ACS Publications. Most Trusted. Most Cited. Most Read
Strain Energy of Small Ring Hydrocarbons. Influence of C−H Bond Dissociation Energies
My Activity

Figure 1Loading Img
    Article

    Strain Energy of Small Ring Hydrocarbons. Influence of C−H Bond Dissociation Energies
    Click to copy article linkArticle link copied!

    View Author Information
    Contribution from the Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2004, 126, 13, 4444–4452
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja036309a
    Published March 13, 2004
    Copyright © 2004 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Ab initio calculations at the G2, G3, and CBS-Q levels of theory have been applied to the question of the origin of ring strain in a series of unsaturated hydrocarbons. In addition to the angular ring strain germane to all three-membered ring hydrocarbons, a general trend is in evidence that suggests that the increased ring strain (SE) of unsaturated small ring alkenes may be attributed in part to their relatively weak allylic C−H bonds. The high strain energy of cyclopropene (54.1 kcal/ mol) is attributed largely to angular strain. The anomalously low SE of cyclobutene relative to cyclobutane (ΔSE = 4 kcal/mol) is a consequence of normal C−H bond dissociation energies for cyclobutane (100.6 kcal/mol) and very strong vinyl C−H bonds (111.9 kcal/mol) and a relatively strong π-bond energy (63.5 kcal/mol) for cyclobutene. The greater SE of methylenecyclopropane (39.5 kcal/ mol), relative to methylcyclopropane (29.8 kcal/mol), can be attributed to the strong ring C−H bonds of methylcyclopropane (110.5 kcal/mol) and relatively weak allylic C−H bonds (99.3 kcal/mol) of methylenecyclopropane. The increased SE of 1-methylcyclopropene relative to isomeric methylenecyclopropane is ascribed to its weak ring C−H bonds and to angular strain. The relative thermodynamic stability of a series of small ring alkenes is determined by a measure of their hydrogenation enthalpies. Independent confirmation of the SEs of a series of substituted cyclopropenes is provided by their dimerization/combination with cyclopropane to form a six-membered ring reference compound.

    Copyright © 2004 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    Click to copy section linkSection link copied!

    Tables S1−S8 [G2, G3, and CBS-Q total energies (au) and enthalpies (au)] and Cartesian coordinates of selected compounds and their corresponding CBS-Q energies, enthalpies, and free energies (Appendix) (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 252 publications.

    1. Chen Cui, Qi Li, Zhen Wang, Yu Lu, Xiao-Hui Yang. Catalyst-Controlled Divergent Cyclopropene Hydroselenation. ACS Catalysis 2025, Article ASAP.
    2. Yuwen Qi, Cuiping Wang. Rebuttal to Correspondence on “Unveiling the Contribution of Hydrogen Radicals to Per- and Polyfluoroalkyl Substances (PFASs) Defluorination: Applicability and Degradation Mechanisms”. Environmental Science & Technology 2025, 59 (15) , 7794-7797. https://doi.org/10.1021/acs.est.5c03562
    3. Jia-Yue Liu, Li-Juan Ma, Ru-Jie Yang, Yu Liu, Zheng Shu, Yong-Qing Cai, Qing-Wen Zhang, Feng-Qing Yang, Jian-Bo Wan. Preparation of Rare Dehydrated Protopanaxadiol Ginsenosides from Panax notoginseng Leaves by Confined Microwave-Driven Transformation. Journal of Agricultural and Food Chemistry 2025, 73 (1) , 678-692. https://doi.org/10.1021/acs.jafc.4c08400
    4. Sourabh Biswas, Manasi Mallick, Gouri Nanda K S, Palasetty Chandu, Devarajulu Sureshkumar. A Visible Light Photoredox Approach for Synthesizing Sulfone-Functionalized Cyclopropenes. Organic Letters 2024, 26 (48) , 10207-10212. https://doi.org/10.1021/acs.orglett.4c03278
    5. Xiangdong Li, Jérôme Waser. Forging 1,1′-Bicyclopropenyls by Synergistic Au/Ag Dual-Catalyzed Cyclopropenyl Cross-Coupling. Journal of the American Chemical Society 2024, 146 (43) , 29712-29719. https://doi.org/10.1021/jacs.4c10996
    6. Subhradeep Kar, Prabhat K. Maharana, Tharmalingam Punniyamurthy, Vishal Trivedi. Tandem (4 + 3)-Annulation of Aziridines: Stereoselective Access to Fused Azepinoindoles. Organic Letters 2023, 25 (49) , 8850-8855. https://doi.org/10.1021/acs.orglett.3c03547
    7. Kshitiz Verma, Manmath Mishra, Prabhat Kumar Maharana, Hemanga Bhattacharyya, Sharajit Saha, Tharmalingam Punniyamurthy. Sc(OTf)3-Catalyzed Domino C–C/C–N Bond Formation of Aziridines with Quinones via Radical Pathway. Organic Letters 2023, 25 (43) , 7933-7938. https://doi.org/10.1021/acs.orglett.3c03318
    8. Vignesh Palani, Alison E. Wendlandt. Strain-Inducing Positional Alkene Isomerization. Journal of the American Chemical Society 2023, 145 (36) , 20053-20061. https://doi.org/10.1021/jacs.3c06935
    9. Tomohiro Kikuchi, Takeshi Yasui, Yoshihiko Yamamoto. Cycloaddition of Cyclopropenes with Alkynes via Carbon–Carbon Double Bond Cleavage Enabled by a Ruthenium Catalyst: Synthesis of Cyclopentadienes and Cycloheptatrienes. ACS Catalysis 2023, 13 (14) , 9656-9666. https://doi.org/10.1021/acscatal.3c02543
    10. Prabhat K. Maharana, Tanumay Sarkar, Subhradeep Kar, Siddhartha K. Purkayastha, Ankur K. Guha, Tharmalingam Punniyamurthy. Cobalt-Catalyzed Stereospecific C–N/C–O Bond Formation of Oxiranes with Diaziridines. The Journal of Organic Chemistry 2023, 88 (13) , 9447-9458. https://doi.org/10.1021/acs.joc.3c00445
    11. Chenting Yan, Rei Kinjo. Three-Membered Aluminacycles. Journal of the American Chemical Society 2023, 145 (24) , 12967-12986. https://doi.org/10.1021/jacs.3c03152
    12. Geng-Xin Liu, Xiao-Ting Jie, Xing-lin Li, Li-Sheng Yang, Huang Qiu, Wen-Hao Hu. Carbon-Centered Radical with Leaving Group-Mediated Ring Opening of Cyclopropenes via the Rearrangement of Cyclopropyl to the Allyl Radical: A General Access to Multisubstituted 1,3-Dienes. ACS Catalysis 2023, 13 (8) , 5307-5314. https://doi.org/10.1021/acscatal.3c00619
    13. Renate Melngaile, Melita Videja, Janis Kuka, Artis Kinens, Dzintars Zacs, Janis Veliks. Synthetic Access to Fluorocyclopropylidenes. Organic Letters 2023, 25 (13) , 2280-2284. https://doi.org/10.1021/acs.orglett.3c00579
    14. Ziyan Zhang, Vladimir Gevorgyan. Palladium Hydride-Enabled Hydroalkenylation of Strained Molecules. Journal of the American Chemical Society 2022, 144 (45) , 20875-20883. https://doi.org/10.1021/jacs.2c09045
    15. Alicia Rey Planells, Arturo Espinosa Ferao. Accurate Ring Strain Energies of Unsaturated Three-Membered Heterocycles with One Group 13–16 Element. Inorganic Chemistry 2022, 61 (17) , 6459-6468. https://doi.org/10.1021/acs.inorgchem.2c00067
    16. Zepeng Zhang, Yunpeng Gao, Shufeng Chen, Jianbo Wang. Palladium-Catalyzed Living/Controlled Vinyl Addition Polymerization of Cyclopropenes. Journal of the American Chemical Society 2021, 143 (42) , 17806-17815. https://doi.org/10.1021/jacs.1c09071
    17. Anurag Singh, Arnab Dey, Chandra M. R. Volla. Rh(III)-Catalyzed Stereoselective C–C Bond Cleavage of ACPs with N-Phenoxyacetamides: The Critical Role of the Nucleophilic Directing Group. The Journal of Organic Chemistry 2021, 86 (15) , 10474-10483. https://doi.org/10.1021/acs.joc.1c01135
    18. Mauro Mato, Allegra Franchino, Cristina Garcı́a-Morales, Antonio M. Echavarren. Gold-Catalyzed Synthesis of Small Rings. Chemical Reviews 2021, 121 (14) , 8613-8684. https://doi.org/10.1021/acs.chemrev.0c00697
    19. Xiaotian Zhao, Wanqiu Huang, Shibo Lin, Xi Chen, Xirui Guo, Dehong Zou, Guodong Ye. Density Functional Theory Guide for an Allyl Monomer Polymerization Mechanism: Photoinduced Radical-Mediated [3 + 2] Cyclization. ACS Omega 2021, 6 (24) , 15608-15616. https://doi.org/10.1021/acsomega.1c00165
    20. Shaozhen Nie, Alexander Lu, Erin L. Kuker, Vy M. Dong. Enantioselective Hydrothiolation: Diverging Cyclopropenes through Ligand Control. Journal of the American Chemical Society 2021, 143 (16) , 6176-6184. https://doi.org/10.1021/jacs.1c00939
    21. Xin-Ting Liang, Bao-Chuan Sun, Nan Zhang, Zhong-Chao Zhang, Yuan-He Li, Qian-Qian Xu, Chang Liu, Jia-Hua Chen, Zhen Yang. Asymmetric Total Synthesis of (−)-Spirochensilide A, Part 2: The Final Phase and Completion. The Journal of Organic Chemistry 2021, 86 (3) , 2158-2172. https://doi.org/10.1021/acs.joc.0c02510
    22. Anurag Noonikara-Poyil, Shawn G. Ridlen, H. V. Rasika Dias. Isolable Copper(I) η2-Cyclopropene Complexes. Inorganic Chemistry 2020, 59 (24) , 17860-17865. https://doi.org/10.1021/acs.inorgchem.0c02886
    23. Pallab Karjee, Tanumay Sarkar, Subhradeep Kar, Tharmalingam Punniyamurthy. Transition-Metal-Free Stereospecific Oxidative Annulative Coupling of Indolines with Aziridines. The Journal of Organic Chemistry 2020, 85 (12) , 8261-8270. https://doi.org/10.1021/acs.joc.0c00899
    24. Andrew Z. Zhou, Kai Chen, Frances H. Arnold. Enzymatic Lactone-Carbene C–H Insertion to Build Contiguous Chiral Centers. ACS Catalysis 2020, 10 (10) , 5393-5398. https://doi.org/10.1021/acscatal.0c01349
    25. Xin-Ting Liang, Jia-Hua Chen, Zhen Yang. Asymmetric Total Synthesis of (−)-Spirochensilide A. Journal of the American Chemical Society 2020, 142 (18) , 8116-8121. https://doi.org/10.1021/jacs.0c02522
    26. Sheng Feng, Hua Hao, Peng Liu, Stephen L. Buchwald. Diastereo- and Enantioselective CuH-Catalyzed Hydroamination of Strained Trisubstituted Alkenes. ACS Catalysis 2020, 10 (1) , 282-291. https://doi.org/10.1021/acscatal.9b04871
    27. Qi Zhao, Wen-Juan Hao, Hao-Nan Shi, Ting Xu, Shu-Jiang Tu, Bo Jiang. Photocatalytic Annulation–Alkynyl Migration Strategy for Multiple Functionalization of Dual Unactivated Alkenes. Organic Letters 2019, 21 (23) , 9784-9789. https://doi.org/10.1021/acs.orglett.9b04018
    28. Brandon H. Bowser, Ching-Hsien Ho, Stephen L. Craig. High Mechanophore Content, Stress-Relieving Copolymers Synthesized via RAFT Polymerization. Macromolecules 2019, 52 (22) , 9032-9038. https://doi.org/10.1021/acs.macromol.9b01792
    29. Quanzhe Li, Liuzhu Yu, Yin Wei, Min Shi. Synthesis of Diiodinated All-Carbon 3,3′-Diphenyl-1,1′-spirobiindene Derivatives via Cascade Enyne Cyclization and Electrophilic Aromatic Substitution. The Journal of Organic Chemistry 2019, 84 (14) , 9282-9296. https://doi.org/10.1021/acs.joc.9b01418
    30. Molly S. Blevins, Dustin R. Klein, Jennifer S. Brodbelt. Localization of Cyclopropane Modifications in Bacterial Lipids via 213 nm Ultraviolet Photodissociation Mass Spectrometry. Analytical Chemistry 2019, 91 (10) , 6820-6828. https://doi.org/10.1021/acs.analchem.9b01038
    31. Arnab Dey, Neetipalli Thrimurtulu, Chandra M. R. Volla. Cobalt-Catalyzed Annulation Reactions of Alkylidenecyclopropanes: Access to Spirocyclopropanes at Room Temperature. Organic Letters 2019, 21 (10) , 3871-3875. https://doi.org/10.1021/acs.orglett.9b01392
    32. Robin Schuldt, Johannes Kästner, Stefan Naumann. Proton Affinities of N-Heterocyclic Olefins and Their Implications for Organocatalyst Design. The Journal of Organic Chemistry 2019, 84 (4) , 2209-2218. https://doi.org/10.1021/acs.joc.8b03202
    33. Wei Fang, Yin Wei, Min Shi. Palladium(0)-Catalyzed Intramolecular Cascade Cyclization of Methylenecyclopropanes. Organic Letters 2018, 20 (22) , 7141-7144. https://doi.org/10.1021/acs.orglett.8b03084
    34. Longyang Dian, Ilan Marek. Asymmetric Preparation of Polysubstituted Cyclopropanes Based on Direct Functionalization of Achiral Three-Membered Carbocycles. Chemical Reviews 2018, 118 (18) , 8415-8434. https://doi.org/10.1021/acs.chemrev.8b00304
    35. Kristin N. Bauer, Lei Liu, Denis Andrienko, Manfred Wagner, Emily K. Macdonald, Michael P. Shaver, and Frederik R. Wurm . Polymerizing Phostones: A Fast Way to In-Chain Poly(phosphonate)s with Adjustable Hydrophilicity. Macromolecules 2018, 51 (4) , 1272-1279. https://doi.org/10.1021/acs.macromol.7b02473
    36. Michael T. Peruzzi, Stephen J. Lee, and Michel R. Gagné . Gold(I) Catalyzed Dearomative Claisen Rearrangement of Allyl, Allenyl Methyl, and Propargyl Aryl Ethers. Organic Letters 2017, 19 (22) , 6256-6259. https://doi.org/10.1021/acs.orglett.7b03306
    37. Gabriele Fumagalli, Steven Stanton, and John F. Bower . Recent Methodologies That Exploit C–C Single-Bond Cleavage of Strained Ring Systems by Transition Metal Complexes. Chemical Reviews 2017, 117 (13) , 9404-9432. https://doi.org/10.1021/acs.chemrev.6b00599
    38. Dong Pan, Yin Wei, and Min Shi . Rh(II)-Catalyzed Chemoselective Oxidative Amination and Cyclization Cascade of 1-(Arylethynyl)cycloalkyl)methyl Sulfamates. Organic Letters 2017, 19 (13) , 3584-3587. https://doi.org/10.1021/acs.orglett.7b01558
    39. Nitika Grover, Nivedita Chaudhri, and Muniappan Sankar . Facile Conversion of Ni(II) Cyclopropylchlorins into Novel β-Substituted Porphyrins through Acid-Catalyzed Ring-Opening Reaction. Inorganic Chemistry 2017, 56 (1) , 424-437. https://doi.org/10.1021/acs.inorgchem.6b02333
    40. Murray G. Rosenberg, Theodor Schrievers, and Udo H. Brinker . Competitive 1,2-C Atom Shifts in the Strained Carbene Spiro[3.3]hept-1-ylidene Explained by Distinct Ring-Puckered Conformers. The Journal of Organic Chemistry 2016, 81 (24) , 12388-12400. https://doi.org/10.1021/acs.joc.6b02445
    41. Daiki Nishikawa, Ryosuke Sakae, Yuya Miki, Koji Hirano, and Masahiro Miura . Copper-Catalyzed Regioselective Ring-Opening Hydroamination of Methylenecyclopropanes. The Journal of Organic Chemistry 2016, 81 (24) , 12128-12134. https://doi.org/10.1021/acs.joc.6b02483
    42. Ashley M. De Lio, Bridget L. Durfey, and Thomas M. Gilbert . Estimating Ring Strain Energies of Highly Substituted Cyclohexanes with the Semi-homodesmotic Approach: Why Substantial Ring Strain Exists for Nominally Tetrahedral Ring Carbon Atoms. The Journal of Organic Chemistry 2015, 80 (20) , 10234-10243. https://doi.org/10.1021/acs.joc.5b01861
    43. Jason M. Hudzik, Álvaro Castillo, and Joseph W. Bozzelli . Bond Energies and Thermochemical Properties of Ring-Opened Diradicals and Carbenes of exo-Tricyclo[5.2.1.02,6]decane. The Journal of Physical Chemistry A 2015, 119 (38) , 9857-9878. https://doi.org/10.1021/acs.jpca.5b05564
    44. Guillaume Ernouf, Jean-Louis Brayer, Benoît Folléas, Jean-Pierre Demoute, Christophe Meyer, and Janine Cossy . Synthesis of Functionalized Alkylidenecyclopropanes by Ireland–Claisen Rearrangement of Cyclopropenylcarbinyl Esters. Organic Letters 2015, 17 (15) , 3786-3789. https://doi.org/10.1021/acs.orglett.5b01759
    45. Weihe Zhang, Deborah DeRyckere, Debra Hunter, Jing Liu, Michael A. Stashko, Katherine A. Minson, Christopher T. Cummings, Minjung Lee, Trevor G. Glaros, Dianne L. Newton, Susan Sather, Dehui Zhang, Dmitri Kireev, William P. Janzen, H. Shelton Earp, Douglas K. Graham, Stephen V. Frye, and Xiaodong Wang . UNC2025, a Potent and Orally Bioavailable MER/FLT3 Dual Inhibitor. Journal of Medicinal Chemistry 2014, 57 (16) , 7031-7041. https://doi.org/10.1021/jm500749d
    46. Ashley M. De Lio, Bridget L. Durfey, Austin L. Gille, and Thomas M. Gilbert . A Semi-homodesmotic Approach for Estimating Ring Strain Energies (RSEs) of Highly Substituted Cyclopropanes That Minimizes Use of Acyclic References and Cancels Steric Interactions: RSEs for c-C3R6 that Make Sense. The Journal of Physical Chemistry A 2014, 118 (31) , 6050-6059. https://doi.org/10.1021/jp5058989
    47. Thomas M. Gilbert . Application of a Semi-homodesmotic Approach in Estimating Ring Strain Energies (RSEs) of Highly Substituted Cyclobutanes: RSEs for c-C4R8 That Make Sense. The Journal of Physical Chemistry A 2014, 118 (31) , 6060-6067. https://doi.org/10.1021/jp5058995
    48. Jiangang Mao and Weiliang Bao . Palladium(0)-Catalyzed Methylenecyclopropanation of Norbornenes with Vinyl Bromides. Organic Letters 2014, 16 (10) , 2646-2649. https://doi.org/10.1021/ol500829t
    49. Zhixin Tian, Lev Lis, and Steven R. Kass . Carbon–Hydrogen Bond Dissociation Energies: The Curious Case of Cyclopropene. The Journal of Organic Chemistry 2013, 78 (24) , 12650-12653. https://doi.org/10.1021/jo402263v
    50. Yang Li and Zhenyang Lin . Theoretical Studies of Ring-Opening Reactions of Phenylcyclobutabenzenol and Its Reactions with Alkynes Catalyzed by Rhodium Complexes. The Journal of Organic Chemistry 2013, 78 (22) , 11357-11365. https://doi.org/10.1021/jo4019123
    51. Ryan J. Felix, Osvaldo Gutierrez, Dean J. Tantillo, and Michel R. Gagné . Gold(I)-Catalyzed Formation of Bicyclo[4.2.0]oct-1-enes. The Journal of Organic Chemistry 2013, 78 (11) , 5685-5690. https://doi.org/10.1021/jo400139g
    52. Kenneth B. Wiberg . Accuracy of Calculations of Heats of Reduction/Hydrogenation: Application to Some Small Ring Systems. The Journal of Organic Chemistry 2012, 77 (22) , 10393-10398. https://doi.org/10.1021/jo302118b
    53. Zhi-Bin Zhu, Kai Chen, Yin Wei, and Min Shi . Preparation of Di-μ-chlorobis[π-1-chloro-1-aryl-2-(2′,2′-diarylvinyl)allyl]palladium(II) Complexes and a Novel Dehydrogenative Rearrangement of Arylvinylcyclopropenes for the Synthesis of 7H-Benzo[c]fluorene Derivatives. Organometallics 2011, 30 (3) , 627-632. https://doi.org/10.1021/om1009846
    54. Jason M. Hudzik, Rubik Asatryan and Joseph W. Bozzelli. Thermochemical Properties of exo-Tricyclo[5.2.1.02,6]decane (JP-10 Jet Fuel) and Derived Tricyclodecyl Radicals. The Journal of Physical Chemistry A 2010, 114 (35) , 9545-9553. https://doi.org/10.1021/jp1049556
    55. Jason M. Hudzik and Joseph W. Bozzelli. Structure and Thermochemical Properties of 2-Methoxyfuran, 3-Methoxyfuran, and Their Carbon-Centered Radicals Using Computational Chemistry. The Journal of Physical Chemistry A 2010, 114 (30) , 7984-7995. https://doi.org/10.1021/jp102996d
    56. Changkun Li, Hang Zhang, Jiajie Feng, Yan Zhang and Jianbo Wang. Rh(I)-Catalyzed Carbonylative Carbocyclization of Tethered Ene− and Yne−cyclopropenes. Organic Letters 2010, 12 (13) , 3082-3085. https://doi.org/10.1021/ol101091r
    57. Paulo M. Nunes, Sílvia G. Estácio, Gustavo T. Lopes, Filipe Agapito, Rui C. Santos, Benedito J. Costa Cabral, Rui M. Borges dos Santos and José A. Martinho Simões . Energetics of tert-Butoxyl Addition Reaction to Norbornadiene: A Method for Estimating the π-Bond Strength of a Carbon−Carbon Double Bond. The Journal of Physical Chemistry A 2009, 113 (23) , 6524-6530. https://doi.org/10.1021/jp900089t
    58. Robert D. Bach. Ring Strain Energy in the Cyclooctyl System. The Effect of Strain Energy on [3 + 2] Cycloaddition Reactions with Azides. Journal of the American Chemical Society 2009, 131 (14) , 5233-5243. https://doi.org/10.1021/ja8094137
    59. Vinod Tarwade, Olga Dmitrenko, Robert D. Bach and Joseph M. Fox. The Curtius Rearrangement of Cyclopropyl and Cyclopropenoyl Azides. A Combined Theoretical and Experimental Mechanistic Study. The Journal of Organic Chemistry 2008, 73 (21) , 8189-8197. https://doi.org/10.1021/jo801104t
    60. Filipe Agapito, Paulo M. Nunes, Benedito J. Costa Cabral, Rui M. Borges dos Santos and José A. Martinho Simões . Energetic Differences between the Five- and Six-Membered Ring Hydrocarbons: Strain Energies in the Parent and Radical Molecules. The Journal of Organic Chemistry 2008, 73 (16) , 6213-6223. https://doi.org/10.1021/jo800690m
    61. Helen Jansen, Amos J. Rosenthal, J. Chris Slootweg, Andreas W. Ehlers, Martin Lutz, Anthony L. Spek and Koop Lammertsma. Diastereoselective Formation of Complexed Methylenediphosphiranes. Organometallics 2008, 27 (12) , 2868-2872. https://doi.org/10.1021/om800188h
    62. Stepan Chuprakov,, Denis A. Malyshev,, Alexander Trofimov, and, Vladimir Gevorgyan. Sila Morita−Baylis−Hillman Reaction of Cyclopropenes. Journal of the American Chemical Society 2007, 129 (48) , 14868-14869. https://doi.org/10.1021/ja077437s
    63. Marina Rubina,, Eric W. Woodward, and, Michael Rubin. Remarkable Stereoelectronic Control in the Lewis Base Assisted [2,3]-Rearrangement of Cyclopropenylmethyl Phosphinites. Organic Letters 2007, 9 (26) , 5501-5504. https://doi.org/10.1021/ol702473s
    64. Alexander Trofimov,, Marina Rubina,, Michael Rubin, and, Vladimir Gevorgyan. Highly Diastereo- and Regioselective Transition Metal-Catalyzed Additions of Metal Hydrides and Bimetallic Species to Cyclopropenes:  Easy Access to Multisubstituted Cyclopropanes. The Journal of Organic Chemistry 2007, 72 (23) , 8910-8920. https://doi.org/10.1021/jo701855c
    65. Stepan Chuprakov and, Vladimir Gevorgyan. Regiodivergent Metal-Catalyzed Rearrangement of 3-Iminocyclopropenes into N-Fused Heterocycles. Organic Letters 2007, 9 (22) , 4463-4466. https://doi.org/10.1021/ol702084f
    66. Nahed Sawwan and, Alexander Greer. Rather Exotic Types of Cyclic Peroxides:  Heteroatom Dioxiranes. Chemical Reviews 2007, 107 (7) , 3247-3285. https://doi.org/10.1021/cr0400717
    67. Michael Rubin,, Marina Rubina, and, Vladimir Gevorgyan. Transition Metal Chemistry of Cyclopropenes and Cyclopropanes. Chemical Reviews 2007, 107 (7) , 3117-3179. https://doi.org/10.1021/cr050988l
    68. Samah Simaan and, Ilan Marek. Stereodivergent Carbometalation Reactions of Cyclopropenylcarbinol Derivatives. Organic Letters 2007, 9 (13) , 2569-2571. https://doi.org/10.1021/ol070974x
    69. Kimberly J. Daoust,, Susanna M. Hernandez,, Kaleen M. Konrad,, Iain D. Mackie,, James Winstanley, Jr., and, Richard P. Johnson. Strain Estimates for Small-Ring Cyclic Allenes and Butatrienes. The Journal of Organic Chemistry 2006, 71 (15) , 5708-5714. https://doi.org/10.1021/jo060698k
    70. Fan Zhang and, Joseph M. Fox. Synthesis of Cyclopropene α-Amino Acids via Enantioselective Desymmetrization. Organic Letters 2006, 8 (14) , 2965-2968. https://doi.org/10.1021/ol060847l
    71. Hin-Koon Woo,, Xue-Bin Wang,, Kai-Chung Lau, and, Lai-Sheng Wang. Low-temperature Photoelectron Spectroscopy of Aliphatic Dicarboxylate Monoanions, HO2C(CH2)nCO2- (n = 1−10):  Hydrogen Bond Induced Cyclization and Strain Energies. The Journal of Physical Chemistry A 2006, 110 (25) , 7801-7805. https://doi.org/10.1021/jp0616009
    72. Robert D. Bach and, Olga Dmitrenko. The Effect of Carbonyl Substitution on the Strain Energy of Small Ring Compounds and Their Six-Member Ring Reference Compounds. Journal of the American Chemical Society 2006, 128 (14) , 4598-4611. https://doi.org/10.1021/ja055086g
    73. Robert D. Bach and, Olga Dmitrenko. The “Somersault” Mechanism for the P-450 Hydroxylation of Hydrocarbons. The Intervention of Transient Inverted Metastable Hydroperoxides. Journal of the American Chemical Society 2006, 128 (5) , 1474-1488. https://doi.org/10.1021/ja052111+
    74. Dirk V. Deubel. The Chemistry of Dinuclear Analogues of the Anticancer Drug Cisplatin. A DFT/CDM Study. Journal of the American Chemical Society 2006, 128 (5) , 1654-1663. https://doi.org/10.1021/ja055741k
    75. Mahesh K. Pallerla and, Joseph M. Fox. Diastereoselective Intermolecular Pauson−Khand Reactions of Chiral Cyclopropenes. Organic Letters 2005, 7 (16) , 3593-3595. https://doi.org/10.1021/ol051456u
    76. Min-Jie Li,, Lei Liu,, Yao Fu, and, Qing-Xiang Guo. Development of an ONIOM-G3B3 Method to Accurately Predict C−H and N−H Bond Dissociation Enthalpies of Ribonucleosides and Deoxyribonucleosides. The Journal of Physical Chemistry B 2005, 109 (28) , 13818-13826. https://doi.org/10.1021/jp0508204
    77. Xingran Yang, Jiahang Li, Jinbo Zhao. Access to Fully Substituted Furans via Boryl Radical Catalyzed Cycloisomerization of Cyclopropenyl Ketones. Asian Journal of Organic Chemistry 2025, 29 https://doi.org/10.1002/ajoc.202500126
    78. Deepak Ranjan Mishra, Nilima Priyadarsini Mishra. Recent breakthroughs in ring-opening annulation reactions of aziridines. Organic & Biomolecular Chemistry 2025, 23 (13) , 2967-2996. https://doi.org/10.1039/D4OB01577K
    79. Jorge García-Lacuna, Gema Domínguez, Ángel Manu Martínez, Javier Pérez-Castells. Recent advances in hydrofunctionalisation of cyclopropenes via carbon–heteroatom bond formation. Organic Chemistry Frontiers 2025, 12 (7) , 2525-2551. https://doi.org/10.1039/D4QO02441A
    80. Archana Velloth, Piyush Kumar, Shabana Butt, Sugumar Venkataramani. C– Centered Radicals: Generation, Detection, Stability and Perspectives. Asian Journal of Organic Chemistry 2025, 14 (3) https://doi.org/10.1002/ajoc.202400686
    81. Boon Beng Tan, Shaozhong Ge. One‐Pot Cobalt‐ or Copper‐Catalyzed Asymmetric Ring‐Opening Hydrosilylation/Hydroboration of Arylidenecyclopropanes. Angewandte Chemie 2025, 137 (7) https://doi.org/10.1002/ange.202419522
    82. Boon Beng Tan, Shaozhong Ge. One‐Pot Cobalt‐ or Copper‐Catalyzed Asymmetric Ring‐Opening Hydrosilylation/Hydroboration of Arylidenecyclopropanes. Angewandte Chemie International Edition 2025, 64 (7) https://doi.org/10.1002/anie.202419522
    83. Jerome Waser, Xiangdong Li. Unlocking σ-Type Cyclopropenium Cation Transfer Reactions by an Iodine(III)-Based Umpolung Strategy. Synlett 2025, https://doi.org/10.1055/a-2535-0332
    84. Sheng-Hao Jiang, Yin Wei, Min Shi. Recent transformations of vinylidene cyclopropanes (VDCPs). Chemical Communications 2025, 61 (13) , 2684-2698. https://doi.org/10.1039/D4CC06137C
    85. Pallab Karjee, Tariq A. Shah, Santu Mandal, Bijoy Debnath, Tharmalingam Punniyamurthy. Recent Advancement on Ring Expansion of Bicyclic Diaziridines to Access N ‐Heterocyclic Compounds. European Journal of Organic Chemistry 2025, 28 (2) https://doi.org/10.1002/ejoc.202401057
    86. Suliang Wang, Xuening Li, Jian Song, Xianjie Fang. Stereoselective synthesis of allylic sulfones via palladium-catalyzed hydrosulfonylation of cyclopropenes. Organic Chemistry Frontiers 2025, 109 https://doi.org/10.1039/D5QO00062A
    87. Rongrong Yu, Song-Zhou Cai, Xianjie Fang. Lewis acid-controlled Pd-catalyzed chemodivergent hydrocyanation of cyclopropenes. Organic Chemistry Frontiers 2024, 12 (1) , 64-69. https://doi.org/10.1039/D4QO01609B
    88. Hiroto Mori, Yusuke Ono, Shota Nakagawa, Sota Akima, Miki Murakami, Toshinobu Korenaga, Tadashi Nakaji-Hirabayashi, Mayumi Kyogoku, Yoshikazu Horino. Synthesis of vinylidenecyclopropanes via gold( i )-catalyzed cyclopropanation of vinyl arenes with γ -stannylated propargyl esters. Chemical Communications 2024, 60 (92) , 13518-13521. https://doi.org/10.1039/D4CC04384G
    89. Sunil Kumar Saini. Thermodynamic and propulsive characterization of nitro-substituted quadricyclane. Journal of the Indian Chemical Society 2024, 101 (11) , 101359. https://doi.org/10.1016/j.jics.2024.101359
    90. Yu-Sheng Li, Fakhrul H. Bhuiyan, Jongcheol Lee, Ashlie Martini, Seong H. Kim. Elucidating tribochemical reaction mechanisms: insights into tribofilm formation from hydrocarbon adsorbates coupled with tribochemical substrate wear. RSC Mechanochemistry 2024, 1 (4) , 328-341. https://doi.org/10.1039/D3MR00036B
    91. Yunhe Jin, Wenquan Zhang, Qinghua Zhang. A comparative study of fluorodinitromethyl (FDN): Is it better for stability?. Computational and Theoretical Chemistry 2024, 1239 , 114796. https://doi.org/10.1016/j.comptc.2024.114796
    92. Chunhang Zhao, Wenjing Ma, Kairui Liu, Ruoyang Xu, Xiuya Ma, Yan Zhang. Photoredox-enabled ring-opening of cyclobutanes via the formation of a carbon radical. Organic Chemistry Frontiers 2024, 11 (17) , 4663-4670. https://doi.org/10.1039/D4QO00996G
    93. Zhuang Li, Xiaohui Zhang, Yajun Zhao, Shan Tang. Mechanochemical Backbone Editing for Controlled Degradation of Vinyl Polymers. Angewandte Chemie 2024, 136 (33) https://doi.org/10.1002/ange.202408225
    94. Zhuang Li, Xiaohui Zhang, Yajun Zhao, Shan Tang. Mechanochemical Backbone Editing for Controlled Degradation of Vinyl Polymers. Angewandte Chemie International Edition 2024, 63 (33) https://doi.org/10.1002/anie.202408225
    95. Dongxian Li, Xiaodong Luo, Yuting Ye, Meng Xu, Xu Li, Changhua Zhang. Laser absorption measurements of H2O and CO2 time-histories in cyclopropane/O2/argon mixtures at high temperature behind reflected shock waves. Fuel 2024, 369 , 131782. https://doi.org/10.1016/j.fuel.2024.131782
    96. Wen Qian. Discovery of high-energy nitro-azolo-pyridine compounds with high-throughput computation and machine learning. Journal of Solid State Chemistry 2024, 335 , 124710. https://doi.org/10.1016/j.jssc.2024.124710
    97. Jian Zhou, Ling Meng, Ziyi Yang, Jun (Joelle) Wang. Enantio‐ and Regioselective Cascade Hydroboration of Methylenecyclopropanes for Facile Access to Chiral 1,3‐ and 1,4‐Bis(boronates). Advanced Science 2024, 11 (21) https://doi.org/10.1002/advs.202400096
    98. Xiangdong Li, Matthew D. Wodrich, Jérôme Waser. Accessing elusive σ-type cyclopropenium cation equivalents through redox gold catalysis. Nature Chemistry 2024, 16 (6) , 901-912. https://doi.org/10.1038/s41557-024-01535-8
    99. Delio Santalucia, Mattia Bondanza, Filippo Lipparini, Matyas Ripszam, Nicolò Rossi, Alessandro Mandoli.. Breaking the Rules: On the Relative Stability of Some Methylencyclopropane and Methylcyclopropene Derivatives. Chemistry – A European Journal 2024, 30 (29) https://doi.org/10.1002/chem.202400431
    100. Yi-Nan Lu, Chao Che, Guangjin Zhen, Xin Chang, Xiu-Qin Dong, Chun-Jiang Wang. Visible-light-enabled stereoselective synthesis of functionalized cyclohexylamine derivatives via [4 + 2] cycloadditions. Chemical Science 2024, 15 (17) , 6507-6514. https://doi.org/10.1039/D4SC00667D
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2004, 126, 13, 4444–4452
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja036309a
    Published March 13, 2004
    Copyright © 2004 American Chemical Society

    Article Views

    5514

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.