ACS Publications. Most Trusted. Most Cited. Most Read
Reversible Electrochemical Detection of Nonelectroactive Polyions
My Activity

Figure 1Loading Img
    Communication

    Reversible Electrochemical Detection of Nonelectroactive Polyions
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Auburn University, Auburn, Alabama 36849
    Other Access OptionsSupporting Information (2)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2003, 125, 37, 11192–11193
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja037167n
    Published August 19, 2003
    Copyright © 2003 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Selective extraction principles for the recognition of nonelectroactive polyions such as heparin and protamine exist, but the high ionic valency renders the extraction process irreversible. A response principle for the reversible detection of such polyions is proposed here. The extraction of the polyionic analyte to the membrane and its subsequent back-extraction is now controlled electrochemically. The principle is established with a protamine electrode, and excellent stability and reproducibility are demonstrated. This method has important implications for the design of chemical recognition principles for polyionic analytes.

    Copyright © 2003 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    Click to copy section linkSection link copied!

    Additional experiments (reversibility study), membrane preparation, and instrumental details (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 150 publications.

    1. Aditi H. Upadhaya, Harshad A. Mirgane, Shrishti P. Pandey, Vrushali S. Patil, Sheshanath V. Bhosale, Prabhat K. Singh. Electrostatically Engineered Tetraphenylethylene-Based Fluorescence Sensor for Protamine and Trypsin: Leveraging Aggregation-Induced Emission for Enhanced Sensitivity and Selectivity. Langmuir 2024, 40 (37) , 19357-19369. https://doi.org/10.1021/acs.langmuir.4c01315
    2. Junhao Wang, Huihui Zhou, Rongning Liang, Wei Qin. Chronopotentiometric Nanopore Sensor Based on a Stimulus-Responsive Molecularly Imprinted Polymer for Label-Free Dual-Biomarker Detection. Analytical Chemistry 2024, 96 (23) , 9370-9378. https://doi.org/10.1021/acs.analchem.3c05817
    3. Longbin Qi, Rongning Liang, Wei Qin. Stimulus-Responsive Imprinted Polymer-Based Potentiometric Sensor for Reversible Detection of Neutral Phenols. Analytical Chemistry 2020, 92 (6) , 4284-4291. https://doi.org/10.1021/acs.analchem.9b04911
    4. Calford Wai-Ting Chan, Heung-Kiu Cheng, Franky Ka-Wah Hau, Alan Kwun-Wa Chan, Vivian Wing-Wah Yam. Protamine-Induced Supramolecular Self-Assembly of Red-Emissive Alkynylplatinum(II) 2,6-Bis(benzimidazol-2′-yl)pyridine Complex for Selective Label-Free Sensing of Heparin and Real-Time Monitoring of Trypsin Activity. ACS Applied Materials & Interfaces 2019, 11 (35) , 31585-31593. https://doi.org/10.1021/acsami.9b08653
    5. Qinghan Chen, Xiaoang Li, Renjie Wang, Fanxin Zeng, Jingying Zhai, Xiaojiang Xie. Rapid Equilibrated Colorimetric Detection of Protamine and Heparin: Recognition at the Nanoscale Liquid–Liquid Interface. Analytical Chemistry 2019, 91 (16) , 10390-10394. https://doi.org/10.1021/acs.analchem.9b01654
    6. Shuwen Liu, Jiawang Ding, Wei Qin. Dual-Analyte Chronopotentiometric Aptasensing Platform Based on a G-Quadruplex/Hemin DNAzyme and Logic Gate Operations. Analytical Chemistry 2019, 91 (4) , 3170-3176. https://doi.org/10.1021/acs.analchem.8b05971
    7. Jiawang Ding, Nana Yu, Xuedong Wang, and Wei Qin . Sequential and Selective Detection of Two Molecules with a Single Solid-Contact Chronopotentiometric Ion-Selective Electrode. Analytical Chemistry 2018, 90 (3) , 1734-1739. https://doi.org/10.1021/acs.analchem.7b03522
    8. Xuewei Wang, Mollie Mahoney, and Mark E. Meyerhoff . Inkjet-Printed Paper-Based Colorimetric Polyion Sensor Using a Smartphone as a Detector. Analytical Chemistry 2017, 89 (22) , 12334-12341. https://doi.org/10.1021/acs.analchem.7b03352
    9. Ankur A. Awasthi and Prabhat K. Singh . Excited-State Proton Transfer on the Surface of a Therapeutic Protein, Protamine. The Journal of Physical Chemistry B 2017, 121 (45) , 10306-10317. https://doi.org/10.1021/acs.jpcb.7b07151
    10. Stephen A. Ferguson and Mark E. Meyerhoff . Manual and Flow-Injection Detection/Quantification of Polyquaterniums via Fully Reversible Polyion-Sensitive Polymeric Membrane-Based Ion-Selective Electrodes. ACS Sensors 2017, 2 (10) , 1505-1511. https://doi.org/10.1021/acssensors.7b00527
    11. Jiawang Ding, Enguang Lv, Liyan Zhu, and Wei Qin . Optical Ion Sensing Platform Based on Potential-Modulated Release of Enzyme. Analytical Chemistry 2017, 89 (6) , 3235-3239. https://doi.org/10.1021/acs.analchem.7b00072
    12. Jacob Lester, Timothy Chandler, and Kebede L. Gemene . Reversible Electrochemical Sensor for Detection of High-Charge Density Polyanion Contaminants in Heparin. Analytical Chemistry 2015, 87 (22) , 11537-11543. https://doi.org/10.1021/acs.analchem.5b03347
    13. Jiawang Ding, Yue Gu, Fei Li, Hongxia Zhang, and Wei Qin . DNA Nanostructure-Based Magnetic Beads for Potentiometric Aptasensing. Analytical Chemistry 2015, 87 (13) , 6465-6469. https://doi.org/10.1021/acs.analchem.5b01576
    14. Mohammed B. Garada, Benjamin Kabagambe, and Shigeru Amemiya . Extraction or Adsorption? Voltammetric Assessment of Protamine Transfer at Ionophore-Based Polymeric Membranes. Analytical Chemistry 2015, 87 (10) , 5348-5355. https://doi.org/10.1021/acs.analchem.5b00644
    15. Xiaojiang Xie, Jingying Zhai, Gastón A. Crespo, and Eric Bakker . Ionophore-Based Ion-Selective Optical NanoSensors Operating in Exhaustive Sensing Mode. Analytical Chemistry 2014, 86 (17) , 8770-8775. https://doi.org/10.1021/ac5019606
    16. Andrea K. Bell-Vlasov, Joanna Zajda, Ayman Eldourghamy, Elzbieta Malinowska, and Mark E. Meyerhoff . Polyion Selective Polymeric Membrane-Based Pulstrode as a Detector in Flow-Injection Analysis. Analytical Chemistry 2014, 86 (8) , 4041-4046. https://doi.org/10.1021/ac500567g
    17. Gastón A. Crespo, Majid Ghahraman Afshar, Denis Dorokhin, and Eric Bakker . Thin Layer Coulometry Based on Ion-Exchanger Membranes for Heparin Detection in Undiluted Human Blood. Analytical Chemistry 2014, 86 (3) , 1357-1360. https://doi.org/10.1021/ac403902f
    18. Jiawang Ding, Xuewei Wang, and Wei Qin . Pulsed Galvanostatic Control of a Polymeric Membrane Ion-Selective Electrode for Potentiometric Immunoassays. ACS Applied Materials & Interfaces 2013, 5 (19) , 9488-9493. https://doi.org/10.1021/am402245f
    19. Hetong Qi, Li Zhang, Lifen Yang, Ping Yu, and Lanqun Mao . Anion-Exchange-Based Amperometric Assay for Heparin Using Polyimidazolium as Synthetic Receptor. Analytical Chemistry 2013, 85 (6) , 3439-3445. https://doi.org/10.1021/ac400201c
    20. Jiawang Ding, Yan Chen, Xuewei Wang, and Wei Qin . Label-Free and Substrate-Free Potentiometric Aptasensing Using Polycation-Sensitive Membrane Electrodes. Analytical Chemistry 2012, 84 (4) , 2055-2061. https://doi.org/10.1021/ac2024975
    21. Jürgen Maurer, Stephanie Haselbach, Oliver Klein, Doan Baykut, Vitali Vogel, and Werner Mäntele . Analysis of the Complex Formation of Heparin with Protamine by Light Scattering and Analytical Ultracentrifugation: Implications for Blood Coagulation Management. Journal of the American Chemical Society 2011, 133 (4) , 1134-1140. https://doi.org/10.1021/ja109699s
    22. Marcin Pawlak, Ewa Grygolowicz-Pawlak, and Eric Bakker . Ferrocene Bound Poly(vinyl chloride) as Ion to Electron Transducer in Electrochemical Ion Sensors. Analytical Chemistry 2010, 82 (16) , 6887-6894. https://doi.org/10.1021/ac1010662
    23. Kebede L. Gemene and Mark E. Meyerhoff. Reversible Detection of Heparin and Other Polyanions by Pulsed Chronopotentiometric Polymer Membrane Electrode. Analytical Chemistry 2010, 82 (5) , 1612-1615. https://doi.org/10.1021/ac902836e
    24. Jiawang Ding and Wei Qin. Current-Driven Ion Fluxes of Polymeric Membrane Ion-Selective Electrode for Potentiometric Biosensing. Journal of the American Chemical Society 2009, 131 (41) , 14640-14641. https://doi.org/10.1021/ja906723h
    25. Justin M. Zook and Ernő Lindner. Reverse Current Pulse Method To Restore Uniform Concentration Profiles in Ion-Selective Membranes. 1. Galvanostatic Pulse Methods with Decreased Cycle Time. Analytical Chemistry 2009, 81 (13) , 5146-5154. https://doi.org/10.1021/ac801984d
    26. Justin M. Zook and Ernő Lindner. Reverse Current Pulse Method To Restore Uniform Concentration Profiles in Ion-Selective Membranes. 2. Comparison of the Efficiency of the Different Protocols. Analytical Chemistry 2009, 81 (13) , 5155-5164. https://doi.org/10.1021/ac802065h
    27. Katherine Fordyce and, Alexey Shvarev. Solid-Contact Electrochemical Polyion Sensors for Monitoring Peptidase Activities. Analytical Chemistry 2008, 80 (3) , 827-833. https://doi.org/10.1021/ac701775n
    28. Justin M. Zook,, Richard P. Buck,, Jan Langmaier, and, Erno Lindner. Mathematical Model of Current-Polarized Ionophore-Based Ion-Selective Membranes. The Journal of Physical Chemistry B 2008, 112 (7) , 2008-2015. https://doi.org/10.1021/jp074612i
    29. Hasini Perera and, Alexey Shvarev. Unbiased Selectivity Coefficients Obtained for the Pulsed Chronopotentiometric Polymeric Membrane Ion Sensors. Journal of the American Chemical Society 2007, 129 (51) , 15754-15755. https://doi.org/10.1021/ja076821m
    30. Yida Xu,, Chao Xu,, Alexey Shvarev,, Thomas Becker,, Roland De Marco, and, Eric Bakker. Kinetic Modulation of Pulsed Chronopotentiometric Polymeric Membrane Ion Sensors by Polyelectrolyte Multilayers. Analytical Chemistry 2007, 79 (18) , 7154-7160. https://doi.org/10.1021/ac071201p
    31. Hasini Perera,, Katherine Fordyce, and, Alexey Shvarev. Pulsed Galvanostatic Control of Solid-State Polymeric Ion-Selective Electrodes. Analytical Chemistry 2007, 79 (12) , 4564-4573. https://doi.org/10.1021/ac062123t
    32. Jidong Guo and, Shigeru Amemiya. Voltammetric Heparin-Selective Electrode Based on Thin Liquid Membrane with Conducting Polymer-Modified Solid Support. Analytical Chemistry 2006, 78 (19) , 6893-6902. https://doi.org/10.1021/ac061003i
    33. Alexey Shvarev. Photoresponsive Ion-Selective Optical Sensor. Journal of the American Chemical Society 2006, 128 (22) , 7138-7139. https://doi.org/10.1021/ja062339c
    34. Sergey Makarychev-Mikhailov,, Alexey Shvarev, and, Eric Bakker. Calcium Pulstrodes with 10-Fold Enhanced Sensitivity for Measurements in the Physiological Concentration Range. Analytical Chemistry 2006, 78 (8) , 2744-2751. https://doi.org/10.1021/ac052211y
    35. Károly Tompa,, Karin Birbaum,, Adam Malon,, Tamás Vigassy,, Eric Bakker, and, Ernö Pretsch. Ion-Selective Supported Liquid Membranes Placed under Steady-State Diffusion Control. Analytical Chemistry 2005, 77 (23) , 7801-7809. https://doi.org/10.1021/ac051362y
    36. Alexey Shvarev and, Eric Bakker. Response Characteristics of a Reversible Electrochemical Sensor for the Polyion Protamine. Analytical Chemistry 2005, 77 (16) , 5221-5228. https://doi.org/10.1021/ac050101l
    37. Yi Yuan and, Shigeru Amemiya. Facilitated Protamine Transfer at Polarized Water/1,2-Dichloroethane Interfaces Studied by Cyclic Voltammetry and Chronoamperometry at Micropipet Electrodes. Analytical Chemistry 2004, 76 (23) , 6877-6886. https://doi.org/10.1021/ac048879e
    38. Aleksandar Radu,, Amnon J. Meir, and, Eric Bakker. Dynamic Diffusion Model for Tracing the Real-Time Potential Response of Polymeric Membrane Ion-Selective Electrodes. Analytical Chemistry 2004, 76 (21) , 6402-6409. https://doi.org/10.1021/ac049348t
    39. Sergey Makarychev-Mikhailov,, Alexey Shvarev, and, Eric Bakker. Pulstrodes:  Triple Pulse Control of Potentiometric Sensors. Journal of the American Chemical Society 2004, 126 (34) , 10548-10549. https://doi.org/10.1021/ja047728q
    40. Eric Bakker. Electrochemical Sensors. Analytical Chemistry 2004, 76 (12) , 3285-3298. https://doi.org/10.1021/ac049580z
    41. Stacey A. Nevins Buchanan,, Lajos P. Balogh, and, Mark E. Meyerhoff. Potentiometric Response Characteristics of Polycation-Sensitive Membrane Electrodes toward Poly(amidoamine) and Poly(propylenimine) Dendrimers. Analytical Chemistry 2004, 76 (5) , 1474-1482. https://doi.org/10.1021/ac035265l
    42. D. Yureka Imali, E. Chavin J. Perera, M. N. Kaumal, Dhammike P. Dissanayake. Conducting polymer functionalization in search of advanced materials in ionometry: ion-selective electrodes and optodes. RSC Advances 2024, 14 (35) , 25516-25548. https://doi.org/10.1039/D4RA02615B
    43. Jiarong Zhao, Jiawang Ding, Feng Luan, Wei Qin. Chronopotentiometric sensors for antimicrobial peptide-based biosensing of Staphylococcus aureus. Microchimica Acta 2024, 191 (6) https://doi.org/10.1007/s00604-024-06410-4
    44. Soumyadeep Sarkar, Goutam Chakraborty, Haridas Pal. Surfactant-based supramolecular dye assembly: A highly selective and economically viable platform for quantification of heparin antidote. Colloids and Surfaces B: Biointerfaces 2024, 237 , 113839. https://doi.org/10.1016/j.colsurfb.2024.113839
    45. Junsong Mou, Jiawang Ding, Wei Qin. Modern Potentiometric Biosensing Based on Non‐Equilibrium Measurement Techniques. Chemistry – A European Journal 2023, 29 (72) https://doi.org/10.1002/chem.202302647
    46. Sudip Gorai, Soumyaditya Mula, Padma Nilaya Jonnalgadda, Birija S. Patro, Goutam Chakraborty. In house synthesized novel distyryl-BODIPY dye and polymer assembly as deep-red emitting probe for protamine detection. Talanta 2023, 265 , 124915. https://doi.org/10.1016/j.talanta.2023.124915
    47. Makbule Yiğit, Tuğba Bayraktutan. Detection of protamine based on competitive adsorption onto the surface of functionalized multi‐walled carbon nanotubes. Luminescence 2023, 38 (12) , 2007-2017. https://doi.org/10.1002/bio.4588
    48. Merin K Abraham, Varnana Anand, Anju S. Madanan, Susan Varghese, Ali Ibrahim Shkhair, Geneva Indongo, Greeshma Rajeevan, Syamchand S. Sasidharanpillai, Lekha G. Muraleedharan, Vijila N. Subha, Sony George. Fluorescence “Turn‐Off‐On” Detection of Heparin and Protamine Based on Bovine Serum Albumin‐Stabilized Carbon Dots (BSA‐CDs). ChemNanoMat 2023, 9 (10) https://doi.org/10.1002/cnma.202300115
    49. Goutam Chakraborty, Dibya kanti Mal, Akhilesh Potnis, Padma Nilaya Jonnalgadda. Multi-anionic polymer templated aggregation induced emission of berberine and its application for protamine sensing. Journal of Molecular Liquids 2023, 388 , 122729. https://doi.org/10.1016/j.molliq.2023.122729
    50. Bernardo Patella, Antonino Parisi, Nadia Moukri, Federico Gitto, Alessandro Busacca, Giuseppe Aiello, Michele Russo, Alan O'Riordan, Rosalinda Inguanta. Phosphate ions detection by using an electrochemical sensor based on laser-scribed graphene oxide on paper. Electrochimica Acta 2023, 461 , 142600. https://doi.org/10.1016/j.electacta.2023.142600
    51. Dibya Kanti Mal, Padma Nilaya Jonnalgadda, Goutam Chakraborty. Aggregation assisted turn-on response of ANS dye towards protamine. New Journal of Chemistry 2023, 47 (4) , 2107-2116. https://doi.org/10.1039/D2NJ05337C
    52. Jinghui Li, Wenting Zhang, Wei Qin. Trace-level chronopotentiometric detection in the presence of a high electrolyte background using thin-layer ion-selective polymeric membranes. Chemical Communications 2023, 119 https://doi.org/10.1039/D3CC04512A
    53. Goutam Chakraborty, Rajani Kant Chittela, Padma Nilaya Jonnalgadda, Haridas Pal. A near infra-red emitting supramolecular dye-polymer assembly as promising platform for protamine sensing. Journal of Molecular Liquids 2023, 369 , 120928. https://doi.org/10.1016/j.molliq.2022.120928
    54. Trilochan Gadly, Birija.S. Patro, Goutam Chakraborty. Fluorogenic gemcitabine based light up sensor for serum albumin detection in complex biological matrices. Colloids and Surfaces B: Biointerfaces 2022, 220 , 112865. https://doi.org/10.1016/j.colsurfb.2022.112865
    55. Fanpeng Ran, Yixuan Xu, Minrui Ma, Xiaoyan Liu, Haixia Zhang. Flower-like ZIF-8 enhance the peroxidase-like activity of nanoenzymes at neutral pH for detection of heparin and protamine. Talanta 2022, 250 , 123702. https://doi.org/10.1016/j.talanta.2022.123702
    56. Goutam Chakraborty, Rajani Kant Chittela, Padma Nilaya Jonnalgadda, Haridas Pal. Polyanionic amphiphilic polymer based supramolecular dye-host assembly: Highly selective turn–on probe for protamine sensing. Sensors and Actuators B: Chemical 2022, 371 , 132582. https://doi.org/10.1016/j.snb.2022.132582
    57. Kaikai Wang, Rongning Liang, Wei Qin. Thin membrane-based potentiometric sensors for sensitive detection of polyions. Analytical Methods 2022, 14 (40) , 4008-4013. https://doi.org/10.1039/D2AY01223E
    58. Mustafa Bener, Furkan Burak Şen, Reşat Apak. Protamine gold nanoclusters − based fluorescence turn-on sensor for rapid determination of Trinitrotoluene (TNT). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 279 , 121462. https://doi.org/10.1016/j.saa.2022.121462
    59. Anna Kisiel, Agata Michalska, Krzysztof Maksymiuk. Bypassed ion-selective electrodes – self-powered polarization for tailoring of sensor performance. The Analyst 2022, 147 (12) , 2764-2772. https://doi.org/10.1039/D2AN00458E
    60. Fei Qu, Zhuo Wang, Cong Li, Dafeng Jiang, Xian-en Zhao. Peptide cleavage-mediated aggregation-enhanced emission from metal nanoclusters for detecting trypsin and screen its inhibitors from foods. Sensors and Actuators B: Chemical 2022, 359 , 131610. https://doi.org/10.1016/j.snb.2022.131610
    61. Nurgul K. Bakirhan, Burcu D. Topal, Goksu Ozcelikay, Leyla Karadurmus, Sibel A. Ozkan. Current Advances in Electrochemical Biosensors and Nanobiosensors. Critical Reviews in Analytical Chemistry 2022, 52 (3) , 519-534. https://doi.org/10.1080/10408347.2020.1809339
    62. Anna V. Bondar, Valentina M. Keresten, Konstantin N. Mikhelson. Ionophore-Based Ion-Selective Electrodes in Non-Zero Current Modes: Mechanistic Studies and the Possibilities of the Analytical Application. Journal of Analytical Chemistry 2022, 77 (2) , 145-154. https://doi.org/10.1134/S1061934822020046
    63. Han Zhang, Lining Liu, Longbin Qi, Jiawang Ding, Wei Qin. Light-driven ion extraction of polymeric membranes for on-demand Cu(II) sensing. Analytica Chimica Acta 2021, 1176 , 338756. https://doi.org/10.1016/j.aca.2021.338756
    64. Suji Park, Claudia S. Maier, Dipankar Koley. Anodic stripping voltammetry on a carbon-based ion-selective electrode. Electrochimica Acta 2021, 390 , 138855. https://doi.org/10.1016/j.electacta.2021.138855
    65. Qiaozhen Bao, Dan Lin, Yaoran Gao, Lina Wu, Jinhua Fu, Khuslen Galaa, Xinhua Lin, Liqing Lin. Ultrasensitive off-on-off fluorescent nanosensor for protamine and trypsin detection based on inner-filter effect between N,S-CDs and gold nanoparticles. Microchemical Journal 2021, 168 , 106409. https://doi.org/10.1016/j.microc.2021.106409
    66. Fei Qu, Tian Yin, Qianqian Fa, Dafeng Jiang, Xian-en Zhao. Lead halide perovskites with aggregation-induced emission feature coupled with gold nanoparticles for fluorescence detection of heparin. Nanotechnology 2021, 32 (23) , 235501. https://doi.org/10.1088/1361-6528/abe905
    67. Emma Gordon, Simon Segal, Ana-Karina Sabou, Kebede L. Gemene. Quantitative determination of dextran sulfate and pentosan polysulfate and their binding with protamine using chronopotentiometry with polyion-selective electrodes. Analytica Chimica Acta 2021, 1149 , 338208. https://doi.org/10.1016/j.aca.2021.338208
    68. Lei Lin, Bingzhi Li, Xiaorui Han, Fuming Zhang, Xing Zhang, Robert J. Linhardt. A rolling circle amplification based platform for ultrasensitive detection of heparin. The Analyst 2021, 146 (2) , 714-720. https://doi.org/10.1039/D0AN02061C
    69. Ömer Isildak, Oguz Özbek. Silver(I)-selective PVC membrane potentiometric sensor based on 5,10,15,20-tetra(4-pyridyl)-21H, 23H-porphine and potentiometric applications. Journal of Chemical Sciences 2020, 132 (1) https://doi.org/10.1007/s12039-019-1734-2
    70. Junhao Wang, Rongning Liang, Wei Qin. Thin polymeric membrane ion-selective electrodes for trace-level potentiometric detection. Analytica Chimica Acta 2020, 1139 , 1-7. https://doi.org/10.1016/j.aca.2020.09.024
    71. Gyan H. Aryal, Ganesh R. Rana, Fei Guo, Kenneth W. Hunter, Liming Huang. Heparin sensing based on multisite-binding induced highly ordered perylene nanoaggregates. Chemical Communications 2020, 56 (87) , 13437-13440. https://doi.org/10.1039/D0CC05943A
    72. Shrishti P. Pandey, Pamela Jha, Prabhat K. Singh. Aggregation induced emission of an anionic tetraphenylethene derivative for efficient protamine sensing. Journal of Molecular Liquids 2020, 315 , 113625. https://doi.org/10.1016/j.molliq.2020.113625
    73. He Cheng, Yiwen Zhao, Huimin Xu, Yifan Hu, Li Zhang, Gang Song, Zhiyi Yao. Rapid and visual detection of protamine based on ionic self-assembly of a water soluble perylene diimide derivative. Dyes and Pigments 2020, 180 , 108456. https://doi.org/10.1016/j.dyepig.2020.108456
    74. Yevgeniya O. Kondratyeva, Elena G. Tolstopjatova, Dmitry O. Kirsanov, Konstantin N. Mikhelson. Chronoamperometric and coulometric analysis with ionophore-based ion-selective electrodes: A modified theory and the potassium ion assay in serum samples. Sensors and Actuators B: Chemical 2020, 310 , 127894. https://doi.org/10.1016/j.snb.2020.127894
    75. Xu Hun, Xiaoli Xiong, Jiawang Ding, Wei Qin. Photoelectric current as a highly sensitive readout for potentiometric sensors. Chemical Communications 2020, 56 (27) , 3879-3882. https://doi.org/10.1039/D0CC00138D
    76. Shrishti P. Pandey, Prabhat K. Singh. A ratiometric scheme for the fluorescent detection of protamine, a heparin antidote. Journal of Molecular Liquids 2020, 303 , 112589. https://doi.org/10.1016/j.molliq.2020.112589
    77. Jiawang Ding, Wei Qin. Recent advances in potentiometric biosensors. TrAC Trends in Analytical Chemistry 2020, 124 , 115803. https://doi.org/10.1016/j.trac.2019.115803
    78. Jin-Xia Liu, Mei-Xia Wu, Shou-Nian Ding. Aggregation-Induced Emission Enhancement of CdSe QDs by Protamine and its Application to Sensitively and Selectively Detect Heparin. Current Analytical Chemistry 2019, 15 (5) , 599-604. https://doi.org/10.2174/1573411014666180330160743
    79. Evan L. Anderson, Pablo D. Samaniego, Philippe Bühlmann. Indirect Potentiometric Determination of Polyquaternium Polymer Concentrations by Equilibrium Binding to 1-Dodecyl Sulfate. Analytical Sciences 2019, 35 (6) , 679-684. https://doi.org/10.2116/analsci.18P567
    80. Ewa Jaworska, Paweł Pawłowski, Agata Michalska, Krzysztof Maksymiuk. Advantages of Amperometric Readout Mode of Ion‐selective Electrodes under Potentiostatic Conditions. Electroanalysis 2019, 31 (2) , 343-349. https://doi.org/10.1002/elan.201800649
    81. Anna Kisiel, Agata Michalska, Krzysztof Maksymiuk. Rectifying effect for ion-selective electrodes with conducting polymer solid contact. Synthetic Metals 2018, 246 , 246-253. https://doi.org/10.1016/j.synthmet.2018.10.019
    82. Stephen A. Ferguson, Mark E. Meyerhoff. Advances in electrochemical and optical polyion sensing: A review. Sensors and Actuators B: Chemical 2018, 272 , 643-654. https://doi.org/10.1016/j.snb.2018.06.127
    83. S. Anastasova, P. Kassanos, Guang-Zhong Yang. Electrochemical Sensor Designs for Biomedical Implants. 2018, 19-98. https://doi.org/10.1007/978-3-319-69748-2_2
    84. Dean Song, Rongning Liang, Xiaohua Jiang, Huiqing Sun, Fanyu Kong, Bo Lv, Qiannan Fang, Wei Qin. Modeling the response of a control-released ion-selective electrode and employing it for the study of permanganate oxidation kinetics. Analytical Methods 2018, 10 (4) , 467-473. https://doi.org/10.1039/C7AY02735D
    85. Hanbing Rao, Hongwei Ge, Xianxiang Wang, Zhaoyi Zhang, Xin Liu, Yan Yang, Yaqin Liu, Wei Liu, Ping Zou, Yanying Wang. Colorimetric and fluorometric detection of protamine by using a dual-mode probe consisting of carbon quantum dots and gold nanoparticles. Microchimica Acta 2017, 184 (8) , 3017-3025. https://doi.org/10.1007/s00604-017-2305-1
    86. Rongning Liang, Jiawang Ding, Shengshuai Gao, Wei Qin. Mussel‐Inspired Surface‐Imprinted Sensors for Potentiometric Label‐Free Detection of Biological Species. Angewandte Chemie 2017, 129 (24) , 6937-6941. https://doi.org/10.1002/ange.201701892
    87. Rongning Liang, Jiawang Ding, Shengshuai Gao, Wei Qin. Mussel‐Inspired Surface‐Imprinted Sensors for Potentiometric Label‐Free Detection of Biological Species. Angewandte Chemie International Edition 2017, 56 (24) , 6833-6837. https://doi.org/10.1002/anie.201701892
    88. Zhong-Xia Wang, Fen-Ying Kong, Wen-Juan Wang, Rui Zhang, Wei-Xin Lv, Xian-He Yu, Hong-Cheng Pan, Wei Wang. “OFF-ON” sensor for detecting heparin based on Hg2+-quenching of photoluminescence nitrogen-rich polymer carbon nanoribbons. Sensors and Actuators B: Chemical 2017, 242 , 412-417. https://doi.org/10.1016/j.snb.2016.11.075
    89. Chenmeng Zhang, Xiu Liang, Tingting You, Nan Yang, Yukun Gao, Penggang Yin. An ultrasensitive “turn-off” SERS sensor for quantitatively detecting heparin based on 4-mercaptobenzoic acid functionalized gold nanoparticles. Analytical Methods 2017, 9 (17) , 2517-2522. https://doi.org/10.1039/C7AY00494J
    90. Guangtao Zhao, Jiawang Ding, Han Yu, Tanji Yin, Wei Qin. Potentiometric Aptasensing of Vibrio alginolyticus Based on DNA Nanostructure-Modified Magnetic Beads. Sensors 2016, 16 (12) , 2052. https://doi.org/10.3390/s16122052
    91. Mohammad Hasanzadeh, Nasrin Shadjou. Electrochemical nanobiosensing in whole blood: Recent advances. TrAC Trends in Analytical Chemistry 2016, 80 , 167-176. https://doi.org/10.1016/j.trac.2015.07.018
    92. Stephen A. Ferguson, Xuewei Wang, Mark E. Meyerhoff. Detecting levels of polyquaternium-10 (PQ-10) via potentiometric titration with dextran sulphate and monitoring the equivalence point with a polymeric membrane-based polyion sensor. Analytical Methods 2016, 8 (29) , 5806-5811. https://doi.org/10.1039/C6AY01748G
    93. Ruifen Tian, Hong Jiang, Guangfeng Wang. MnO 2 nanosheet-based heparin and OSCS fluorescent biosensor with lowered background and amplified hybridization chain reaction. RSC Advances 2016, 6 (92) , 89803-89809. https://doi.org/10.1039/C6RA15625H
    94. Żaneta Pławińska, Agata Michalska, Krzysztof Maksymiuk. Optimization of capacitance of conducting polymer solid contact in ion-selective electrodes. Electrochimica Acta 2016, 187 , 397-405. https://doi.org/10.1016/j.electacta.2015.11.050
    95. Xuewei Wang, Anant S. Balijepalli, Mark E. Meyerhoff. Polyion‐Sensitive Polymeric Membrane‐Based Pulstrode as a Potentiometric Detector in Liquid Chromatography. Electroanalysis 2015, 27 (8) , 1823-1828. https://doi.org/10.1002/elan.201500101
    96. Xue Peng, Qian Long, Haitao Li, Youyu Zhang, Shouzhuo Yao. “Turn on-off” fluorescent sensor for protamine and heparin based on label-free silicon quantum dots coupled with gold nanoparticles. Sensors and Actuators B: Chemical 2015, 213 , 131-138. https://doi.org/10.1016/j.snb.2015.02.070
    97. K N Mikhelson, M A Peshkova. Advances and trends in ionophore-based chemical sensors. Russian Chemical Reviews 2015, 84 (6) , 555-578. https://doi.org/10.1070/RCR4506
    98. Yiyang Lin, Robert Chapman, Molly M. Stevens. Integrative Self‐Assembly of Graphene Quantum Dots and Biopolymers into a Versatile Biosensing Toolkit. Advanced Functional Materials 2015, 25 (21) , 3183-3192. https://doi.org/10.1002/adfm.201500624
    99. Ji Min Kim, Loc Nguyen, Mary Frances Barr, Michael Morabito, Damien Stringer, J. Helen Fitton, Kelly A. Mowery. Quantitative determination of fucoidan using polyion-sensitive membrane electrodes. Analytica Chimica Acta 2015, 877 , 1-8. https://doi.org/10.1016/j.aca.2015.04.020
    100. Zhifeng Zhang, Yanming Miao, Qindi Zhang, Linwang Lian, Guiqin Yan. Selective room temperature phosphorescence detection of heparin based on manganese-doped zinc sulfide quantum dots/polybrene self-assembled nanosensor. Biosensors and Bioelectronics 2015, 68 , 556-562. https://doi.org/10.1016/j.bios.2015.01.053
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2003, 125, 37, 11192–11193
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja037167n
    Published August 19, 2003
    Copyright © 2003 American Chemical Society

    Article Views

    1043

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.