ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Experimental and Computational Evidence for a Boron-Assisted, σ-Bond Metathesis Pathway for Alkane Borylation

View Author Information
Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, and Department of Chemistry, 225 Prospect Street, P.O. Box 208107, Yale University, New Haven, Connecticut 06520-8107
Cite this: J. Am. Chem. Soc. 2003, 125, 4, 858–859
Publication Date (Web):January 3, 2003
https://doi.org/10.1021/ja028394c
Copyright © 2003 American Chemical Society

Article Views

3257

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
Read OnlinePDF (207 KB)
Supporting Info (1)»

Abstract

Abstract Image

Photoejection of one CO ligand from isolated CpM(CO)n+1BR2 (n = 1:  M = Fe, Ru; n = 2:  M = Mo,W; R2 = catecholate or pinacolate) compounds produces a coordinatively unsaturated 16 e- intermediate, a cyclic dioxaboryl transition metal complex, that can efficiently and selectively initiate regioselective C−H bond activation and can be used in the functionalization of alkanes. This chemistry appears distinct from that reported previously for related CpM(CO)n complexes of alkyl and aryl ligands. We show here by a combination of experimental and theoretical studies that the “unoccupied” p orbital of dioxaboryl ligands are intimately involved in the C−H bond activation step and that this hydrogen transfer to boron occurs by a boron-assisted, metal-mediated σ-bond metathesis. The “unoccupied” p orbital of boron lowers the energy of the transition state and the intermediates by accepting electron density from the metal. The metal-bound borane then rotates, transfers back through a σ-bond metathesis to capture the alkyl, and leaves the metal hydride.

 Texas A&M University.

*

In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

 Yale University.

Supporting Information Available

ARTICLE SECTIONS
Jump To

Synthesis, photochemistry, and spectral data for 13 and 68, structures of 915, percentage atomic character in Boys localized orbitals, and details of the Mulliken population analysis (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 167 publications.

  1. Yoshimi Kato, Tatsuhiko Yoshino, Shigeki Matsunaga. Iron/Photosensitizer-Catalyzed Directed C–H Activation Triggered by the Formation of an Iron Metallacycle. ACS Catalysis 2023, 13 (7) , 4552-4559. https://doi.org/10.1021/acscatal.3c00381
  2. William G. Whitehurst, Junho Kim, Stefan G. Koenig, Paul J. Chirik. C–H Activation by Isolable Cationic Bis(phosphine) Cobalt(III) Metallacycles. Journal of the American Chemical Society 2022, 144 (41) , 19186-19195. https://doi.org/10.1021/jacs.2c08865
  3. Mustapha Hamdaoui, Fan Liu, Yann Cornaton, Xingyu Lu, Xiaohuo Shi, Huan Zhang, Jiyong Liu, Bernhard Spingler, Jean-Pierre Djukic, Simon Duttwyler. An Iridium-Stabilized Borenium Intermediate. Journal of the American Chemical Society 2022, 144 (40) , 18359-18374. https://doi.org/10.1021/jacs.2c06298
  4. Li Gong, Chao Li, Fangyan Yuan, Senlin Liu, Xiaoming Zeng. Chromium-Catalyzed Selective Borylation of Vinyl Triflates and Unactivated Aryl Carboxylic Esters with Pinacolborane. Organic Letters 2022, 24 (17) , 3227-3231. https://doi.org/10.1021/acs.orglett.2c01015
  5. Xuhui Lin, Yirong Mo. Partial Double Metal–Carbon Bonding Model in Transition Metal Methyl Compounds. Inorganic Chemistry 2022, 61 (6) , 2892-2902. https://doi.org/10.1021/acs.inorgchem.1c03619
  6. Tanner C. Jankins, Raul Martin-Montero, Phillippa Cooper, Ruben Martin, Keary M. Engle. Low-Valent Tungsten Catalysis Enables Site-Selective Isomerization–Hydroboration of Unactivated Alkenes. Journal of the American Chemical Society 2021, 143 (37) , 14981-14986. https://doi.org/10.1021/jacs.1c07162
  7. Aiping Fu, Lixing Zhao, Chao Li, Meiming Luo, Xiaoming Zeng. Chromium-Catalyzed Borylative Coupling of Aliphatic Bromides with Pinacolborane by Hydrogen Evolution. Organometallics 2021, 40 (14) , 2204-2208. https://doi.org/10.1021/acs.organomet.1c00171
  8. Ryan Carlsen, Steven M. Maley, Daniel H. Ess. Timing and Structures of σ-Bond Metathesis C–H Activation Reactions from Quasiclassical Direct Dynamics Simulations. Organometallics 2021, 40 (10) , 1454-1465. https://doi.org/10.1021/acs.organomet.1c00102
  9. Ya-Ming Tian, Xiao-Ning Guo, Holger Braunschweig, Udo Radius, Todd B. Marder. Photoinduced Borylation for the Synthesis of Organoboron Compounds. Chemical Reviews 2021, 121 (7) , 3561-3597. https://doi.org/10.1021/acs.chemrev.0c01236
  10. Christopher P. Gordon, Lukas Lätsch, Christophe Copéret. Nuclear Magnetic Resonance: A Spectroscopic Probe to Understand the Electronic Structure and Reactivity of Molecules and Materials. The Journal of Physical Chemistry Letters 2021, 12 (8) , 2072-2085. https://doi.org/10.1021/acs.jpclett.0c03520
  11. Łukasz Woźniak, Jin-Fay Tan, Qui-Hien Nguyen, Adrien Madron du Vigné, Vitalii Smal, Yi-Xuan Cao, Nicolai Cramer. Catalytic Enantioselective Functionalizations of C–H Bonds by Chiral Iridium Complexes. Chemical Reviews 2020, 120 (18) , 10516-10543. https://doi.org/10.1021/acs.chemrev.0c00559
  12. Bryan J. Foley, Nattamai Bhuvanesh, Jia Zhou, Oleg V. Ozerov. Combined Experimental and Computational Studies of the Mechanism of Dehydrogenative Borylation of Terminal Alkynes Catalyzed by PNP Complexes of Iridium. ACS Catalysis 2020, 10 (17) , 9824-9836. https://doi.org/10.1021/acscatal.0c02455
  13. Wubing Yao, Jiali Wang, Lili He, Dongdong Cao, Jianguo Yang. Ru-Catalyzed ortho-Selective Diborylation of 2-Arylpyridines toward the Construction of π-Conjugated Functions. The Journal of Organic Chemistry 2020, 85 (15) , 10245-10252. https://doi.org/10.1021/acs.joc.0c01211
  14. Rebeca Arevalo, Paul J. Chirik. Enabling Two-Electron Pathways with Iron and Cobalt: From Ligand Design to Catalytic Applications. Journal of the American Chemical Society 2019, 141 (23) , 9106-9123. https://doi.org/10.1021/jacs.9b03337
  15. Xiaoliang Zou, Haonan Zhao, Yinwu Li, Qian Gao, Zhuofeng Ke, Senmiao Xu. Chiral Bidentate Boryl Ligand Enabled Iridium-Catalyzed Asymmetric C(sp2)–H Borylation of Diarylmethylamines. Journal of the American Chemical Society 2019, 141 (13) , 5334-5342. https://doi.org/10.1021/jacs.8b13756
  16. Christopher P. Gordon, Damien B. Culver, Matthew P. Conley, Odile Eisenstein, Richard A. Andersen, Christophe Copéret. π-Bond Character in Metal–Alkyl Compounds for C–H Activation: How, When, and Why?. Journal of the American Chemical Society 2019, 141 (1) , 648-656. https://doi.org/10.1021/jacs.8b11951
  17. Ya-Ming Tian, Xiao-Ning Guo, Maximilian W. Kuntze-Fechner, Ivo Krummenacher, Holger Braunschweig, Udo Radius, Andreas Steffen, Todd B. Marder. Selective Photocatalytic C–F Borylation of Polyfluoroarenes by Rh/Ni Dual Catalysis Providing Valuable Fluorinated Arylboronate Esters. Journal of the American Chemical Society 2018, 140 (50) , 17612-17623. https://doi.org/10.1021/jacs.8b09790
  18. Haixia Li, Jennifer V. Obligacion, Paul J. Chirik, Michael B. Hall. Cobalt Pincer Complexes in Catalytic C–H Borylation: The Pincer Ligand Flips Rather Than Dearomatizes. ACS Catalysis 2018, 8 (11) , 10606-10618. https://doi.org/10.1021/acscatal.8b03146
  19. Ahmad Najafian and Thomas R. Cundari . Methane C–H Activation via 3d Metal Methoxide Complexes with Potentially Redox-Noninnocent Pincer Ligands: A Density Functional Theory Study. Inorganic Chemistry 2017, 56 (20) , 12282-12290. https://doi.org/10.1021/acs.inorgchem.7b01736
  20. Alexandra Hicken, Andrew J. P. White, and Mark R. Crimmin . Reversible Coordination of Boron–, Aluminum–, Zinc–, Magnesium–, and Calcium–Hydrogen Bonds to Bent {CuL2} Fragments: Heavy σ Complexes of the Lightest Coinage Metal. Inorganic Chemistry 2017, 56 (15) , 8669-8682. https://doi.org/10.1021/acs.inorgchem.7b00182
  21. Rui Shang, Laurean Ilies, and Eiichi Nakamura . Iron-Catalyzed C–H Bond Activation. Chemical Reviews 2017, 117 (13) , 9086-9139. https://doi.org/10.1021/acs.chemrev.6b00772
  22. Chandan Patel, Vibin Abraham, and Raghavan B. Sunoj . Mechanistic Insights and the Origin of Regioselective Borylation in an Iridium-Catalyzed Alkyl C(sp3)–H Bond Functionalization. Organometallics 2017, 36 (1) , 151-158. https://doi.org/10.1021/acs.organomet.6b00513
  23. Atsushi Tahara, Hiromasa Tanaka, Yusuke Sunada, Yoshihito Shiota, Kazunari Yoshizawa, and Hideo Nagashima . Theoretical Study of the Catalytic Hydrogenation of Alkenes by a Disilaferracyclic Complex: Can the Fe–Si σ-Bond-Assisted Activation of H–H Bonds Allow Development of a Catalysis of Iron?. The Journal of Organic Chemistry 2016, 81 (22) , 10900-10911. https://doi.org/10.1021/acs.joc.6b01961
  24. Mark C. Lipke, Allegra L. Liberman-Martin, and T. Don Tilley . Significant Cooperativity Between Ruthenium and Silicon in Catalytic Transformations of an Isocyanide. Journal of the American Chemical Society 2016, 138 (30) , 9704-9713. https://doi.org/10.1021/jacs.6b05736
  25. Yuxuan Zhang, Huaquan Fang, Wubing Yao, Xuebing Leng, and Zheng Huang . Synthesis of Pincer Hydrido Ruthenium Olefin Complexes for Catalytic Alkane Dehydrogenation. Organometallics 2016, 35 (2) , 181-188. https://doi.org/10.1021/acs.organomet.5b00912
  26. Nicole Arnold, Silvia Mozo, Ursula Paul, Udo Radius, and Holger Braunschweig . Aryldihydroborane Coordination to Iridium and Osmium Hydrido Complexes. Organometallics 2015, 34 (24) , 5709-5715. https://doi.org/10.1021/acs.organomet.5b00788
  27. Lianrui Hu and Hui Chen . Assessment of DFT Methods for Computing Activation Energies of Mo/W-Mediated Reactions. Journal of Chemical Theory and Computation 2015, 11 (10) , 4601-4614. https://doi.org/10.1021/acs.jctc.5b00373
  28. Amanda L. Pitts and Michael B. Hall . Carbon–Hydrogen Bond Activation in Bis(2,6-dimethylbenzenethiolato)tris(trimethylphosphine)ruthenium(II): Ligand Dances and Solvent Transformations. Organometallics 2015, 34 (13) , 3129-3140. https://doi.org/10.1021/acs.organomet.5b00163
  29. Sean R. Parmelee, Thomas J. Mazzacano, Yaqun Zhu, Neal P. Mankad, and John A. Keith . A Heterobimetallic Mechanism for C–H Borylation Elucidated from Experimental and Computational Data. ACS Catalysis 2015, 5 (6) , 3689-3699. https://doi.org/10.1021/acscatal.5b00275
  30. Ryohei Uematsu, Eiji Yamamoto, Satoshi Maeda, Hajime Ito, and Tetsuya Taketsugu . Reaction Mechanism of the Anomalous Formal Nucleophilic Borylation of Organic Halides with Silylborane: Combined Theoretical and Experimental Studies. Journal of the American Chemical Society 2015, 137 (12) , 4090-4099. https://doi.org/10.1021/ja507675f
  31. Thomas Dombray, C. Gunnar Werncke, Shi Jiang, Mary Grellier, Laure Vendier, Sébastien Bontemps, Jean-Baptiste Sortais, Sylviane Sabo-Etienne, and Christophe Darcel . Iron-Catalyzed C–H Borylation of Arenes. Journal of the American Chemical Society 2015, 137 (12) , 4062-4065. https://doi.org/10.1021/jacs.5b00895
  32. Rui Shang, Laurean Ilies, Sobi Asako, and Eiichi Nakamura . Iron-Catalyzed C(sp2)–H Bond Functionalization with Organoboron Compounds. Journal of the American Chemical Society 2014, 136 (41) , 14349-14352. https://doi.org/10.1021/ja5070763
  33. Chen Cheng and John F. Hartwig . Mechanism of the Rhodium-Catalyzed Silylation of Arene C–H Bonds. Journal of the American Chemical Society 2014, 136 (34) , 12064-12072. https://doi.org/10.1021/ja505844k
  34. Song-Lin Zhang, Lu Huang, and Wen-Feng Bie . Mechanism for Activation of the C–CN Bond of Nitriles by a Cationic CpRhIII–Silyl Complex: A Systematic DFT Study. Organometallics 2014, 33 (12) , 3030-3039. https://doi.org/10.1021/om500294b
  35. Adi E. Nako, Qian Wen Tan, Andrew J. P. White, and Mark R. Crimmin . Weakly Coordinated Zinc and Aluminum σ-Complexes of Copper(I). Organometallics 2014, 33 (11) , 2685-2688. https://doi.org/10.1021/om500380k
  36. Erik P. A. Couzijn, Ilia J. Kobylianskii, Marc-Etienne Moret, and Peter Chen . Experimental Gas-Phase Thermochemistry for Alkane Reductive Elimination from Pt(IV). Organometallics 2014, 33 (11) , 2889-2897. https://doi.org/10.1021/om500478y
  37. Rory Waterman . σ-Bond Metathesis: A 30-Year Retrospective. Organometallics 2013, 32 (24) , 7249-7263. https://doi.org/10.1021/om400760k
  38. Holger Braunschweig, Alexander Damme, Rian D. Dewhurst, Sundargopal Ghosh, Thomas Kramer, Bernd Pfaffinger, Krzysztof Radacki, and Alfredo Vargas . Electronic and Structural Effects of Stepwise Borylation and Quaternization on Borirene Aromaticity. Journal of the American Chemical Society 2013, 135 (5) , 1903-1911. https://doi.org/10.1021/ja3110126
  39. Yoichiro Kuninobu, Takahiro Nakahara, Hirotaka Takeshima, and Kazuhiko Takai . Rhodium-Catalyzed Intramolecular Silylation of Unactivated C(sp3)–H Bonds. Organic Letters 2013, 15 (2) , 426-428. https://doi.org/10.1021/ol303353m
  40. John F. Hartwig . Borylation and Silylation of C–H Bonds: A Platform for Diverse C–H Bond Functionalizations. Accounts of Chemical Research 2012, 45 (6) , 864-873. https://doi.org/10.1021/ar200206a
  41. Nao Hasegawa, Valentine Charra, Satoshi Inoue, Yoshiya Fukumoto, and Naoto Chatani . Highly Regioselective Carbonylation of Unactivated C(sp3)–H Bonds by Ruthenium Carbonyl. Journal of the American Chemical Society 2011, 133 (21) , 8070-8073. https://doi.org/10.1021/ja2001709
  42. Fernando Hung-Low and Christopher A. Bradley . Indenyl Ligands as Supports for Reactive, Low-Valent Cobalt(I) Fragments. Organometallics 2011, 30 (10) , 2636-2639. https://doi.org/10.1021/om200139x
  43. Daniel H. Ess, T. Brent Gunnoe, Thomas R. Cundari, William A. Goddard, III, and Roy A. Periana . Ligand Lone-Pair Influence on Hydrocarbon C−H Activation: A Computational Perspective. Organometallics 2010, 29 (24) , 6801-6815. https://doi.org/10.1021/om100974q
  44. Daniel H. Ess, William A. Goddard, III, and Roy A. Periana . Electrophilic, Ambiphilic, and Nucleophilic C−H Bond Activation: Understanding the Electronic Continuum of C−H Bond Activation Through Transition-State and Reaction Pathway Interaction Energy Decompositions. Organometallics 2010, 29 (23) , 6459-6472. https://doi.org/10.1021/om100879y
  45. Zhenyang Lin. Interplay between Theory and Experiment: Computational Organometallic and Transition Metal Chemistry. Accounts of Chemical Research 2010, 43 (5) , 602-611. https://doi.org/10.1021/ar9002027
  46. Steven M. Bischof, Daniel H. Ess, Steven K. Meier, Jonas Oxgaard, Robert J. Nielsen, Gaurav Bhalla, William A. Goddard, III and Roy A. Periana . Benzene C−H Bond Activation in Carboxylic Acids Catalyzed by O-Donor Iridium(III) Complexes: An Experimental and Density Functional Study. Organometallics 2010, 29 (4) , 742-756. https://doi.org/10.1021/om900036j
  47. Karma R. Sawyer, James F. Cahoon, Jennifer E. Shanoski, Elizabeth A. Glascoe, Matthias F. Kling, Jacob P. Schlegel, Matthew C. Zoerb, Marko Hapke, John F. Hartwig, Charles Edwin Webster and Charles B. Harris. Time-resolved IR Studies on the Mechanism for the Functionalization of Primary C−H Bonds by Photoactivated Cp*W(CO)3(Bpin). Journal of the American Chemical Society 2010, 132 (6) , 1848-1859. https://doi.org/10.1021/ja906438a
  48. Ibraheem A. I. Mkhalid, Jonathan H. Barnard, Todd B. Marder, Jaclyn M. Murphy and John F. Hartwig. C−H Activation for the Construction of C−B Bonds. Chemical Reviews 2010, 110 (2) , 890-931. https://doi.org/10.1021/cr900206p
  49. David Balcells, Eric Clot and Odile Eisenstein. C—H Bond Activation in Transition Metal Species from a Computational Perspective. Chemical Reviews 2010, 110 (2) , 749-823. https://doi.org/10.1021/cr900315k
  50. Sammer M. Tekarli, T. Gavin Williams and Thomas R. Cundari. Activation of Carbon−Hydrogen and Hydrogen−Hydrogen Bonds by Copper−Nitrenes: A Comparison of Density Functional Theory with Single- and Multireference Correlation Consistent Composite Approaches. Journal of Chemical Theory and Computation 2009, 5 (11) , 2959-2966. https://doi.org/10.1021/ct900277m
  51. Steven K. Meier, Kenneth J. H. Young, Daniel H. Ess, William J. Tenn, III, Jonas Oxgaard, William A. Goddard, III and Roy A. Periana . Heterolytic Benzene C−H Activation by a Cyclometalated Iridium(III) Dihydroxo Pyridyl Complex: Synthesis, Hydrogen−Deuterium Exchange, and Density Functional Study. Organometallics 2009, 28 (18) , 5293-5304. https://doi.org/10.1021/om900039s
  52. Daniel H. Ess, Robert J. Nielsen, William A. Goddard III and Roy A. Periana . Transition-State Charge Transfer Reveals Electrophilic, Ambiphilic, and Nucleophilic Carbon−Hydrogen Bond Activation. Journal of the American Chemical Society 2009, 131 (33) , 11686-11688. https://doi.org/10.1021/ja902748c
  53. Daniel H. Ess, Steven M. Bischof, Jonas Oxgaard, Roy A. Periana and William A. Goddard, III. . Transition State Energy Decomposition Study of Acetate-Assisted and Internal Electrophilic Substitution C−H Bond Activation by (acac-O,O)2Ir(X) Complexes (X = CH3COO, OH). Organometallics 2008, 27 (24) , 6440-6445. https://doi.org/10.1021/om8006568
  54. Yasuhiro Ohki, Tsubasa Hatanaka and Kazuyuki Tatsumi. C−H Bond Activation of Heteroarenes Mediated by a Half-Sandwich Iron Complex of N-Heterocyclic Carbene. Journal of the American Chemical Society 2008, 130 (50) , 17174-17186. https://doi.org/10.1021/ja8063028
  55. Thomas R. Cundari, J. Oscar C. Jimenez-Halla, Glenn R. Morello and Sridhar Vaddadi. Catalytic Tuning of a Phosphinoethane Ligand for Enhanced C−H Activation. Journal of the American Chemical Society 2008, 130 (39) , 13051-13058. https://doi.org/10.1021/ja803176j
  56. Timothy A. Boebel and John. F. Hartwig. Silyl-Directed, Iridium-Catalyzed ortho-Borylation of Arenes. A One-Pot ortho-Borylation of Phenols, Arylamines, and Alkylarenes. Journal of the American Chemical Society 2008, 130 (24) , 7534-7535. https://doi.org/10.1021/ja8015878
  57. Marius V. Câmpian,, Eric Clot,, Odile Eisenstein,, Ulrike Helmstedt,, Naseralla Jasim,, Robin N. Perutz,, Adrian C. Whitwood, and, David Williamson. Stereochemical Nonrigidity of a Chiral Rhodium Boryl Hydride Complex:  A σ-Borane Complex as Transition State for Isomerization. Journal of the American Chemical Society 2008, 130 (13) , 4375-4385. https://doi.org/10.1021/ja077357o
  58. Haitao Zhao, Li Dang, Todd B. Marder and Zhenyang Lin. DFT Studies on the Mechanism of the Diboration of Aldehydes Catalyzed by Copper(I) Boryl Complexes. Journal of the American Chemical Society 2008, 130 (16) , 5586-5594. https://doi.org/10.1021/ja710659y
  59. Li Dang, Haitao Zhao and Zhenyang Lin , Todd B. Marder . Understanding the Higher Reactivity of B2cat2 versus B2pin2 in Copper(I)-Catalyzed Alkene Diboration Reactions. Organometallics 2008, 27 (6) , 1178-1186. https://doi.org/10.1021/om700999w
  60. Nathan J. DeYonker, Nicholas A. Foley, Thomas R. Cundari, T. Brent Gunnoe and Jeffrey L. Petersen. Combined Experimental and Computational Studies on the Nature of Aromatic C−H Activation by Octahedral Ruthenium(II) Complexes: Evidence for σ-Bond Metathesis from Hammett Studies. Organometallics 2007, 26 (26) , 6604-6611. https://doi.org/10.1021/om7009057
  61. Thomas R. Cundari,, Thomas V. Grimes, and, T. Brent Gunnoe. Activation of Carbon−Hydrogen Bonds via 1,2-Addition across M−X (X = OH or NH2) Bonds of d6 Transition Metals as a Potential Key Step in Hydrocarbon Functionalization:  A Computational Study. Journal of the American Chemical Society 2007, 129 (43) , 13172-13182. https://doi.org/10.1021/ja074125g
  62. King Chung Lam,, Zhenyang Lin, and, Todd B. Marder. DFT Studies of β-Boryl Elimination Processes:  Potential Role in Catalyzed Borylation Reactions of Alkenes. Organometallics 2007, 26 (13) , 3149-3156. https://doi.org/10.1021/om0700314
  63. Li Dang,, Haitao Zhao, and, Zhenyang Lin, , Todd B. Marder. DFT Studies of Alkene Insertions into Cu−B Bonds in Copper(I) Boryl Complexes. Organometallics 2007, 26 (11) , 2824-2832. https://doi.org/10.1021/om070103r
  64. Ji-Lai Li,, Cai-Yun Geng,, Xu-Ri Huang,, Xiang Zhang, and, Chia-Chung Sun. Theoretical Elucidation of the Platinum-Mediated Arene C−H Activation Reactions. Organometallics 2007, 26 (9) , 2203-2210. https://doi.org/10.1021/om070039d
  65. Haitao Zhao,, Zhenyang Lin, and, Todd B. Marder. Density Functional Theory Studies on the Mechanism of the Reduction of CO2 to CO Catalyzed by Copper(I) Boryl Complexes. Journal of the American Chemical Society 2006, 128 (49) , 15637-15643. https://doi.org/10.1021/ja063671r
  66. Marius V. Câmpian,, Jeremy L. Harris,, Naser Jasim,, Robin N. Perutz,, Todd B. Marder, and, Adrian C. Whitwood. Comparisons of Photoinduced Oxidative Addition of B−H, B−B, and Si−H Bonds at Rhodium(η5-cyclopentadienyl)phosphine Centers. Organometallics 2006, 25 (21) , 5093-5104. https://doi.org/10.1021/om060500m
  67. Jun Zhu and, Zhenyang Lin, , Todd B. Marder. Trans Influence of Boryl Ligands and Comparison with C, Si, and Sn Ligands. Inorganic Chemistry 2005, 44 (25) , 9384-9390. https://doi.org/10.1021/ic0513641
  68. Martin Lersch and, Mats Tilset. Mechanistic Aspects of C−H Activation by Pt Complexes. Chemical Reviews 2005, 105 (6) , 2471-2526. https://doi.org/10.1021/cr030710y
  69. Sébastien Lachaize,, Khaled Essalah,, Virginia Montiel-Palma,, Laure Vendier,, Bruno Chaudret,, Jean-Claude Barthelat, and, Sylviane Sabo-Etienne. Coordination Modes of Boranes in Polyhydride Ruthenium Complexes:  σ-Borane versus Dihydridoborate. Organometallics 2005, 24 (12) , 2935-2943. https://doi.org/10.1021/om050276l
  70. John F. Hartwig,, Kevin S. Cook,, Marko Hapke,, Christopher D. Incarvito,, Yubo Fan,, Charles Edwin Webster, and, Michael B. Hall. Rhodium Boryl Complexes in the Catalytic, Terminal Functionalization of Alkanes. Journal of the American Chemical Society 2005, 127 (8) , 2538-2552. https://doi.org/10.1021/ja045090c
  71. King Chung Lam,, Wai Han Lam, and, Zhenyang Lin, , Todd B. Marder, , Nicholas C. Norman. Structural Analysis of Five-Coordinate Transition Metal Boryl Complexes with Different d-Electron Configurations. Inorganic Chemistry 2004, 43 (8) , 2541-2547. https://doi.org/10.1021/ic035248e
  72. Tariq M. Bhatti,, Eileen Yasmin,, Akshai Kumar, and, Alan S. Goldman. Historical Perspective and Mechanistic Aspects of C–H Bond Functionalization. 2023, 1-60. https://doi.org/10.1002/9781119774167.ch1
  73. Juan Zhang, Zhang Feng. CH Bond Borylation and Silylation via Iron Catalysis. 2022, 1-20. https://doi.org/10.1002/9783527834242.chf0173
  74. Kapileswar Seth. Recent progress in rare-earth metal-catalyzed sp 2 and sp 3 C–H functionalization to construct C–C and C–heteroelement bonds. Organic Chemistry Frontiers 2022, 9 (11) , 3102-3141. https://doi.org/10.1039/D1QO01859K
  75. Ishita Neogi, Alex M. Szpilman. Synthesis and Reactions of Borazines. Synthesis 2022, 54 (08) , 1877-1907. https://doi.org/10.1055/a-1684-0031
  76. Robin N. Perutz, Sylviane Sabo‐Etienne, Andrew S. Weller. Metathesis by Partner Interchange in σ‐Bond Ligands: Expanding Applications of the σ‐CAM Mechanism. Angewandte Chemie 2022, 134 (5) https://doi.org/10.1002/ange.202111462
  77. Robin N. Perutz, Sylviane Sabo‐Etienne, Andrew S. Weller. Metathesis by Partner Interchange in σ‐Bond Ligands: Expanding Applications of the σ‐CAM Mechanism. Angewandte Chemie International Edition 2022, 61 (5) https://doi.org/10.1002/anie.202111462
  78. Kristof M. Altus, Jennifer A. Love. The continuum of carbon–hydrogen (C–H) activation mechanisms and terminology. Communications Chemistry 2021, 4 (1) https://doi.org/10.1038/s42004-021-00611-1
  79. Yasuro Kawano, Keiji Ueno. Chemistry of Transition Metal Complexes with Group 13 Elements: Transition Metal Complexes with Lewis Acidic Ligands. 2021, 136-175. https://doi.org/10.1039/9781839164200-00136
  80. Margaret R. Jones, Nathan D. Schley. Ligand-Driven Advances in Iridium-Catalyzed sp3 C–H Borylation: 2,2′-Dipyridylarylmethane. Synlett 2021, 32 (09) , 845-850. https://doi.org/10.1055/a-1344-1904
  81. Pablo Ríos, Javier Borge, Francisco Fernández de Córdova, Giuseppe Sciortino, Agustí Lledós, Amor Rodríguez. Ambiphilic boryl groups in a neutral Ni( ii ) complex: a new activation mode of H 2. Chemical Science 2021, 12 (7) , 2540-2548. https://doi.org/10.1039/D0SC06014C
  82. Maria Batuecas, Nikolaus Gorgas, Mark R. Crimmin. Catalytic C–H to C–M (M = Al, Mg) bond transformations with heterometallic complexes. Chemical Science 2021, 12 (6) , 1993-2000. https://doi.org/10.1039/D0SC03695A
  83. Pablo Ríos, Rocío Martín-de la Calle, Pietro Vidossich, Francisco José Fernández-de-Córdova, Agustí Lledós, Salvador Conejero. Reversible carbon–boron bond formation at platinum centers through σ-BH complexes. Chemical Science 2021, 12 (5) , 1647-1655. https://doi.org/10.1039/D0SC05522K
  84. Marcetta Y. Darensbourg, Erica Lyon Oduaran, Shengda Ding, Allen M. Lunsford, K. Dilshan Kariyawasam Pathirana, Pokhraj Ghosh, Xuemei Yang. Organometallic Chemistry Control of Hydrogenases. 2021, 275-300. https://doi.org/10.1007/978-3-030-58315-6_10
  85. Brad P. Carrow, Jessica Sampson, Long Wang. Base‐Assisted C−H Bond Cleavage in Cross‐Coupling: Recent Insights into Mechanism, Speciation, and Cooperativity. Israel Journal of Chemistry 2020, 60 (3-4) , 230-258. https://doi.org/10.1002/ijch.201900095
  86. Wubing Yao, Jianguo Yang, Feiyue Hao. Ru‐Catalyzed Selective C(sp 3 )−H Monoborylation of Amides and Esters. ChemSusChem 2020, 13 (1) , 121-125. https://doi.org/10.1002/cssc.201902448
  87. Nikolaus Gorgas, Berthold Stöger, Luis F. Veiros, Karl Kirchner. Access to Fe II Bis(σ‐B−H) Aminoborane Complexes through Protonation of a Borohydride Complex and Dehydrogenation of Amine‐Boranes. Angewandte Chemie 2019, 131 (39) , 14012-14017. https://doi.org/10.1002/ange.201906971
  88. Nikolaus Gorgas, Berthold Stöger, Luis F. Veiros, Karl Kirchner. Access to Fe II Bis(σ‐B−H) Aminoborane Complexes through Protonation of a Borohydride Complex and Dehydrogenation of Amine‐Boranes. Angewandte Chemie International Edition 2019, 58 (39) , 13874-13879. https://doi.org/10.1002/anie.201906971
  89. Carsten Lenczyk, Dipak Kumar Roy, Bijoy Ghosh, Johannes Schwarzmann, Ashwini K. Phukan, Holger Braunschweig. First Bis(σ)‐borane Complexes of Group 6 Transition Metals: Experimental and Theoretical Studies. Chemistry – A European Journal 2019, 25 (36) , 8585-8589. https://doi.org/10.1002/chem.201901075
  90. Jing Zhang, Chunhui Shan, Kang Lv, Lei Zhu, Yuanyuan Li, Tao Liu, Yu Lan. Mechanistic Insight into Palladium-Catalyzed Carbocyclization-Functionalization of Bisallene: A Computational Study. ChemCatChem 2019, 11 (4) , 1228-1237. https://doi.org/10.1002/cctc.201801934
  91. James D. Mattock, Alfredo Vargas. Boron Centres Allow Design, Control and Systematic Tuning of Neutral Homoaromatics for Functionalization Purposes. ChemPhysChem 2018, 19 (19) , 2525-2533. https://doi.org/10.1002/cphc.201800453
  92. Elena Buñuel, Diego J. Cárdenas. Towards Useful Boronates through Atom-Economical Catalyzed Cascade Reactions. Chemistry - A European Journal 2018, 24 (44) , 11239-11244. https://doi.org/10.1002/chem.201800659
  93. Natalia Cabrera-Lobera, Patricia Rodríguez-Salamanca, Juan C. Nieto-Carmona, Elena Buñuel, Diego J. Cárdenas. Iron-Catalyzed Hydroborylative Cyclization of 1,6-Enynes. Chemistry - A European Journal 2018, 24 (4) , 784-788. https://doi.org/10.1002/chem.201704401
  94. Richmond Lee, Davin Tan, Chaoli Liu, Huaifeng Li, Hao Guo, Jing-Jong Shyue, Kuo-Wei Huang. DFT mechanistic study of the selective terminal C–H activation of n -pentane with a tungsten allyl nitrosyl complex. Journal of Saudi Chemical Society 2017, 21 (5) , 558-562. https://doi.org/10.1016/j.jscs.2016.12.004
  95. Takayuki Furukawa, Mamoru Tobisu, Naoto Chatani. C–H Borylation by Platinum Catalysis. Bulletin of the Chemical Society of Japan 2017, 90 (3) , 332-342. https://doi.org/10.1246/bcsj.20160391
  96. Rui Shang. Iron-Catalyzed Directed C(sp2)–H Bond Functionalization with Organoboron Compounds. 2017, 197-216. https://doi.org/10.1007/978-981-10-3193-9_11
  97. Michael J. Butler, Mark R. Crimmin. Magnesium, zinc, aluminium and gallium hydride complexes of the transition metals. Chemical Communications 2017, 53 (8) , 1348-1365. https://doi.org/10.1039/C6CC05702K
  98. Qaiser Mahmood, Erlin Yue, Wenjuan Zhang, Gregory A. Solan, Tongling Liang, Wen-Hua Sun. Bisimino-functionalized dibenzo[a,c]acridines as highly conjugated pincer frameworks for palladium( ii ): synthesis, characterization and catalytic performance in Heck coupling. Organic Chemistry Frontiers 2016, 3 (12) , 1668-1679. https://doi.org/10.1039/C6QO00469E
  99. Man Sing Cheung, Fu Kit Sheong, Todd B. Marder, Zhenyang Lin. Computational Insight into Nickel-Catalyzed Carbon-Carbon versus Carbon-Boron Coupling Reactions of Primary, Secondary, and Tertiary Alkyl Bromides. Chemistry - A European Journal 2015, 21 (20) , 7480-7488. https://doi.org/10.1002/chem.201500110
  100. Polly L. Arnold, Max W. McMullon, Julia Rieb, Fritz E. Kühn. C‐H‐Aktivierung mit Komplexen der f‐Block‐Elemente. Angewandte Chemie 2015, 127 (1) , 84-103. https://doi.org/10.1002/ange.201404613
Load all citations

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect