ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Hemilabile Ligands in Organolithium Chemistry:  Substituent Effects on Lithium Ion Chelation

View Author Information
Contribution from the Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301
Cite this: J. Am. Chem. Soc. 2003, 125, 50, 15376–15387
Publication Date (Web):November 12, 2003
https://doi.org/10.1021/ja030322d
Copyright © 2003 American Chemical Society

    Article Views

    1460

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (3)»

    Abstract

    Abstract Image

    The lithium diisopropylamide-mediated 1,2-elimination of 1-bromocyclooctene to provide cyclooctyne is investigated using approximately 50 potentially hemilabile polyethers and amino ethers. Rate laws for selected ligands reveal chelated monomer-based pathways. The dependence of the rates on ligand structure shows that anticipated rate accelerations based on the gem-dimethyl effect are nonexistent and that substituents generally retard the reaction. With the aid of semiempirical and DFT computational studies, the factors influencing chelation are discussed. It seems that severe buttressing within chelates of the substitutionally rich ligands precludes a net stabilization of the chelates relative to nonchelated (η1-solvated) forms. One ligandMeOCH2CH2NMe2appears to promote elimination uniquely by a higher-coordinate monomer-based pathway.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Tabular and graphical presentation of rate data as well as general experimental methods (PDF). X-ray crystallographic file in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 52 publications.

    1. Yun Ma, Russell F. Algera, Ryan A. Woltornist, David B. Collum. Sodium Diisopropylamide-Mediated Dehydrohalogenations: Influence of Primary- and Secondary-Shell Solvation. The Journal of Organic Chemistry 2019, 84 (17) , 10860-10869. https://doi.org/10.1021/acs.joc.9b01428
    2. Hélène Guyon, Anne Boussonnière, and Anne-Sophie Castanet . Readily Accessible 1,2-Amino Ether Ligands for Enantioselective Intramolecular Carbolithiation. The Journal of Organic Chemistry 2017, 82 (9) , 4949-4957. https://doi.org/10.1021/acs.joc.7b00423
    3. Michael J. Houghton and David B. Collum . Lithium Enolates Derived from Weinreb Amides: Insights into Five-Membered Chelate Rings. The Journal of Organic Chemistry 2016, 81 (22) , 11057-11064. https://doi.org/10.1021/acs.joc.6b02067
    4. Michael J. Houghton, Christopher J. Huck, Stephen W. Wright, and David B. Collum . Lithium Enolates Derived from Pyroglutaminol: Mechanism and Stereoselectivity of an Azaaldol Addition. Journal of the American Chemical Society 2016, 138 (32) , 10276-10283. https://doi.org/10.1021/jacs.6b05481
    5. Michael J. Houghton, Naomi A. Biok, Christopher J. Huck, Russell F. Algera, Ivan Keresztes, Stephen W. Wright, and David B. Collum . Lithium Enolates Derived from Pyroglutaminol: Aggregation, Solvation, and Atropisomerism. The Journal of Organic Chemistry 2016, 81 (10) , 4149-4157. https://doi.org/10.1021/acs.joc.6b00459
    6. Evan H. Tallmadge, Janis Jermaks, and David B. Collum . Structure–Reactivity Relationships in Lithiated Evans Enolates: Influence of Aggregation and Solvation on the Stereochemistry and Mechanism of Aldol Additions. Journal of the American Chemical Society 2016, 138 (1) , 345-355. https://doi.org/10.1021/jacs.5b10980
    7. Kyoung Joo Jin and David B. Collum . Solid-State and Solution Structures of Glycinimine-Derived Lithium Enolates. Journal of the American Chemical Society 2015, 137 (45) , 14446-14455. https://doi.org/10.1021/jacs.5b09524
    8. Daniel M. Seo, Paul D. Boyle, Joshua L. Allen, Sang-Don Han, Erlendur Jónsson, Patrik Johansson, and Wesley A. Henderson . Solvate Structures and Computational/Spectroscopic Characterization of LiBF4 Electrolytes. The Journal of Physical Chemistry C 2014, 118 (32) , 18377-18386. https://doi.org/10.1021/jp5046782
    9. Hans J. Reich . Role of Organolithium Aggregates and Mixed Aggregates in Organolithium Mechanisms. Chemical Reviews 2013, 113 (9) , 7130-7178. https://doi.org/10.1021/cr400187u
    10. Antonio Ramirez, Boguslaw Mudryk, Lucius Rossano, and Srinivas Tummala . A Mechanistic Study on the Amidation of Esters Mediated by Sodium Formamide. The Journal of Organic Chemistry 2012, 77 (1) , 775-779. https://doi.org/10.1021/jo2021828
    11. Wei-Hua Mu, Gregory A. Chasse and De-Cai Fang . A Synergy between Experiment and Theory for the Formation of Pyridine and Pyrrole Derivatives from Selected Butadienes and Organolithium Reagents: Mechanism, Solvent, and Substituent Effect. Organometallics 2009, 28 (20) , 5848-5856. https://doi.org/10.1021/om900242g
    12. Timothy S. De Vries, Anandarup Goswami, Lara R. Liou, Jocelyn M. Gruver, Emily Jayne and David B. Collum. Lithium Phenolates Solvated by Tetrahydrofuran and 1,2-Dimethoxyethane: Structure Determination Using the Method of Continuous Variation. Journal of the American Chemical Society 2009, 131 (36) , 13142-13154. https://doi.org/10.1021/ja9047784
    13. Jason C. Riggs, Kanwal J. Singh, Ma Yun and David B. Collum. Anionic Snieckus−Fries Rearrangement: Solvent Effects and Role of Mixed Aggregates. Journal of the American Chemical Society 2008, 130 (41) , 13709-13717. https://doi.org/10.1021/ja804087r
    14. Holger Ott, Christian Däschlein, Dirk Leusser, Daniel Schildbach, Timo Seibel, Dietmar Stalke and Carsten Strohmann. Structure/Reactivity Studies on an α-Lithiated Benzylsilane: Chemical Interpretation of Experimental Charge Density. Journal of the American Chemical Society 2008, 130 (36) , 11901-11911. https://doi.org/10.1021/ja711104q
    15. Lara R. Liou,, Anne J. McNeil,, Antonio Ramirez,, Gilman E. S. Toombes,, Jocelyn M. Gruver, and, David B. Collum. Lithium Enolates of Simple Ketones:  Structure Determination Using the Method of Continuous Variation. Journal of the American Chemical Society 2008, 130 (14) , 4859-4868. https://doi.org/10.1021/ja7100642
    16. Yun Ma and, David B. Collum. Lithium Diisopropylamide-Mediated Reactions of Imines, Unsaturated Esters, Epoxides, and Aryl Carbamates:  Influence of Hexamethylphosphoramide and Ethereal Cosolvents on Reaction Mechanisms. Journal of the American Chemical Society 2007, 129 (47) , 14818-14825. https://doi.org/10.1021/ja074554e
    17. Peter F. Godenschwager and, David B. Collum. Lithium Hexamethyldisilazide-Mediated Enolizations:  Influence of Chelating Ligands and Hydrocarbon Cosolvents on the Rates and Mechanisms. Journal of the American Chemical Society 2007, 129 (39) , 12023-12031. https://doi.org/10.1021/ja074018m
    18. Wesley A. Henderson. Crystallization Kinetics of Glyme−LiX and PEO−LiX Polymer Electrolytes. Macromolecules 2007, 40 (14) , 4963-4971. https://doi.org/10.1021/ma061866d
    19. Svetlana Popenova,, Robert C. Mawhinney, and, Georg Schreckenbach. Density Functional Study of Lithium Hexamethyldisilazide (LiHMDS) Complexes:  Effects of Solvation and Aggregation. Inorganic Chemistry 2007, 46 (10) , 3856-3864. https://doi.org/10.1021/ic061599s
    20. Scott T. Chadwick,, Antonio Ramirez,, Lekha Gupta, and, David B. Collum. n-Butyllithium/N,N,N‘,N‘-Tetramethylethylenediamine-Mediated Ortholithiations of Aryl Oxazolines:  Substrate-Dependent Mechanisms. Journal of the American Chemical Society 2007, 129 (8) , 2259-2268. https://doi.org/10.1021/ja068057u
    21. Kanwal Jit Singh and, David B. Collum. Lithium Diisopropylamide-Mediated Ortholithiation and Anionic Fries Rearrangement of Aryl Carbamates:  Role of Aggregates and Mixed Aggregates. Journal of the American Chemical Society 2006, 128 (42) , 13753-13760. https://doi.org/10.1021/ja064655x
    22. Antonio Ramirez,, Xiufeng Sun, and, David B. Collum. Lithium Diisopropylamide-Mediated Enolization:  Catalysis by Hemilabile Ligands. Journal of the American Chemical Society 2006, 128 (31) , 10326-10336. https://doi.org/10.1021/ja062147h
    23. A. Erik Rubin,, Srinivas Tummala,, Douglas A. Both,, Chenchi Wang, and, Edward J. Delaney. Emerging Technologies Supporting Chemical Process R&D and Their Increasing Impact on Productivity in the Pharmaceutical Industry. Chemical Reviews 2006, 106 (7) , 2794-2810. https://doi.org/10.1021/cr040674i
    24. Wesley A. Henderson. Glyme−Lithium Salt Phase Behavior. The Journal of Physical Chemistry B 2006, 110 (26) , 13177-13183. https://doi.org/10.1021/jp061516t
    25. Pinjing Zhao,, Anthony Condo,, Ivan Keresztes, and, David B. Collum. Reaction of Ketones with Lithium Hexamethyldisilazide:  Competitive Enolizations and 1,2-Additions. Journal of the American Chemical Society 2004, 126 (10) , 3113-3118. https://doi.org/10.1021/ja030582v
    26. Frithjof Bjørnstad, Eirik Sundby, Bård Helge Hoff. Directed Lithiation of Protected 4-Chloropyrrolopyrimidine: Addition to Aldehydes and Ketones Aided by Bis(2-dimethylaminoethyl)ether. Molecules 2023, 28 (3) , 932. https://doi.org/10.3390/molecules28030932
    27. Xiao‐Fei Fu, Qiang Zhao, Wen‐Xian Zhao. Synthesis of β‐Alkoxy Amines from Alkenes, Sulfonyl Azides, and Alcohols though Copper‐Catalyzed Three‐Component Tandem Reactions via Regioselective Ring‐Opening of Aziridine Intermediates. Asian Journal of Organic Chemistry 2021, 10 (5) , 1161-1166. https://doi.org/10.1002/ajoc.202100087
    28. Wesley A. Henderson, Daniel M. Seo, Sang-Don Han, Oleg Borodin. Electrolyte Solvation and Ionic Association. VII. Correlating Raman Spectroscopic Data with Solvate Species. Journal of The Electrochemical Society 2020, 167 (11) , 110551. https://doi.org/10.1149/1945-7111/aba44a
    29. Philipp Schüler, Helmar Görls, Matthias Westerhausen, Sven Krieck. Bis(trimethylsilyl)amide complexes of s-block metals with bidentate ether and amine ligands. Dalton Transactions 2019, 48 (24) , 8966-8975. https://doi.org/10.1039/C9DT01426H
    30. Zheng Yue, Qiang Ma, Xinyi Mei, Abigail Schulz, Hamza Dunya, Dana Alramahi, Christopher McGarry, Jim Tufts, Amartya Chakrabarti, Rituparna Saha, Braja K. Mandal. Specifically Designed Ionic Liquids—Formulations, Physicochemical Properties, and Electrochemical Double Layer Storage Behavior. ChemEngineering 2019, 3 (2) , 58. https://doi.org/10.3390/chemengineering3020058
    31. L. I. Demina, L. G. Kuz’mina, S. V. Demin, N. A. Shokurova, V. I. Zhilov, A. Yu. Tsivadze. Study of lithium complexes with benzo-15-crown-5 ether by X-ray diffraction and IR spectroscopy. Russian Journal of Inorganic Chemistry 2017, 62 (11) , 1536-1543. https://doi.org/10.1134/S0036023617110031
    32. Qiang Ma, Braja K. Mandal. Highly Conductive Electrolytes Derived from Nitrile Solvents. Journal of The Electrochemical Society 2015, 162 (7) , A1276-A1281. https://doi.org/10.1149/2.0701507jes
    33. Oleg Borodin, Sang-Don Han, James S. Daubert, Daniel M. Seo, Sung-Hyun Yun, Wesley A. Henderson. Electrolyte Solvation and Ionic Association. Journal of The Electrochemical Society 2015, 162 (4) , A501-A510. https://doi.org/10.1149/2.0891503jes
    34. Sten O. Nilsson Lill. Computational Perspectives on Organolithiums. 2014, 33-52. https://doi.org/10.1002/9783527667512.ch2
    35. Filippo M. Perna, Antonio Salomone, Vito Capriati. Oxygen‐Bearing Lithium Compounds in Modern Synthesis. 2014, 151-190. https://doi.org/10.1002/9783527667512.ch6
    36. Joseph S. Renny, Laura L. Tomasevich, Evan H. Tallmadge, David B. Collum. Methode der kontinuierlichen Variation: Verwendung von Job‐Plots zur Untersuchung molekularer Assoziationen in der metallorganischen Chemie. Angewandte Chemie 2013, 125 (46) , 12218-12234. https://doi.org/10.1002/ange.201304157
    37. Joseph S. Renny, Laura L. Tomasevich, Evan H. Tallmadge, David B. Collum. Method of Continuous Variations: Applications of Job Plots to the Study of Molecular Associations in Organometallic Chemistry. Angewandte Chemie International Edition 2013, 52 (46) , 11998-12013. https://doi.org/10.1002/anie.201304157
    38. Evgeny V. Shulishov, Yury V. Tomilov, Oleg M. Nefedov. Annelated 4,5-diazaspiro[2.4]hepta-4,6-diene obtained by [3 + 2] Cycloaddition of Diazocyclopropane to Cyclooctyne. Mendeleev Communications 2013, 23 (4) , 187-189. https://doi.org/10.1016/j.mencom.2013.07.002
    39. Amani Kaabi, Rafâa Besbes. Amino Phosphate Monoesters: A Convenient Source of 2-Alkylamino-3-methoxy-3-phenylpropionates via Aziridinium Ions. Synthetic Communications 2013, 43 (11) , 1587-1593. https://doi.org/10.1080/00397911.2011.653703
    40. Daniel M. Seo, Paul D. Boyle, Wesley A. Henderson. Poly[[(acetonitrile)lithium(I)]-μ 3 -tetrafluoridoborato]. Acta Crystallographica Section E Structure Reports Online 2011, 67 (5) , m547-m547. https://doi.org/10.1107/S1600536811012141
    41. Li Zhang, Xiao-jun Wang, Dhileep Kumar Krishnamurthy, Chris H. Senanayake. Bis[2-( N , N -dimethylamino)ethyl] Ether. 2011https://doi.org/10.1002/047084289X.rn01295
    42. Brahim Ould Elemine, Rafâa Besbes, Mohamed Rached Ennigrou. Straightforward Synthesis of 1,2-Amino Phosphate Diesters and Application to the Synthesis of Novel 1,2-Amino Ether Diesters. Synthetic Communications 2009, 40 (1) , 64-73. https://doi.org/10.1080/00397910902944090
    43. Jared K. Nelson, Christopher T. Burns, Miles P. Smith, Brendan Twamley, N.R. Natale. Synthetic utility of epoxides for chiral functionalization of isoxazoles. Tetrahedron Letters 2008, 49 (19) , 3078-3082. https://doi.org/10.1016/j.tetlet.2008.03.059
    44. Preston A. Chase, Martin Lutz, Anthony L. Spek, Robert A. Gossage, Gerard van Koten. Solid-state and solution structures of hetero-aggregates formed between nBuLi and NCN pincer aryl lithium. Dalton Transactions 2008, 106 (42) , 5783. https://doi.org/10.1039/b805092a
    45. David B. Collum, Anne J. McNeil, Antonio Ramirez. Lithiumdiisopropylamid: Reaktionskinetik in Lösung und Folgerungen für die organische Synthese. Angewandte Chemie 2007, 119 (17) , 3060-3077. https://doi.org/10.1002/ange.200603038
    46. David B. Collum, Anne J. McNeil, Antonio Ramirez. Lithium Diisopropylamide: Solution Kinetics and Implications for Organic Synthesis. Angewandte Chemie International Edition 2007, 46 (17) , 3002-3017. https://doi.org/10.1002/anie.200603038
    47. Virginia Díez, Gustavo Espino, Félix A. Jalón, Blanca R. Manzano, Mercedes Pérez-Manrique. Synthesis and structure of new palladium complexes with the ligand 2-(diphenylphosphino)-1-methylimidazole: Evidence of hemilability. Journal of Organometallic Chemistry 2007, 692 (7) , 1482-1495. https://doi.org/10.1016/j.jorganchem.2006.11.045
    48. Mauro Bassetti. Kinetic Evaluation of Ligand Hemilability in Transition Metal Complexes. European Journal of Inorganic Chemistry 2006, 2006 (22) , 4473-4482. https://doi.org/10.1002/ejic.200600212
    49. Robert A. Gossage, Johann T. B. H. Jastrzebski, Gerard van Koten. Heteroaggregate von Aryl‐ und Alkyllithiumreagentien: Faszinierende Strukturen mit grundlegender Bedeutung. Angewandte Chemie 2005, 117 (10) , 1472-1478. https://doi.org/10.1002/ange.200462103
    50. Robert A. Gossage, Johann T. B. H. Jastrzebski, Gerard van Koten. Hetero‐Aggregate Compounds of Aryl and Alkyl Lithium Reagents: A Structurally Intriguing Aspect of Organolithium Chemistry. Angewandte Chemie International Edition 2005, 44 (10) , 1448-1454. https://doi.org/10.1002/anie.200462103
    51. Claudia M. P. Kronenburg, Evelien Rijnberg, Johann T. B. H. Jastrzebski, Huub Kooijman, Martin Lutz, Anthony L. Spek, Robert A. Gossage, Gerard van Koten. Formation of Organolithium Hetero‐Aggregates [Li 4 Ar 2 ( n Bu) 2 ] (Ar=C 6 H 4 CH(Me)NMe 2 ‐2) during the Directed ortho ‐Lithiation of [1‐(Dimethylamino)ethyl]benzene. Chemistry – A European Journal 2005, 11 (1) , 253-261. https://doi.org/10.1002/chem.200400828
    52. I. B. Gorrell. 3  Alkali and alkaline-earth metals. Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem. 2004, 100 , 15-33. https://doi.org/10.1039/B311776F

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect