ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Synthesis, Structure, and Aromaticity of a Hoop-Shaped Cyclic Benzenoid [10]Cyclophenacene

View Author Information
Department of Chemistry, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Cite this: J. Am. Chem. Soc. 2003, 125, 10, 2834–2835
Publication Date (Web):February 12, 2003
https://doi.org/10.1021/ja029915z
Copyright © 2003 American Chemical Society

    Article Views

    2166

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (3)»

    Abstract

    Abstract Image

    The first hoop-shaped cyclic benzenoid compounds, [10]cyclophenacene derivatives that contain 40 π electrons, have been synthesized in three or four steps from [60]fullerene by rationally designed chemical modification. The compounds thus synthesized are chemically stable, yellow-colored, luminescent, and EPR-silent. X-ray crystallographic analysis provided high precision structural data sets. On the basis of these results and theoretical investigations, the new cyclic benzenoid molecules were proven to be aromatic.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

     Present address:  Department of Chemistry, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Synthetic procedure, crystallographic data, and computational details of [10]cyclophenacene (PDF, CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 170 publications.

    1. Daiki Imoto, Akiko Yagi, Kenichiro Itami. Carbon Nanobelts: Brief History and Perspective. Precision Chemistry 2023, 1 (9) , 516-523. https://doi.org/10.1021/prechem.3c00083
    2. Jun-Xiang Zhang, Ming-Wei Liu, Wan-Yu Wang, Rui-Lin Jia, Man-Qing Yan, Jun Xuan, Fei Li. KOtBu-Promoted, Three-Component Domino Reaction of Arenes(indoles/phenols), C60, and (Per/poly)fluoroarenes: Achieving Direct C–C Cross-Coupling of Fullerene with (Per/poly)fluoroarenes. The Journal of Organic Chemistry 2023, 88 (1) , 116-131. https://doi.org/10.1021/acs.joc.2c01912
    3. Mesías Orozco-Ic, Maria Dimitrova, Jorge Barroso, Dage Sundholm, Gabriel Merino. Magnetically Induced Ring-Current Strengths of Planar and Nonplanar Molecules: New Insights from the Pseudo-π Model. The Journal of Physical Chemistry A 2021, 125 (26) , 5753-5764. https://doi.org/10.1021/acs.jpca.1c03555
    4. Harrison M. Bergman, Gavin R. Kiel, Rex C. Handford, Yi Liu, T. Don Tilley. Scalable, Divergent Synthesis of a High Aspect Ratio Carbon Nanobelt. Journal of the American Chemical Society 2021, 143 (23) , 8619-8624. https://doi.org/10.1021/jacs.1c04037
    5. Xin-Rui Chen, Ying-Meng Li, Xiang Li, Jun Xuan, Hong-Ping Zhou, Yu-Peng Tian, Fei Li. An “Umpolung Relay” Strategy: One-Pot, Twice Polarity Inversion Cascade Synthesis of Diversified [60]Fulleroindoles. Organic Letters 2021, 23 (4) , 1302-1308. https://doi.org/10.1021/acs.orglett.0c04290
    6. M. Moral, A. Navarro, A. J. Pérez-Jiménez, J. C. Sancho-García. Nature (Hole or Electron) of Charge-Transfer Ability of Substituted Cyclopyrenylene Hoop-Shaped Compounds. The Journal of Physical Chemistry A 2020, 124 (18) , 3555-3563. https://doi.org/10.1021/acs.jpca.9b09869
    7. Xuefeng Lu, Tullimilli Y. Gopalakrishna, Yi Han, Yong Ni, Ya Zou, Jishan Wu. Bowl-Shaped Carbon Nanobelts Showing Size-Dependent Properties and Selective Encapsulation of C70. Journal of the American Chemical Society 2019, 141 (14) , 5934-5941. https://doi.org/10.1021/jacs.9b00683
    8. Songlin Xue, Daiki Kuzuhara, Naoki Aratani, Hiroko Yamada. Synthesis of a Porphyrin(2.1.2.1) Nanobelt and Its Ability To Bind Fullerene. Organic Letters 2019, 21 (7) , 2069-2072. https://doi.org/10.1021/acs.orglett.9b00329
    9. Guillaume Povie, Yasutomo Segawa, Taishi Nishihara, Yuhei Miyauchi, Kenichiro Itami. Synthesis and Size-Dependent Properties of [12], [16], and [24]Carbon Nanobelts. Journal of the American Chemical Society 2018, 140 (31) , 10054-10059. https://doi.org/10.1021/jacs.8b06842
    10. Fei Li, Jun Xuan, Shu Zhang, Boxiang Liu, Jianxiao Yang, Kaiqing Liu, Dandan Liu, Qiong Zhang, Hongping Zhou, Jieying Wu, Yupeng Tian. KOtBu-Promoted C4 Selective Coupling Reaction of Phenols and [60]Fullerene: One-Pot Synthesis of 4-[60]Fullerephenols under Transition-Metal-Free Conditions. The Journal of Organic Chemistry 2018, 83 (10) , 5431-5437. https://doi.org/10.1021/acs.joc.8b00261
    11. Guglielmo Monaco and Riccardo Zanasi . Analysis of the Nucleus-Independent Chemical Shifts of [10]Cyclophenacene: Is It an Aromatic or Antiaromatic Molecule?. The Journal of Physical Chemistry Letters 2017, 8 (19) , 4673-4678. https://doi.org/10.1021/acs.jpclett.7b01937
    12. Fei Li, Lianghui Wang, Junjie Wang, Dan Peng, Yuqi Zhao, Shengli Li, Hongping Zhou, Jieying Wu, Xiaohe Tian, and Yupeng Tian . KOtBu-Mediated, Three-Component Coupling Reaction of Indoles, [60]Fullerene, and Haloalkanes: One-Pot, Transition-Metal-Free Synthesis of Various 1,4-(3-Indole)(organo)[60]fullerenes. Organic Letters 2017, 19 (5) , 1192-1195. https://doi.org/10.1021/acs.orglett.7b00067
    13. Matthew R. Golder, Curtis E. Colwell, Bryan M. Wong, Lev N. Zakharov, Jingxin Zhen, and Ramesh Jasti . Iterative Reductive Aromatization/Ring-Closing Metathesis Strategy toward the Synthesis of Strained Aromatic Belts. Journal of the American Chemical Society 2016, 138 (20) , 6577-6582. https://doi.org/10.1021/jacs.6b02240
    14. Yasutomo Segawa, Akiko Yagi, Hideto Ito, and Kenichiro Itami . A Theoretical Study on the Strain Energy of Carbon Nanobelts. Organic Letters 2016, 18 (6) , 1430-1433. https://doi.org/10.1021/acs.orglett.6b00365
    15. Fei Li, Imad Elddin Haj Elhussin, Shengli Li, Hongping Zhou, Jieying Wu, and Yupeng Tian . KOtBu-Mediated Coupling of Indoles and [60]Fullerene: Transition-Metal-Free and General Synthesis of 1,2-(3-Indole)(hydro)[60]fullerenes. The Journal of Organic Chemistry 2015, 80 (21) , 10605-10610. https://doi.org/10.1021/acs.joc.5b01725
    16. Ryuta Sekiguchi, Kei Takahashi, Jun Kawakami, Atsushi Sakai, Hiroshi Ikeda, Aya Ishikawa, Kazuchika Ohta, and Shunji Ito . Preparation of a Cyclic Polyphenylene Array for a Zigzag-Type Carbon Nanotube Segment. The Journal of Organic Chemistry 2015, 80 (10) , 5092-5110. https://doi.org/10.1021/acs.joc.5b00485
    17. Matthew R. Golder and Ramesh Jasti . Syntheses of the Smallest Carbon Nanohoops and the Emergence of Unique Physical Phenomena. Accounts of Chemical Research 2015, 48 (3) , 557-566. https://doi.org/10.1021/ar5004253
    18. Manolis D. Tzirakis and Michael Orfanopoulos . Radical Reactions of Fullerenes: From Synthetic Organic Chemistry to Materials Science and Biology. Chemical Reviews 2013, 113 (7) , 5262-5321. https://doi.org/10.1021/cr300475r
    19. Michael L. McKee . Moving Atoms and Small Molecules out of Open Containers. The Journal of Physical Chemistry A 2013, 117 (11) , 2365-2372. https://doi.org/10.1021/jp400231h
    20. Takeshi Fujita, Yutaka Matsuo, and Eiichi Nakamura . Synthesis of Tetradeca- and Pentadeca(organo)[60]fullerenes Containing Unique Photo- and Electroluminescent π-Conjugated Systems. Chemistry of Materials 2012, 24 (20) , 3972-3980. https://doi.org/10.1021/cm3024296
    21. Shunpei Hitosugi, Takashi Yamasaki, and Hiroyuki Isobe . Bottom-up Synthesis and Thread-in-Bead Structures of Finite (n,0)-Zigzag Single-Wall Carbon Nanotubes. Journal of the American Chemical Society 2012, 134 (30) , 12442-12445. https://doi.org/10.1021/ja305723j
    22. Chang-Zhi Li, Yutaka Matsuo, and Eiichi Nakamura . Octupole-like Supramolecular Aggregates of Conical Iron Fullerene Complexes into a Three-Dimensional Liquid Crystalline Lattice. Journal of the American Chemical Society 2010, 132 (44) , 15514-15515. https://doi.org/10.1021/ja1073933
    23. Yutaka Matsuo, Takahiko Ichiki, Shankara Gayathri Radhakrishnan, Dirk M. Guldi and Eiichi Nakamura. Loading Pentapod Deca(organo)[60]fullerenes with Electron Donors: From Photophysics to Photoelectrochemical Bilayers. Journal of the American Chemical Society 2010, 132 (18) , 6342-6348. https://doi.org/10.1021/ja909970h
    24. Chang-Zhi Li, Yutaka Matsuo and Eiichi Nakamura . Luminescent Bow-Tie-Shaped Decaaryl[60]fullerene Mesogens. Journal of the American Chemical Society 2009, 131 (47) , 17058-17059. https://doi.org/10.1021/ja907908m
    25. Rolf Gleiter, Birgit Esser and Stefan C. Kornmayer. Cyclacenes: Hoop-Shaped Systems Composed of Conjugated Rings. Accounts of Chemical Research 2009, 42 (8) , 1108-1116. https://doi.org/10.1021/ar9000179
    26. Simon Clavaguera, Saeed I. Khan and Yves Rubin. Unexpected De-Arylation of a Pentaaryl Fullerene. Organic Letters 2009, 11 (6) , 1389-1391. https://doi.org/10.1021/ol900224w
    27. Oded Hod and Gustavo E. Scuseria. Half-Metallic Zigzag Carbon Nanotube Dots. ACS Nano 2008, 2 (11) , 2243-2249. https://doi.org/10.1021/nn8004069
    28. Xiaoyong Zhang, Yutaka Matsuo and Eiichi Nakamura . Light Emission of [10]Cyclophenacene through Energy Transfer from Neighboring Carbazolylphenyl Dendrons. Organic Letters 2008, 10 (18) , 4145-4147. https://doi.org/10.1021/ol8017193
    29. Yutaka Matsuo and Eiichi Nakamura. Selective Multiaddition of Organocopper Reagents to Fullerenes. Chemical Reviews 2008, 108 (8) , 3016-3028. https://doi.org/10.1021/cr0684218
    30. Yutaka Matsuo, Yoichiro Kuninobu, Ayako Muramatsu, Masaya Sawamura and Eiichi Nakamura. Synthesis of Metal Fullerene Complexes by the Use of Fullerene Halides. Organometallics 2008, 27 (14) , 3403-3409. https://doi.org/10.1021/om8001262
    31. Carlo Thilgen and, François Diederich. Structural Aspects of Fullerene ChemistryA Journey through Fullerene Chirality. Chemical Reviews 2006, 106 (12) , 5049-5135. https://doi.org/10.1021/cr0505371
    32. Kazukuni Tahara and, Yoshito Tobe. Molecular Loops and Belts. Chemical Reviews 2006, 106 (12) , 5274-5290. https://doi.org/10.1021/cr050556a
    33. Takeshi Kawase and, Hiroyuki Kurata. Ball-, Bowl-, and Belt-Shaped Conjugated Systems and Their Complexing Abilities:  Exploration of the Concave−Convex π−π Interaction. Chemical Reviews 2006, 106 (12) , 5250-5273. https://doi.org/10.1021/cr0509657
    34. Yutaka Matsuo,, Ayako Muramatsu,, Yuko Kamikawa,, Takashi Kato, and, Eiichi Nakamura. Synthesis and Structural, Electrochemical, and Stacking Properties of Conical Molecules Possessing Buckyferrocene on the Apex. Journal of the American Chemical Society 2006, 128 (30) , 9586-9587. https://doi.org/10.1021/ja062757h
    35. Yutaka Matsuo,, Kazukuni Tahara, and, Eiichi Nakamura. Synthesis and Electrochemistry of Double-Decker Buckyferrocenes. Journal of the American Chemical Society 2006, 128 (22) , 7154-7155. https://doi.org/10.1021/ja061175x
    36. Yutaka Matsuo,, Yuichi Mitani,, Yu-Wu Zhong, and, Eiichi Nakamura. Remote Chirality Transfer within a Coordination Sphere by the Use of a Ligand Possessing a Concave Cavity. Organometallics 2006, 25 (11) , 2826-2832. https://doi.org/10.1021/om060234c
    37. Yu-Wu Zhong,, Yutaka Matsuo, and, Eiichi Nakamura. Convergent Synthesis of a Polyfunctionalized Fullerene by Regioselective Five-Fold Addition of a Functionalized Organocopper Reagent to C60. Organic Letters 2006, 8 (7) , 1463-1466. https://doi.org/10.1021/ol060282t
    38. Zhongfang Chen,, Chaitanya S. Wannere,, Clémence Corminboeuf,, Ralph Puchta, and, Paul von Ragué Schleyer. Nucleus-Independent Chemical Shifts (NICS) as an Aromaticity Criterion. Chemical Reviews 2005, 105 (10) , 3842-3888. https://doi.org/10.1021/cr030088+
    39. Takashi Yumura,, Daijirou Nozaki,, Shunji Bandow,, Kazunari Yoshizawa, and, Sumio Iijima. End-Cap Effects on Vibrational Structures of Finite-Length Carbon Nanotubes. Journal of the American Chemical Society 2005, 127 (33) , 11769-11776. https://doi.org/10.1021/ja0522579
    40. Takashi Yumura,, Shunji Bandow,, Kazunari Yoshizawa, and, Sumio Iijima. The Role of Fullerene Hemispheres in Determining Structural Features of Finite-Length Carbon Nanotubes. The Journal of Physical Chemistry B 2004, 108 (31) , 11426-11434. https://doi.org/10.1021/jp0491010
    41. Zhiyong Zhou,, Michael Steigerwald,, Mark Hybertsen,, Louis Brus, and, Richard A. Friesner. Electronic Structure of Tubular Aromatic Molecules Derived from the Metallic (5,5) Armchair Single Wall Carbon Nanotube. Journal of the American Chemical Society 2004, 126 (11) , 3597-3607. https://doi.org/10.1021/ja039294p
    42. Motoki Toganoh,, Yutaka Matsuo, and, Eiichi Nakamura. Synthesis of Ferrocene/Hydrofullerene Hybrid and Functionalized Bucky Ferrocenes. Journal of the American Chemical Society 2003, 125 (46) , 13974-13975. https://doi.org/10.1021/ja037335b
    43. Milan Randić. Aromaticity of Polycyclic Conjugated Hydrocarbons. Chemical Reviews 2003, 103 (9) , 3449-3606. https://doi.org/10.1021/cr9903656
    44. Yutaka Matsuo,, Kazukuni Tahara, and, Eiichi Nakamura. Theoretical Studies on Structures and Aromaticity of Finite-Length Armchair Carbon Nanotubes. Organic Letters 2003, 5 (18) , 3181-3184. https://doi.org/10.1021/ol0349514
    45. Yutaka Matsuo and, Eiichi Nakamura. Ruthenium(II) Complexes of Pentamethylated [60]Fullerene. Alkyl, Alkynyl, Chloro, Isocyanide, and Phosphine Complexes. Organometallics 2003, 22 (13) , 2554-2563. https://doi.org/10.1021/om0302387
    46. Olga A. Kraevaya, Alexander S. Peregudov, Alexander F. Shestakov, Pavel A. Troshin. Synthesis of C s -symmetrical C 60 tetra-adducts via reactions of C 60 Cl 6 with CH-acids and enol silyl ester. Organic & Biomolecular Chemistry 2024, 22 (2) , 374-379. https://doi.org/10.1039/D3OB01868G
    47. Xinmin Huang, Zi‐Zheng Liu, Jia‐Qi Cheng, Cheng‐Yu Cao, Peng‐Cheng Li, Jun Xuan, Fei Li. Synthesis of Diverse 1,4‐(Azaindole)[60]fullerenes via Transition‐Metal Free Three‐Component Coupling Reaction of Azaindoles, C 60 , and Bromoalkanes/Triphenylamines †. Chinese Journal of Chemistry 2023, 41 (22) , 2975-2980. https://doi.org/10.1002/cjoc.202300292
    48. Jun‐Xiang Zhang, Yuan‐Ze Wu, Dong‐Mei Chen, Jun Xuan, Fei Li. One‐Pot Synthesis of Diverse 1,4‐[60]Fullerephenols via Three‐Component Umpolung Cascade Coupling of Phenols, C 60 , and Nucleophiles. Chemistry – A European Journal 2023, 29 (35) https://doi.org/10.1002/chem.202300391
    49. Da-Kang Zhang, Wen-Bin Ma, Shuo-Yuan Wei, De-Yun Chen, Xiao Hu, Jun Xuan, Fei Li. Synthesis of diverse unsymmetric 1,4-adducts via a three-component coupling reaction of malonate derivatives, [60]fullerene and electrophiles/nucleophiles. Organic Chemistry Frontiers 2023, 10 (7) , 1626-1632. https://doi.org/10.1039/D3QO00078H
    50. W.D.S.A. Miranda, N.F. Frazão, E. Moreira, D.L. Azevedo. Penta-belt: A new carbon nanobelt. Journal of Molecular Structure 2022, 1263 , 133055. https://doi.org/10.1016/j.molstruc.2022.133055
    51. Indranil Roy, Arthur H. G. David, Partha Jyoti Das, David J. Pe, J. Fraser Stoddart. Fluorescent cyclophanes and their applications. Chemical Society Reviews 2022, 51 (13) , 5557-5605. https://doi.org/10.1039/D0CS00352B
    52. Yanlin Gao, Mina Maruyama, Susumu Okada. Electrostatic properties of two-dimensional C 60 polymer thin films under an external electric field. Japanese Journal of Applied Physics 2022, 61 (7) , 075004. https://doi.org/10.35848/1347-4065/ac7762
    53. Chen Lu, Fengli Jiang, Jingang Wang. [6,6]CNB with controllable external electric field deformation: a theoretical study of the structure-function relationship. Materials Research Express 2022, 9 (6) , 064001. https://doi.org/10.1088/2053-1591/ac7382
    54. Zhe Liu, Wenru Song, Shaojie Yang, Chengshan Yuan, Zitong Liu, Hao‐Li Zhang, Xiangfeng Shao. Marriage of Heterobuckybowls with Triptycene: Molecular Waterwheels for Separating C 60 and C 70. Chemistry – A European Journal 2022, 28 (20) https://doi.org/10.1002/chem.202200306
    55. Juntaro Nogami, Yuki Nagashima, Haruki Sugiyama, Kazunori Miyamoto, Yusuke Tanaka, Hidehiro Uekusa, Atsuya Muranaka, Masanobu Uchiyama, Ken Tanaka. Synthesis of Cyclophenacene‐ and Chiral‐Type Cyclophenylene‐Naphthylene Belts. Angewandte Chemie 2022, 134 (15) https://doi.org/10.1002/ange.202200800
    56. Juntaro Nogami, Yuki Nagashima, Haruki Sugiyama, Kazunori Miyamoto, Yusuke Tanaka, Hidehiro Uekusa, Atsuya Muranaka, Masanobu Uchiyama, Ken Tanaka. Synthesis of Cyclophenacene‐ and Chiral‐Type Cyclophenylene‐Naphthylene Belts. Angewandte Chemie International Edition 2022, 61 (15) https://doi.org/10.1002/anie.202200800
    57. Xin-Rui Chen, Qian-Wen Zhang, Ge-Ge Tao, Jun Xuan, Hong-Ping Zhou, Yu-Peng Tian, Fei Li. One-pot, three-component regioselective coupling reaction of triphenylamine/carbazole derivatives with [60]fullerene and indoles via an “umpolung relay” strategy. Organic Chemistry Frontiers 2021, 8 (21) , 5994-5999. https://doi.org/10.1039/D1QO01058A
    58. Mathias Hermann, Daniel Wassy, Birgit Esser. Conjugated Nanohoops Incorporating Donor, Acceptor, Hetero‐ or Polycyclic Aromatics. Angewandte Chemie International Edition 2021, 60 (29) , 15743-15766. https://doi.org/10.1002/anie.202007024
    59. Mathias Hermann, Daniel Wassy, Birgit Esser. Conjugated Nanohoops Incorporating Donor, Acceptor, Hetero‐ or Polycyclic Aromatics. Angewandte Chemie 2021, 133 (29) , 15877-15900. https://doi.org/10.1002/ange.202007024
    60. Qing-Hui Guo, Yunyan Qiu, Mei-Xiang Wang, J. Fraser Stoddart. Aromatic hydrocarbon belts. Nature Chemistry 2021, 13 (5) , 402-419. https://doi.org/10.1038/s41557-021-00671-9
    61. Emerson Sadurní, Francois Leyvraz, Thomas Stegmann, Thomas H. Seligman, Douglas J. Klein. Hidden duality and accidental degeneracy in cycloacene and Möbius cycloacene. Journal of Mathematical Physics 2021, 62 (5) https://doi.org/10.1063/5.0031586
    62. Birgit Esser, Mathias Hermann. Buckling up zigzag nanobelts. Nature Chemistry 2021, 13 (3) , 209-211. https://doi.org/10.1038/s41557-021-00642-0
    63. Wenbo Wang, Xiangfeng Shao. Synthesis and derivatization of hetera-buckybowls. Organic & Biomolecular Chemistry 2021, 19 (1) , 101-122. https://doi.org/10.1039/D0OB01931C
    64. Ángel J. Pérez‐Jiménez, Juan C. Sancho‐García. Theoretical Insights for Materials Properties of Cyclic Organic Nanorings. Advanced Theory and Simulations 2020, 3 (10) https://doi.org/10.1002/adts.202000110
    65. Fei Li, Yanbo Shang, Chuang Niu, Chao Li, Xinmin Huang, Guoyong Xu, Jun Xuan, Hongping Zhou, Shangfeng Yang. Potassium salt promoted regioselective three-component coupling synthesis of 1,4-asymmetrical [60]fullerene bisadducts with superior electron transport properties. Chemical Communications 2020, 56 (66) , 9513-9516. https://doi.org/10.1039/D0CC03857A
    66. Tapanendu Ghosh, Swapnadeep Mondal, Sukanya Mondal, Bholanath Mandal. Hückel Molecular Orbital Quantities of {X,Y}-Cyclacene Graphs Under Next-Nearest-Neighbour Approximations in Analytical Forms. Zeitschrift für Naturforschung A 2019, 74 (6) , 469-488. https://doi.org/10.1515/zna-2018-0488
    67. Andrey A. Fokin, Peter R. Schreiner. Synthesis of theoretically interesting molecules. 2019, 225-259. https://doi.org/10.1016/B978-0-12-814805-1.00009-0
    68. Maryam Ahmadzadeh Tofighy, Toraj Mohammadi. Barrier, Diffusion, and Transport Properties of Rubber Nanocomposites Containing Carbon Nanofillers. 2019, 253-285. https://doi.org/10.1016/B978-0-12-817342-8.00009-3
    69. Eiichi Nakamura. Chemistry: A Bridge between Molecular World and Real World. Journal of Synthetic Organic Chemistry, Japan 2018, 76 (11) , 1232-1246. https://doi.org/10.5059/yukigoseikyokaishi.76.1232
    70. Sho Furutani, Yutaka Matsuo, Susumu Okada. Electronic structure and cohesive energy of silylmethyl fullerene and methanoindene fullerene solids. Japanese Journal of Applied Physics 2018, 57 (8) , 085102. https://doi.org/10.7567/JJAP.57.085102
    71. Shengsheng Cui, Guilin Zhuang, Dapeng Lu, Qiang Huang, Hongxing Jia, Ya Wang, Shangfeng Yang, Pingwu Du. A Three‐Dimensional Capsule‐like Carbon Nanocage as a Segment Model of Capped Zigzag [12,0] Carbon Nanotubes: Synthesis, Characterization, and Complexation with C 70. Angewandte Chemie 2018, 130 (30) , 9474-9479. https://doi.org/10.1002/ange.201804031
    72. Shengsheng Cui, Guilin Zhuang, Dapeng Lu, Qiang Huang, Hongxing Jia, Ya Wang, Shangfeng Yang, Pingwu Du. A Three‐Dimensional Capsule‐like Carbon Nanocage as a Segment Model of Capped Zigzag [12,0] Carbon Nanotubes: Synthesis, Characterization, and Complexation with C 70. Angewandte Chemie International Edition 2018, 57 (30) , 9330-9335. https://doi.org/10.1002/anie.201804031
    73. Guglielmo Monaco, Riccardo Zanasi. Field-independent current strength. Theoretical Chemistry Accounts 2018, 137 (7) https://doi.org/10.1007/s00214-018-2283-3
    74. . Molecular Belts and Tubes. 2018, 141-212. https://doi.org/10.1002/9781119126126.ch4
    75. Sho Furutani, Susumu Okada. Energetics and electronic structures of chemically decorated C 60 chains. Japanese Journal of Applied Physics 2018, 57 (6S1) , 06HB02. https://doi.org/10.7567/JJAP.57.06HB02
    76. Matthew R. Golder, Lev N. Zakharov, Ramesh Jasti. Stereochemical implications toward the total synthesis of aromatic belts. Pure and Applied Chemistry 2017, 89 (11) , 1603-1617. https://doi.org/10.1515/pac-2017-0413
    77. Hermann A. Wegner. Auf dem Weg zu einer rationale Synthese von Kohlenstoffnanoröhren - Herstellung des ersten aromatischen Nanogürtels. Angewandte Chemie 2017, 129 (37) , 11139-11141. https://doi.org/10.1002/ange.201705970
    78. Hermann A. Wegner. On the Way to Carbon Nanotubes: The First Synthesis of an Aromatic Nanobelt. Angewandte Chemie International Edition 2017, 56 (37) , 10995-10996. https://doi.org/10.1002/anie.201705970
    79. Sho Furutani, Susumu Okada. Electronic properties of electron-doped [6,6]-phenyl-C61-butyric acid methyl ester and silylmethylfullerene. Chemical Physics Letters 2017, 678 , 5-8. https://doi.org/10.1016/j.cplett.2017.04.032
    80. Xuefeng Lu, Jishan Wu. After 60 Years of Efforts: The Chemical Synthesis of a Carbon Nanobelt. Chem 2017, 2 (5) , 619-620. https://doi.org/10.1016/j.chempr.2017.04.012
    81. Guillaume Povie, Yasutomo Segawa, Taishi Nishihara, Yuhei Miyauchi, Kenichiro Itami. Synthesis of a carbon nanobelt. Science 2017, 356 (6334) , 172-175. https://doi.org/10.1126/science.aam8158
    82. Ayesha Kausar. Advances in Polymer/Fullerene Nanocomposite: A Review on Essential Features and Applications. Polymer-Plastics Technology and Engineering 2017, 56 (6) , 594-605. https://doi.org/10.1080/03602559.2016.1233278
    83. Veronica Barone, Oded Hod, Juan E. Peralta. Modeling of Quasi-One-Dimensional Carbon Nanostructures with Density Functional Theory. 2017, 1297-1337. https://doi.org/10.1007/978-3-319-27282-5_24
    84. Sho Furutani, Susumu Okada. Electronic properties of pentaorgano[60]fullerenes under an external electric field. Applied Physics Express 2016, 9 (11) , 115103. https://doi.org/10.7567/APEX.9.115103
    85. Ryuta Sekiguchi, Shun Kudo, Jun Kawakami, Atsushi Sakai, Hiroshi Ikeda, Hiromu Nakamura, Kazuchika Ohta, Shunji Ito. Preparation of a Cyclic Polyphenylene Array for a Chiral-Type Carbon Nanotube Segment. Bulletin of the Chemical Society of Japan 2016, 89 (10) , 1260-1275. https://doi.org/10.1246/bcsj.20160145
    86. Yasutomo Segawa, Akiko Yagi, Katsuma Matsui, Kenichiro Itami. Design und Synthese von Kohlenstoffnanoröhrensegmenten. Angewandte Chemie 2016, 128 (17) , 5222-5245. https://doi.org/10.1002/ange.201508384
    87. Yasutomo Segawa, Akiko Yagi, Katsuma Matsui, Kenichiro Itami. Design and Synthesis of Carbon Nanotube Segments. Angewandte Chemie International Edition 2016, 55 (17) , 5136-5158. https://doi.org/10.1002/anie.201508384
    88. Dapeng Lu, Haotian Wu, Yafei Dai, Hong Shi, Xiang Shao, Shangfeng Yang, Jinlong Yang, Pingwu Du. A cycloparaphenylene nanoring with graphenic hexabenzocoronene sidewalls. Chemical Communications 2016, 52 (44) , 7164-7167. https://doi.org/10.1039/C6CC03002E
    89. Yasutomo Segawa, Hideto Ito, Kenichiro Itami. Structurally uniform and atomically precise carbon nanostructures. Nature Reviews Materials 2016, 1 (1) https://doi.org/10.1038/natrevmats.2015.2
    90. Shigeru Yamago, Eiichi Kayahara, Sigma Hashimoto. Cycloparaphenylenes and Carbon Nanorings. 2015, 143-162. https://doi.org/10.1002/9783527689545.ch6
    91. Igor K. Petrushenko, Konstantin B. Petrushenko. Mechanical properties of carbon, silicon carbide, and boron nitride nanotubes: effect of ionization. Monatshefte für Chemie - Chemical Monthly 2015, 146 (10) , 1603-1608. https://doi.org/10.1007/s00706-015-1537-1
    92. Kohei Narita, Susumu Okada. Radical spin interaction in one-dimensional chains of decamethyl C60. Chemical Physics Letters 2015, 634 , 129-133. https://doi.org/10.1016/j.cplett.2015.05.075
    93. Kohei Narita, Susumu Okada. Spin-state tuning of decamethyl C 60 by an electric field: First-principles studies on electronic structure. Japanese Journal of Applied Physics 2015, 54 (6S1) , 06FF09. https://doi.org/10.7567/JJAP.54.06FF09
    94. Somnath Karmakar, Sukanya Mondal, Bholanath Mandal. Eigensolutions of cyclopolyacene graphs. Molecular Physics 2015, 113 (7) , 719-726. https://doi.org/10.1080/00268976.2014.971898
    95. Tomohiko Nishiuchi, Masahiko Iyoda. Bent π‐Conjugated Systems Composed of Three‐Dimensional Benzoannulenes. The Chemical Record 2015, 15 (1) , 329-346. https://doi.org/10.1002/tcr.201402079
    96. Birgit Esser. Theoretical analysis of [5.5.6]cyclacenes: electronic properties, strain energies and substituent effects. Physical Chemistry Chemical Physics 2015, 17 (11) , 7366-7372. https://doi.org/10.1039/C5CP00341E
    97. Evan R. Darzi, Ramesh Jasti. The dynamic, size-dependent properties of [5]–[12]cycloparaphenylenes. Chemical Society Reviews 2015, 44 (18) , 6401-6410. https://doi.org/10.1039/C5CS00143A
    98. Veronica Barone, Oded Hod, Juan E. Peralta. Modeling of Quasi-One-Dimensional Carbon Nanostructures with Density Functional Theory. 2015, 1-41. https://doi.org/10.1007/978-94-007-6169-8_24-2
    99. Kohei Narita, Susumu Okada. Spin-state tuning of decamethyl C60 by an electric field. Chemical Physics Letters 2014, 614 , 10-14. https://doi.org/10.1016/j.cplett.2014.08.063
    100. Tomohiko Nishiuchi, Masahiko Iyoda. Bent π-Conjugated System Composed of Two Dibenzocyclooctatetraene Units: Multifunctional Properties of Dynamic Molecular Tweezers in Solution and the Solid State. Bulletin of the Chemical Society of Japan 2014, 87 (9) , 960-973. https://doi.org/10.1246/bcsj.20140135
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect