Pharmacology 2023, 208 , 115370. https://doi.org/10.1016/j.bcp.2022.115370
- Xiao Li, Wei Yin, Ao Li, Danni Li, Xiaolong Gao, Ruizhi Wang, Bin Cui, Shuang Qiu, Rou Li, Lina Jia, Changjing Zuo, Lan Zhang, Ming Li. ACE2 PET to reveal the dynamic patterns of ACE2 recovery in an infection model with pseudocorona virus. Journal of Medical Virology 2023, 95 (2) https://doi.org/10.1002/jmv.28470
- Nicola E. Clarke, Anthony J. Turner. Blood Pressure, Proteases and Inhibitors. 2023, 970-976. https://doi.org/10.1016/B978-0-12-821618-7.00037-7
- Linda Jansen-Olliges, Shambhabi Chatterjee, Lili Jia, Frank Stahl, Christian Bär, Marc Stadler, Frank Surup, Carsten Zeilinger. Multiformin-Type Azaphilones Prevent SARS-CoV-2 Binding to ACE2 Receptor. Cells 2023, 12 (1) , 83. https://doi.org/10.3390/cells12010083
- Genwei Zhang, Joseph S. Brown, Anthony J. Quartararo, Chengxi Li, Xuyu Tan, Stephanie Hanna, Sarah Antilla, Amanda E. Cowfer, Andrei Loas, Bradley L. Pentelute. Rapid de novo discovery of peptidomimetic affinity reagents for human angiotensin converting enzyme 2. Communications Chemistry 2022, 5 (1) https://doi.org/10.1038/s42004-022-00625-3
- Farzaneh Ketabchi, Sina Jamzad, . Therapeutic Approaches in COVID-19 Patients: The Role of the Renin-Angiotensin System. Canadian Respiratory Journal 2022, 2022 , 1-10. https://doi.org/10.1155/2022/8698825
- Alexey V. Rayevsky, Andrii S. Poturai, Iryna O. Kravets, Alexander E. Pashenko, Tatiana A. Borisova, Ganna M. Tolstanova, Dmitriy M. Volochnyuk, Petro O. Borysko, Olga B. Vadzyuk, Diana O. Alieksieieva, Yuliana Zabolotna, Olga Klimchuk, Dragos Horvath, Gilles Marcou, Sergey V. Ryabukhin, Alexandre Varnek. In Vitro Evaluation of In Silico Screening Approaches in Search for Selective ACE2 Binding Chemical Probes. Molecules 2022, 27 (17) , 5400. https://doi.org/10.3390/molecules27175400
- Mizuki Yamamoto, Jin Gohda, Ayako Kobayashi, Keiko Tomita, Youko Hirayama, Naohiko Koshikawa, Motoharu Seiki, Kentaro Semba, Tetsu Akiyama, Yasushi Kawaguchi, Jun-ichiro Inoue, . Metalloproteinase-Dependent and TMPRSS2-Independent Cell Surface Entry Pathway of SARS-CoV-2 Requires the Furin Cleavage Site and the S2 Domain of Spike Protein. mBio 2022, 13 (4) https://doi.org/10.1128/mbio.00519-22
- Natalia Pozdnyakova, Natalia Krisanova, Artem Pastukhov, Alla Tarasenko, Marina. Dudarenko, Anton Chernykh, Alexander Pashenko, Sergey Ryabukhin, Ganna Tolstanova, Dmitriy Volochnyuk, Tatiana Borisova. Neuromodulation by selective angiotensin-converting enzyme 2 inhibitors. Neuroscience 2022, 498 , 155-173. https://doi.org/10.1016/j.neuroscience.2022.07.003
- Jing Lu, Ying Zhang, Dan Qi, Chunyan Yan, Benhao Wu, Jason H. Huang, Jianwen Yao, Erxi Wu, Guoying Zhang. An L-theanine derivative targets against SARS-CoV-2 and its Delta and Omicron variants. Heliyon 2022, 8 (6) , e09660. https://doi.org/10.1016/j.heliyon.2022.e09660
- Shahzaib Ahamad, Hashim Ali, Ilaria Secco, Mauro Giacca, Dinesh Gupta. Anti-Fungal Drug Anidulafungin Inhibits SARS-CoV-2 Spike-Induced Syncytia Formation by Targeting ACE2-Spike Protein Interaction. Frontiers in Genetics 2022, 13 https://doi.org/10.3389/fgene.2022.866474
- Vanna Sanna, Sandro Satta, Tzung Hsiai, Mario Sechi. Development of targeted nanoparticles loaded with antiviral drugs for SARS-CoV-2 inhibition. European Journal of Medicinal Chemistry 2022, 231 , 114121. https://doi.org/10.1016/j.ejmech.2022.114121
- Robert C. Speth. Renin-Angiotensin-Aldosterone System. 2022, 528-569. https://doi.org/10.1016/B978-0-12-820472-6.00160-2
- Iryna O. Kravets, Dmytro V. Dudenko, Alexander E. Pashenko, Tatiana A. Borisova, Ganna M. Tolstanova, Sergey V. Ryabukhin, Dmitriy M. Volochnyuk. Virtual Screening in Search for a Chemical Probe for Angiotensin-Converting Enzyme 2 (ACE2). Molecules 2021, 26 (24) , 7584. https://doi.org/10.3390/molecules26247584
- Matthew F.L. Parker, Joseph Blecha, Oren Rosenberg, Michael Ohliger, Robert R. Flavell, David M. Wilson. Cyclic 68 Ga-Labeled Peptides for Specific Detection of Human Angiotensin-Converting Enzyme 2. Journal of Nuclear Medicine 2021, 62 (11) , 1631-1637. https://doi.org/10.2967/jnumed.120.261768
- Lukas Paulsson-Habegger, Andrew K. Snabaitis, Stephen P. Wren. Enzyme inhibition as a potential therapeutic strategy to treat COVID-19 infection. Bioorganic & Medicinal Chemistry 2021, 48 , 116389. https://doi.org/10.1016/j.bmc.2021.116389
- Vahid Zarezade, Hamzeh Rezaei, Ghodratollah Shakerinezhad, Arman Safavi, Zahra Nazeri, Ali Veisi, Omid Azadbakht, Mahdi Hatami, Mohamad Sabaghan, Zeinab Shajirat. The identification of novel inhibitors of human angiotensin-converting enzyme 2 and main protease of Sars-Cov-2: A combination of in silico methods for treatment of COVID-19. Journal of Molecular Structure 2021, 1237 , 130409. https://doi.org/10.1016/j.molstruc.2021.130409
- Mariele Montanari, Barbara Canonico, Evelyn Nordi, Daniela Vandini, Simone Barocci, Serena Benedetti, Eugenio Carlotti, Loris Zamai. Which ones, when and why should renin-angiotensin system inhibitors work against COVID-19?. Advances in Biological Regulation 2021, 81 , 100820. https://doi.org/10.1016/j.jbior.2021.100820
- Babak Nami, Avrin Ghanaeian, Kasra Ghanaeian, Rozhin Houri, Negin Nami, Armin Ghasemi-Dizgah, Oana Caluseriu. The interaction of the severe acute respiratory syndrome coronavirus 2 spike protein with drug-inhibited angiotensin converting enzyme 2 studied by molecular dynamics simulation. Journal of Hypertension 2021, 39 (8) , 1705-1716. https://doi.org/10.1097/HJH.0000000000002829
- Branka Miličić Stanić, Sydney Maddox, Aline M. A. de Souza, Xie Wu, Danial Mehranfard, Hong Ji, Robert C. Speth, Kathryn Sandberg. Male bias in ACE2 basic science research: missed opportunity for discovery in the time of COVID-19. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2021, 320 (6) , R925-R937. https://doi.org/10.1152/ajpregu.00356.2020
- Edward W. Petrillo. Angiotensin‐Converting Enzyme Inhibitors. 2021, 1-37. https://doi.org/10.1002/0471266949.bmc174.pub2
- Murat Oz, Dietrich Ernst Lorke. Multifunctional angiotensin converting enzyme 2, the SARS-CoV-2 entry receptor, and critical appraisal of its role in acute lung injury. Biomedicine & Pharmacotherapy 2021, 136 , 111193. https://doi.org/10.1016/j.biopha.2020.111193
- Mitrasadat Rezaei, Seyed Ali Ziai, Sajad Fakhri, Ramin Pouriran. ACE2: Its potential role and regulation in severe acute respiratory syndrome and COVID‐19. Journal of Cellular Physiology 2021, 236 (4) , 2430-2442. https://doi.org/10.1002/jcp.30041
- Reda Hmazzou, Yannick Marc, Adrien Flahault, Romain Gerbier, Nadia De Mota, Catherine Llorens-Cortes. Brain ACE2 activation following brain aminopeptidase A blockade by firibastat in salt-dependent hypertension. Clinical Science 2021, 135 (6) , 775-791. https://doi.org/10.1042/CS20201385
- Yasmin Polak, Robert C. Speth. Metabolism of angiotensin peptides by angiotensin converting enzyme 2 (ACE2) and analysis of the effect of excess zinc on ACE2 enzymatic activity. Peptides 2021, 137 , 170477. https://doi.org/10.1016/j.peptides.2020.170477
- Xiao Cong Pang, Han Xu Zhang, Zhi Zhang, Suguro Rinkiko, Yi Min Cui, Yi Zhun Zhu. The Two-Way Switch Role of ACE2 in the Treatment of Novel Coronavirus Pneumonia and Underlying Comorbidities. Molecules 2021, 26 (1) , 142. https://doi.org/10.3390/molecules26010142
- V. Evelyn Brindha, X. Anitha Mary. Advances in Intelligent Based Internet of Medical Things (IoMT) for COVID-19: Olfactory Disorders. 2021, 363-371. https://doi.org/10.1007/978-981-15-8534-0_19
- Priyanka De, Kunal Roy. Computational Modeling of ACE2-Mediated Cell Entry Inhibitors for the Development of Drugs Against Coronaviruses. 2021, 495-539. https://doi.org/10.1007/7653_2020_49
- Tianguang Huang, Lin Sun, Dongwei Kang, Vasanthanathan Poongavanam, Xinyong Liu, Peng Zhan, Luis Menéndez-Arias. Search, Identification, and Design of Effective Antiviral Drugs Against Pandemic Human Coronaviruses. 2021, 219-260. https://doi.org/10.1007/978-981-16-0267-2_9
- Michael Bader, Anthony J. Turner, Natalia Alenina. ACE2, a multifunctional protein – from cardiovascular regulation to COVID-19. Clinical Science 2020, 134 (23) , 3229-3232. https://doi.org/10.1042/CS20201493
- Loai M. Saadah, Ghina’a I. Abu Deiab, Qosay Al-Balas, Iman A. Basheti. Carnosine to Combat Novel Coronavirus (nCoV): Molecular Docking and Modeling to Cocrystallized Host Angiotensin-Converting Enzyme 2 (ACE2) and Viral Spike Protein. Molecules 2020, 25 (23) , 5605. https://doi.org/10.3390/molecules25235605
- Felix Neumaier, Boris D. Zlatopolskiy, Bernd Neumaier. Nuclear Medicine in Times of COVID-19: How Radiopharmaceuticals Could Help to Fight the Current and Future Pandemics. Pharmaceutics 2020, 12 (12) , 1247. https://doi.org/10.3390/pharmaceutics12121247
- Lizelle Lubbe, Gyles E. Cozier, Delia Oosthuizen, K. Ravi Acharya, Edward D. Sturrock. ACE2 and ACE: structure-based insights into mechanism, regulation and receptor recognition by SARS-CoV. Clinical Science 2020, 134 (21) , 2851-2871. https://doi.org/10.1042/CS20200899
- Marco Festa, Clementina Sansone, Christophe Brunet, Fabio Crocetta, Luisa Di Paola, Michele Lombardo, Antonino Bruno, Douglas M. Noonan, Adriana Albini. Cardiovascular Active Peptides of Marine Origin with ACE Inhibitory Activities: Potential Role as Anti-Hypertensive Drugs and in Prevention of SARS-CoV-2 Infection. International Journal of Molecular Sciences 2020, 21 (21) , 8364. https://doi.org/10.3390/ijms21218364
- Federica Saponaro, Grazia Rutigliano, Simona Sestito, Lavinia Bandini, Barbara Storti, Ranieri Bizzarri, Riccardo Zucchi. ACE2 in the Era of SARS-CoV-2: Controversies and Novel Perspectives. Frontiers in Molecular Biosciences 2020, 7 https://doi.org/10.3389/fmolb.2020.588618
- Nigel M. Hooper, Daniel W. Lambert, Anthony J. Turner. Discovery and characterization of ACE2 – a 20-year journey of surprises from vasopeptidase to COVID-19. Clinical Science 2020, 134 (18) , 2489-2501. https://doi.org/10.1042/CS20200476
- Lissy Z. F. Gross, Mariana Sacerdoti, Albrecht Piiper, Stefan Zeuzem, Alejandro E. Leroux, Ricardo M. Biondi. ACE2, the Receptor that Enables Infection by SARS‐CoV‐2: Biochemistry, Structure, Allostery and Evaluation of the Potential Development of ACE2 Modulators. ChemMedChem 2020, 15 (18) , 1682-1690. https://doi.org/10.1002/cmdc.202000368
- Michael R. Bristow, Lawrence S. Zisman, Natasha L. Altman, Edward M. Gilbert, Brian D. Lowes, Wayne A. Minobe, Dobromir Slavov, Jessica A. Schwisow, Erin M. Rodriguez, Ian A. Carroll, Thomas A. Keuer, Peter M. Buttrick, David P. Kao. Dynamic Regulation of SARS-Cov-2 Binding and Cell Entry Mechanisms in Remodeled Human Ventricular Myocardium. JACC: Basic to Translational Science 2020, 5 (9) , 871-883. https://doi.org/10.1016/j.jacbts.2020.06.007
- Robert C. Speth. Response to recent commentaries regarding the involvement of a ngiotensin‐converting enzyme 2 ( ACE2 ) and renin‐angiotensin system blockers in SARS‐CoV ‐2 infections. Drug Development Research 2020, 81 (6) , 643-646. https://doi.org/10.1002/ddr.21672
- Razie Amraei, Nader Rahimi. COVID-19, Renin-Angiotensin System and Endothelial Dysfunction. Cells 2020, 9 (7) , 1652. https://doi.org/10.3390/cells9071652
- Loris Zamai. The Yin and Yang of ACE/ACE2 Pathways: The Rationale for the Use of Renin-Angiotensin System Inhibitors in COVID-19 Patients. Cells 2020, 9 (7) , 1704. https://doi.org/10.3390/cells9071704
- Peter Sever, Sebastian L Johnston. The Renin-Angiotensin system and SARS-CoV-2 infection: A role for the ACE2 receptor?. Journal of the Renin-Angiotensin-Aldosterone System 2020, 21 (2) , 147032032092691. https://doi.org/10.1177/1470320320926911
- Charles E. Evans, James S. Miners, Giulia Piva, Christine L. Willis, David M. Heard, Emma J. Kidd, Mark A. Good, Patrick G. Kehoe. ACE2 activation protects against cognitive decline and reduces amyloid pathology in the Tg2576 mouse model of Alzheimer’s disease. Acta Neuropathologica 2020, 139 (3) , 485-502. https://doi.org/10.1007/s00401-019-02098-6
- Michael R. Bristow, Lawrence S. Zisman, Natasha Lipson Altman, Edward M. Gilbert, Brian D. Lowes, Wayne A. Minobe, Dobromir Slavov, Jessica A. Schwisow, Erin M. Rodriguez, Ian A. Carroll, Thomas A. Keuer, Peter M. Buttrick, David P. Kao. Dynamic Regulation of SARS-CoV-2 Binding and Cell Entry Mechanisms in Remodeled Human Ventricular Myocardium. SSRN Electronic Journal 2020, 395 https://doi.org/10.2139/ssrn.3595038
- Urszula Tyrankiewicz, Agnieszka Kij, Tasnim Mohaissen, Mariola Olkowicz, Ryszard T. Smolenski, Stefan Chlopicki. Renin-Angiotensin-Aldosterone System in Heart Failure: Focus on Nonclassical Angiotensin Pathways as Novel Upstream Targets Regulating Aldosterone. 2019https://doi.org/10.5772/intechopen.87239
- Elena Velkoska, Sheila K. Patel, Karen Griggs, Louise M. Burrell, . Diminazene Aceturate Improves Cardiac Fibrosis and Diastolic Dysfunction in Rats with Kidney Disease. PLOS ONE 2016, 11 (8) , e0161760. https://doi.org/10.1371/journal.pone.0161760
- Wang Wang, Shaun M.K. McKinnie, Maikel Farhan, Manish Paul, Tyler McDonald, Brent McLean, Catherine Llorens-Cortes, Saugata Hazra, Allan G. Murray, John C. Vederas, Gavin Y. Oudit. Angiotensin-Converting Enzyme 2 Metabolizes and Partially Inactivates Pyr-Apelin-13 and Apelin-17. Hypertension 2016, 68 (2) , 365-377. https://doi.org/10.1161/HYPERTENSIONAHA.115.06892
- Vaibhav B. Patel, Jiu-Chang Zhong, Maria B. Grant, Gavin Y. Oudit. Role of the ACE2/Angiotensin 1–7 Axis of the Renin–Angiotensin System in Heart Failure. Circulation Research 2016, 118 (8) , 1313-1326. https://doi.org/10.1161/CIRCRESAHA.116.307708
- Shrinidh Joshi, Narayanaganesh Balasubramanian, Goutham Vasam, Yagna PR Jarajapu. Angiotensin converting enzyme versus angiotensin converting enzyme-2 selectivity of MLN-4760 and DX600 in human and murine bone marrow-derived cells. European Journal of Pharmacology 2016, 774 , 25-33. https://doi.org/10.1016/j.ejphar.2016.01.007
- N.E. Clarke, A.J. Turner. Blood Pressure, Proteases and Inhibitors. 2016, 746-752. https://doi.org/10.1016/B978-0-12-394447-4.10084-7
- Daniel Clayton, Iresha Hanchapola, Walter G. Thomas, Robert E. Widdop, Alexander I. Smith, Patrick Perlmutter, Marie-Isabel Aguilar. Structural determinants for binding to angiotensin converting enzyme 2 (ACE2) and angiotensin receptors 1 and 2. Frontiers in Pharmacology 2015, 6 https://doi.org/10.3389/fphar.2015.00005
- Fan Jiang, Jianmin Yang, Yongtao Zhang, Mei Dong, Shuangxi Wang, Qunye Zhang, Fang Fang Liu, Kai Zhang, Cheng Zhang. Angiotensin-converting enzyme 2 and angiotensin 1–7: novel therapeutic targets. Nature Reviews Cardiology 2014, 11 (7) , 413-426. https://doi.org/10.1038/nrcardio.2014.59
- Sheila K. Patel, Elena Velkoska, Melanie Freeman, Bryan Wai, Terase F. Lancefield, Louise M. Burrell. From gene to protein—experimental and clinical studies of ACE2 in blood pressure control and arterial hypertension. Frontiers in Physiology 2014, 5 https://doi.org/10.3389/fphys.2014.00227
- Victoria Makrides, Simone M.R. Camargo, François Verrey. Transport of Amino Acids in the Kidney. 2014, 367-403. https://doi.org/10.1002/cphy.c130028
- Vinayak Shenoy, Altin Gjymishka, Yagna P. Jarajapu, Yanfei Qi, Aqeela Afzal, Katya Rigatto, Anderson J. Ferreira, Rodrigo A. Fraga-Silva, Patrick Kearns, Jane Yellowlees Douglas, Deepmala Agarwal, Kamal K. Mubarak, Chastity Bradford, William R. Kennedy, Joo Y. Jun, Anandharajan Rathinasabapathy, Erin Bruce, Dipankar Gupta, Arturo J. Cardounel, J. Mocco, Jawaharlal M. Patel, Joseph Francis, Maria B. Grant, Michael J. Katovich, Mohan K. Raizada. Diminazene Attenuates Pulmonary Hypertension and Improves Angiogenic Progenitor Cell Functions in Experimental Models. American Journal of Respiratory and Critical Care Medicine 2013, 187 (6) , 648-657. https://doi.org/10.1164/rccm.201205-0880OC
- Dietmar Schomburg, Ida Schomburg. angiotensin-converting enzyme 2 3.4.17.23. 2013, 29-64. https://doi.org/10.1007/978-3-642-36260-6_2
- Nicola E. Clarke, Nigel M. Hooper, Anthony J. Turner. Angiotensin-Converting Enzyme-2. 2013, 499-504. https://doi.org/10.1016/B978-0-12-382219-2.00100-9
- Juan E. Torres, Rosa Baldiris, Ricardo Vivas-Reyes. Design of Angiotensin-converting Enzyme 2 (ACE2) Inhibitors by Virtual Lead Optimization and Screening. Journal of the Chinese Chemical Society 2012, 59 (11) , 1394-1400. https://doi.org/10.1002/jccs.201200079
- Minghao Ye, Jan Wysocki, Francisco R. Gonzalez-Pacheco, Mahmoud Salem, Karla Evora, Laura Garcia-Halpin, Marko Poglitsch, Manfred Schuster, Daniel Batlle. Murine Recombinant Angiotensin-Converting Enzyme 2. Hypertension 2012, 60 (3) , 730-740. https://doi.org/10.1161/HYPERTENSIONAHA.112.198622
- Nadja Grobe, Khalid M. Elased, David R. Cool, Mariana Morris. Mass spectrometry for the molecular imaging of angiotensin metabolism in kidney. American Journal of Physiology-Endocrinology and Metabolism 2012, 302 (8) , E1016-E1024. https://doi.org/10.1152/ajpendo.00515.2011
- Nicola E. Clarke, Anthony J. Turner. Angiotensin-Converting Enzyme 2: The First Decade. International Journal of Hypertension 2012, 2012 , 1-12. https://doi.org/10.1155/2012/307315
- Kim Brint Pedersen, Srinivas Sriramula, Kavaljit H. Chhabra, Huijing Xia, Eric Lazartigues. Species-specific inhibitor sensitivity of angiotensin-converting enzyme 2 (ACE2) and its implication for ACE2 activity assays. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2011, 301 (5) , R1293-R1299. https://doi.org/10.1152/ajpregu.00339.2011
- Ping Xu, Srinivas Sriramula, Eric Lazartigues. ACE2/ANG-(1–7)/Mas pathway in the brain: the axis of good. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2011, 300 (4) , R804-R817. https://doi.org/10.1152/ajpregu.00222.2010
- Daniel Clayton, Iresha Hanchapola, Nicholas Hausler, Sharon Unabia, Rebecca A. Lew, Robert E. Widdop, Alexander I. Smith, Patrick Perlmutter, Marie-Isabel Aguilar. β-amino acid substitution to investigate the recognition of angiotensin II (AngII) by angiotensin converting enzyme 2 (ACE2). Journal of Molecular Recognition 2011, 24 (2) , 235-244. https://doi.org/10.1002/jmr.1041
- Keiji Kuba, Yumiko Imai, Takayo Ohto-Nakanishi, Josef M. Penninger. Trilogy of ACE2: A peptidase in the renin–angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacology & Therapeutics 2010, 128 (1) , 119-128. https://doi.org/10.1016/j.pharmthera.2010.06.003
- Edward W. Petrillo. Angiotensin‐Converting Enzyme Inhibitors. 2010, 267-302. https://doi.org/10.1002/0471266949.bmc174
- Myung-A. Kim, Dongheon Yang, Keisuke Kida, Natalia Molotkova, Seon Ju Yeo, Nissi Varki, Michikado Iwata, Nancy D. Dalton, Kirk L. Peterson, Wolf-Eberhard Siems, Thomas Walther, Randy T. Cowling, John Kjekshus, Barry Greenberg. Effects of ACE2 Inhibition in the Post-Myocardial Infarction Heart. Journal of Cardiac Failure 2010, 16 (9) , 777-785. https://doi.org/10.1016/j.cardfail.2010.04.002
- A. J. Trask, L. Groban, B. M. Westwood, J. Varagic, D. Ganten, P. E. Gallagher, M. C. Chappell, C. M. Ferrario. Inhibition of Angiotensin-Converting Enzyme 2 Exacerbates Cardiac Hypertrophy and Fibrosis in Ren-2 Hypertensive Rats. American Journal of Hypertension 2010, 23 (6) , 687-693. https://doi.org/10.1038/ajh.2010.51
- John J. Byrnes, Stefan Gross, Courtney Ellard, Kelly Connolly, Stephen Donahue, Dominic Picarella. Effects of the ACE2 inhibitor GL1001 on acute dextran sodium sulfate-induced colitis in mice. Inflammation Research 2009, 58 (11) , 819-827. https://doi.org/10.1007/s00011-009-0053-3
- Michikado Iwata, Jorge E. Silva Enciso, Barry H. Greenberg. Selective and specific regulation of ectodomain shedding of angiotensin-converting enzyme 2 by tumor necrosis factor α-converting enzyme. American Journal of Physiology-Cell Physiology 2009, 297 (5) , C1318-C1329. https://doi.org/10.1152/ajpcell.00036.2009
- Marcela Bürgelová, Zdenka Vaňourková, Monika Thumová, Pavel Dvořák, Martin Opočenský, Herbert J Kramer, Michal Želízko, Jan Malý, Michael Bader, Luděk Červenka. Impairment of the angiotensin-converting enzyme 2–angiotensin-(1-7)-Mas axis contributes to the acceleration of two-kidney, one-clip Goldblatt hypertension. Journal of Hypertension 2009, 27 (10) , 1988-2000. https://doi.org/10.1097/HJH.0b013e32832f0d06
- Zon W. Lai, Rebecca A. Lew, Michael A. Yarski, Fi-Tjen Mu, Robert K. Andrews, A. Ian Smith. The Identification of a Calmodulin-Binding Domain within the Cytoplasmic Tail of Angiotensin-Converting Enzyme-2. Endocrinology 2009, 150 (5) , 2376-2381. https://doi.org/10.1210/en.2008-1274
- Christopher A. Rushworth, Jodie L. Guy, Anthony J. Turner. Residues affecting the chloride regulation and substrate selectivity of the angiotensin-converting enzymes (ACE and ACE2) identified by site-directed mutagenesis. FEBS Journal 2008, 275 (23) , 6033-6042. https://doi.org/10.1111/j.1742-4658.2008.06733.x
- Huijing Xia, Eric Lazartigues. Angiotensin‐converting enzyme 2 in the brain: properties and future directions. Journal of Neurochemistry 2008, 107 (6) , 1482-1494. https://doi.org/10.1111/j.1471-4159.2008.05723.x
- Patricia E. Gallagher, Carlos M. Ferrario, E. Ann Tallant. MAP kinase/phosphatase pathway mediates the regulation of ACE2 by angiotensin peptides. American Journal of Physiology-Cell Physiology 2008, 295 (5) , C1169-C1174. https://doi.org/10.1152/ajpcell.00145.2008
- María José Soler, Josep Lloveras, Daniel Batlle. Enzima conversiva de la angiotensina 2 y su papel emergente en la regulación del sistema renina-angiotensina. Medicina Clínica 2008, 131 (6) , 230-236. https://doi.org/10.1157/13124619
- Jodie L. Guy, Daniel W. Lambert, Anthony J. Turner, Karen E. Porter. Functional angiotensin-converting enzyme 2 is expressed in human cardiac myofibroblasts. Experimental Physiology 2008, 93 (5) , 579-588. https://doi.org/10.1113/expphysiol.2007.040139
- Paul J. Garabelli, J. Gregory Modrall, Josef M. Penninger, Carlos M. Ferrario, Mark C. Chappell. Distinct roles for angiotensin-converting enzyme 2 and carboxypeptidase A in the processing of angiotensins within the murine heart. Experimental Physiology 2008, 93 (5) , 613-621. https://doi.org/10.1113/expphysiol.2007.040246
- Rebecca A. Lew, Fiona J. Warner, Iresha Hanchapola, Michael A. Yarski, Jay Manohar, Louise M. Burrell, A. Ian Smith. Angiotensin-converting enzyme 2 catalytic activity in human plasma is masked by an endogenous inhibitor. Experimental Physiology 2008, 93 (5) , 685-693. https://doi.org/10.1113/expphysiol.2007.040352
- L. Burchill, E. Velkoska, R. G. Dean, R. A. Lew, A. I. Smith, V. Levidiotis, L. M. Burrell. Acute kidney injury in the rat causes cardiac remodelling and increases angiotensin-converting enzyme 2 expression. Experimental Physiology 2008, 93 (5) , 622-630. https://doi.org/10.1113/expphysiol.2007.040386
- W. Garrett Nichols, Angela J. Peck Campbell, Michael Boeckh. Respiratory Viruses Other than Influenza Virus: Impact and Therapeutic Advances. Clinical Microbiology Reviews 2008, 21 (2) , 274-290. https://doi.org/10.1128/CMR.00045-07
- David N. Deaton, Kevin P. Graham, Jeffrey W. Gross, Aaron B. Miller. Thiol-based angiotensin-converting enzyme 2 inhibitors: P1′ modifications for the exploration of the S1′ subsite. Bioorganic & Medicinal Chemistry Letters 2008, 18 (5) , 1681-1687. https://doi.org/10.1016/j.bmcl.2008.01.046
- Anderson J Ferreira, José A Hernández Prada, David A Ostrov, Mohan K Raizada. Cardiovascular protection by angiotensin-converting enzyme 2: a new paradigm. Future Cardiology 2008, 4 (2) , 175-182. https://doi.org/10.2217/14796678.4.2.175
- Daniel W. Lambert, Nigel M. Hooper, Anthony J. Turner. Angiotensin-converting enzyme 2 and new insights into the renin–angiotensin system. Biochemical Pharmacology 2008, 75 (4) , 781-786. https://doi.org/10.1016/j.bcp.2007.08.012
- Chandana B. Herath, Fiona J. Warner, John S. Lubel, Rachael G. Dean, Zhiyuan Jia, Rebecca A. Lew, A. Ian Smith, Louise M. Burrell, Peter W. Angus. Upregulation of hepatic angiotensin-converting enzyme 2 (ACE2) and angiotensin-(1–7) levels in experimental biliary fibrosis. Journal of Hepatology 2007, 47 (3) , 387-395. https://doi.org/10.1016/j.jhep.2007.03.008
- Aaron J. Trask, David B. Averill, Detlev Ganten, Mark C. Chappell, Carlos M. Ferrario. Primary role of angiotensin-converting enzyme-2 in cardiac production of angiotensin-(1–7) in transgenic Ren-2 hypertensive rats. American Journal of Physiology-Heart and Circulatory Physiology 2007, 292 (6) , H3019-H3024. https://doi.org/10.1152/ajpheart.01198.2006
- Bernadette M. McArdle, Ronald J. Quinn. Identification of Protein Fold Topology Shared between Different Folds Inhibited by Natural Products. ChemBioChem 2007, 8 (7) , 788-798. https://doi.org/10.1002/cbic.200700035
- I Hamming, ME Cooper, BL Haagmans, NM Hooper, R Korstanje, ADME Osterhaus, W Timens, AJ Turner, G Navis, H van Goor. The emerging role of ACE2 in physiology and disease. The Journal of Pathology 2007, 212 (1) , 1-11. https://doi.org/10.1002/path.2162