Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Multicomponent Cycloadditions:  The Four-Component [5+1+2+1] Cycloaddition of Vinylcyclopropanes, Alkynes, and CO
My Activity

Figure 1Loading Img
    Communication

    Multicomponent Cycloadditions:  The Four-Component [5+1+2+1] Cycloaddition of Vinylcyclopropanes, Alkynes, and CO
    Click to copy article linkArticle link copied!

    View Author Information
    Stanford University, Department of Chemistry, Stanford, California 94305-5080
    Other Access OptionsSupporting Information (2)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2005, 127, 9, 2836–2837
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja042728b
    Published February 11, 2005
    Copyright © 2005 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Prompted by the view that intermediates of transition metal-catalyzed reactions could be intercepted by one or more additional components, studies in our laboratory have led to the design and development of new three-component [5+2+1], [4+2+1], and [2+2+1] cycloadditions. These continuing studies have now led to the identification of a fundamentally new four-component [5+1+2+1] cycloaddition reaction of vinylcyclopropanes, alkynes and CO, yielding hydroxyindanone products in generally good yields. Terminal alkynes bearing aryl or alkyl groups are tolerated well. Substitution at any position of the VCP leads predictably to substituted hydroxyindanone products. Using a bis-alkynyl substrate, the reaction can be carried out bi-directionally, forming 10 C−C bonds and four new rings from seven components in a single, operationally simple process.

    Copyright © 2005 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    Click to copy section linkSection link copied!

    Representative procedure and characterization data for products 5, 9, 11, 13, 15. X-ray data for compound 5a in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 145 publications.

    1. Zhiqiang Huang, Yi Jin, Sixuan Zhao, Pan Zhang, Wei Liao, Zhi-Xiang Yu. How to Suppress C(sp2)–Rh–C(sp3) Reductive Elimination and Insert CO to Achieve Rhodium-Catalyzed [5 + 2 + 1] Cycloaddition of Yne-vinylcyclopropanes and CO: Answers from Experimental and Computational Investigation. ACS Catalysis 2024, 14 (17) , 12734-12742. https://doi.org/10.1021/acscatal.4c03878
    2. Yin Liu, Yicheng He, Yang Liu, Kun Wei, Wusheng Guo. Kinetically Controllable Construction of Nine-Membered Carbocycles via Pd-Catalyzed Decarboxylative Cycloaddition. Organic Letters 2022, 24 (13) , 2567-2572. https://doi.org/10.1021/acs.orglett.2c00808
    3. Yi Wang, Wei Liao, Yuanyuan Wang, Lei Jiao, Zhi-Xiang Yu. Mechanism and Stereochemistry of Rhodium-Catalyzed [5 + 2 + 1] Cycloaddition of Ene–Vinylcyclopropanes and Carbon Monoxide Revealed by Visual Kinetic Analysis and Quantum Chemical Calculations. Journal of the American Chemical Society 2022, 144 (6) , 2624-2636. https://doi.org/10.1021/jacs.1c11030
    4. Jianhua Wang, Stephanie A. Blaszczyk, Xiaoxun Li, Weiping Tang. Transition Metal-Catalyzed Selective Carbon–Carbon Bond Cleavage of Vinylcyclopropanes in Cycloaddition Reactions. Chemical Reviews 2021, 121 (1) , 110-139. https://doi.org/10.1021/acs.chemrev.0c00160
    5. Tyler R. McDonald, L. Reginald Mills, Michael S. West, Sophie A. L. Rousseaux. Selective Carbon–Carbon Bond Cleavage of Cyclopropanols. Chemical Reviews 2021, 121 (1) , 3-79. https://doi.org/10.1021/acs.chemrev.0c00346
    6. Sheng Feng, Kang Wang, Yifan Ping, Jianbo Wang. Experimental and Computational Studies on Rh(I)-Catalyzed Reaction of Siloxyvinylcyclopropanes and Diazoesters. Journal of the American Chemical Society 2020, 142 (50) , 21032-21039. https://doi.org/10.1021/jacs.0c08089
    7. Ya-Lin Zhang, Rui-Ting Guo, Heng Luo, Xin-Shen Liang, Xiao-Chen Wang. Convergent Synthesis of Dihydropyrans from Catalytic Three-Component Reactions of Vinylcyclopropanes, Diazoesters, and Diphenyl Sulfoxide. Organic Letters 2020, 22 (14) , 5627-5632. https://doi.org/10.1021/acs.orglett.0c01992
    8. Monika Bhardwaj, Faheem Rasool, Madhu Babu Tatina, Debaraj Mukherjee. Construction of Fused Oxabicyclic Scaffolds from Glycals and Styrenes via One-Pot Domino Transformations. Organic Letters 2019, 21 (9) , 3038-3042. https://doi.org/10.1021/acs.orglett.9b00234
    9. Chih-Wei Chien, Yu-Han Gary Teng, Tadashi Honda, Iwao Ojima. Synthesis of Colchicinoids and Allocolchicinoids through Rh(I)-Catalyzed [2+2+2+1] and [2+2+2] Cycloadditions of o-Phenylenetriynes with and without CO. The Journal of Organic Chemistry 2018, 83 (19) , 11623-11644. https://doi.org/10.1021/acs.joc.8b01608
    10. Ming-Guang Rong, Tian-Zhu Qin, Xin-Rui Liu, Hong-Fa Wang, Weiwei Zi. De Novo Synthesis of Phenols and Naphthols through Oxidative Cycloaromatization of Dienynes. Organic Letters 2018, 20 (19) , 6289-6293. https://doi.org/10.1021/acs.orglett.8b02786
    11. Ifenna I. Mbaezue and Kai E. O. Ylijoki . [5 + 1 + 2 + 1] vs [5 + 1 + 1 + 2] Rhodium-Catalyzed Cycloaddition Reactions of Vinylcyclopropanes with Terminal Alkynes and Carbon Monoxide: Density Functional Theory Investigations of Convergent Mechanistic Pathways and Reaction Regioselectivity. Organometallics 2017, 36 (15) , 2832-2842. https://doi.org/10.1021/acs.organomet.7b00323
    12. Gabriele Fumagalli, Steven Stanton, and John F. Bower . Recent Methodologies That Exploit C–C Single-Bond Cleavage of Strained Ring Systems by Transition Metal Complexes. Chemical Reviews 2017, 117 (13) , 9404-9432. https://doi.org/10.1021/acs.chemrev.6b00599
    13. Jian-Jun Feng and Junliang Zhang . Rhodium-Catalyzed Stereoselective Intramolecular Tandem Reaction of Vinyloxiranes with Alkynes: Atom- and Step-Economical Synthesis of Multifunctional Mono-, Bi-, and Tricyclic Compounds. ACS Catalysis 2017, 7 (3) , 1533-1542. https://doi.org/10.1021/acscatal.6b03399
    14. Guangxun Li, Ling Tang, Hongxin Liu, Yingwei Wang, Gang Zhao, and Zhuo Tang . Investigation and Application of Amphoteric α-Amino Aldehyde: An in Situ Generated Species Based on Heyns Rearrangement. Organic Letters 2016, 18 (18) , 4526-4529. https://doi.org/10.1021/acs.orglett.6b02133
    15. Haowei Zhang, Bing Yang, Zhen Yang, Hongjian Lu, and Guigen Li . Asymmetric Synthesis of Chiral α-Methyl-α,β-diamino Acid Derivatives via Group-Assisted Purification Chemistry Using N-Phosphonyl Imines and a Ni(II)-Complexed Alanine Schiff Base. The Journal of Organic Chemistry 2016, 81 (17) , 7654-7661. https://doi.org/10.1021/acs.joc.6b01385
    16. Yifei Li, Chengjie Feng, Hui Shi, and Xianxiu Xu . Diastereoselective Synthesis of 3,4-Benzomorphan Derivatives via Tandem [5 + 1]/Hemiaminalization of (2-Aminoaryl)divinyl Ketones. Organic Letters 2016, 18 (2) , 324-327. https://doi.org/10.1021/acs.orglett.5b03506
    17. Laetitia Souillart and Nicolai Cramer . Catalytic C–C Bond Activations via Oxidative Addition to Transition Metals. Chemical Reviews 2015, 115 (17) , 9410-9464. https://doi.org/10.1021/acs.chemrev.5b00138
    18. Jinlong Qian, Wenbin Yi, Xin Huang, Yongbo Miao, Junkai Zhang, Chun Cai, and Wei Zhang . One-Pot Synthesis of 3,5-Disubstituted and Polysubstituted Phenols from Acyclic Precursors. Organic Letters 2015, 17 (5) , 1090-1093. https://doi.org/10.1021/ol503615n
    19. Hang Zhang, Changkun Li, Guojun Xie, Bo Wang, Yan Zhang, and Jianbo Wang . Zn(II)- or Rh(I)-Catalyzed Rearrangement of Silylated [1,1′-Bi(cyclopropan)]-2′-en-1-ols. The Journal of Organic Chemistry 2014, 79 (13) , 6286-6293. https://doi.org/10.1021/jo5010923
    20. Xiaoxun Li, Wangze Song, and Weiping Tang . Rhodium-Catalyzed Tandem Annulation and (5 + 1) Cycloaddition: 3-Hydroxy-1,4-enyne as the 5-Carbon Component. Journal of the American Chemical Society 2013, 135 (45) , 16797-16800. https://doi.org/10.1021/ja408829y
    21. Xin Hong, Barry M. Trost, and K. N. Houk . Mechanism and Origins of Selectivity in Ru(II)-Catalyzed Intramolecular (5+2) Cycloadditions and Ene Reactions of Vinylcyclopropanes and Alkynes from Density Functional Theory. Journal of the American Chemical Society 2013, 135 (17) , 6588-6600. https://doi.org/10.1021/ja4012657
    22. Xin Hong, Peng Liu, and K. N. Houk . Mechanism and Origins of Ligand-Controlled Selectivities in [Ni(NHC)]-Catalyzed Intramolecular (5 + 2) Cycloadditions and Homo-Ene Reactions: A Theoretical Study. Journal of the American Chemical Society 2013, 135 (4) , 1456-1462. https://doi.org/10.1021/ja309873z
    23. Venkataraman Ganesh, Taraknath Kundu, and Srinivasan Chandrasekaran . Electrophile-Induced C–C Bond Activation of Vinylcyclopropanes for the Synthesis of Z-Alkylidenetetrahydrofurans. The Journal of Organic Chemistry 2013, 78 (2) , 380-399. https://doi.org/10.1021/jo302204k
    24. Wei Yuan, Xiang Dong, Min Shi, Patrick McDowell, and Guigen Li . Rh(I)-catalyzed Pauson-Khand-type Cycloaddition Reaction of Ene-vinylidenecyclopropanes with Carbon Monoxide (CO). Organic Letters 2012, 14 (21) , 5582-5585. https://doi.org/10.1021/ol302705z
    25. Xiufang Xu, Peng Liu, Adam Lesser, Lauren E. Sirois, Paul A. Wender, and K. N. Houk . Ligand Effects on Rates and Regioselectivities of Rh(I)-Catalyzed (5 + 2) Cycloadditions: A Computational Study of Cyclooctadiene and Dinaphthocyclooctatetraene as Ligands. Journal of the American Chemical Society 2012, 134 (26) , 11012-11025. https://doi.org/10.1021/ja3041724
    26. Bei-Li Lu, Yin Wei, and Min Shi . Rhodium(I)-Catalyzed Pauson–Khand-type [3 + 2 + 1] Cycloaddition Reaction of Ene-Vinylidenecyclopropanes and CO: A Highly Regio- and Stereoselective Synthetic Approach for the Preparation of Aza- and Oxa-Bicyclic Compounds. Organometallics 2012, 31 (12) , 4601-4609. https://doi.org/10.1021/om3004288
    27. Padmanabha V. Kattamuri, Teng Ai, Suresh Pindi, Yinwei Sun, Peng Gu, Min Shi, and Guigen Li . Asymmetric Synthesis of α-Amino-1,3-dithianes via Chiral N-Phosphonyl Imine-Based Umpolung Reaction Without Using Chromatography and Recrystallization. The Journal of Organic Chemistry 2011, 76 (8) , 2792-2797. https://doi.org/10.1021/jo200070d
    28. Lei Jiao, Mu Lin, and Zhi-Xiang Yu. Density Functional Theory Study of the Mechanisms and Stereochemistry of the Rh(I)-Catalyzed Intramolecular [3+2] Cycloadditions of 1-Ene- and 1-Yne-Vinylcyclopropanes. Journal of the American Chemical Society 2011, 133 (3) , 447-461. https://doi.org/10.1021/ja107396t
    29. Osvaldo Gutierrez and Dean J. Tantillo. Transition Metal Intervention for a Classic Reaction: Assessing the Feasibility of Nickel(0)-Promoted [1,3] Sigmatropic Shifts of Bicyclo[3.2.0]hept-2-enes. Organometallics 2010, 29 (16) , 3541-3545. https://doi.org/10.1021/om100419j
    30. Douglass F. Taber, Pengfei Guo and Na Guo. Intramolecular [1 + 4 + 1] Cycloaddition: Establishment of the Method. Journal of the American Chemical Society 2010, 132 (32) , 11179-11182. https://doi.org/10.1021/ja103551x
    31. Changkun Li, Hang Zhang, Jiajie Feng, Yan Zhang and Jianbo Wang. Rh(I)-Catalyzed Carbonylative Carbocyclization of Tethered Ene− and Yne−cyclopropenes. Organic Letters 2010, 12 (13) , 3082-3085. https://doi.org/10.1021/ol101091r
    32. Lei Jiao, Mu Lin, Lian-Gang Zhuo and Zhi-Xiang Yu. Rh(I)-Catalyzed [(3 + 2) + 1] Cycloaddition of 1-Yne/Ene-vinylcyclopropanes and CO: Homologous Pauson−Khand Reaction and Total Synthesis of (±)-α-Agarofuran. Organic Letters 2010, 12 (11) , 2528-2531. https://doi.org/10.1021/ol100625e
    33. Ben-Hu Zhu, Rui Zhou, Jun-Cheng Zheng, Xian-Ming Deng, Xiu-Li Sun, Qi Shen and Yong Tang . Highly Selective Ylide-Initiated Michael Addition/Cyclization Reaction for Synthesis of Cyclohexadiene Epoxide and Vinylcyclopropane Derivatives. The Journal of Organic Chemistry 2010, 75 (10) , 3454-3457. https://doi.org/10.1021/jo100306z
    34. Bo Jiang, Chao Li, Feng Shi, Shu-Jiang Tu, Parminder Kaur, Walter Wever and Guigen Li . Four-Component Domino Reaction Providing an Easy Access to Multifunctionalized Tricyclo[6.2.2.01,6]dodecane Derivatives. The Journal of Organic Chemistry 2010, 75 (9) , 2962-2965. https://doi.org/10.1021/jo1002278
    35. Bo Jiang, Shu-Jiang Tu, Parminder Kaur, Walter Wever and Guigen Li . Four-Component Domino Reaction Leading to Multifunctionalized Quinazolines. Journal of the American Chemical Society 2009, 131 (33) , 11660-11661. https://doi.org/10.1021/ja904011s
    36. Paul A. Wender and Daniel Strand. Cyclocarboamination of Alkynes with Aziridines: Synthesis of 2,3-Dihydropyrroles by a Catalyzed Formal [3 + 2] Cycloaddition. Journal of the American Chemical Society 2009, 131 (22) , 7528-7529. https://doi.org/10.1021/ja901799s
    37. Lei Jiao, Siyu Ye and Zhi-Xiang Yu. Rh(I)-Catalyzed Intramolecular [3 + 2] Cycloaddition of trans-Vinylcyclopropane-enes. Journal of the American Chemical Society 2008, 130 (23) , 7178-7179. https://doi.org/10.1021/ja8008715
    38. Zhi-Xiang Yu,, Paul Ha-Yeon Cheong,, Peng Liu,, Claude Y. Legault,, Paul A. Wender, and, K. N. Houk. Origins of Differences in Reactivities of Alkenes, Alkynes, and Allenes in [Rh(CO)2Cl]2-Catalyzed (5 + 2) Cycloaddition Reactions with Vinylcyclopropanes. Journal of the American Chemical Society 2008, 130 (8) , 2378-2379. https://doi.org/10.1021/ja076444d
    39. Michael Rubin,, Marina Rubina, and, Vladimir Gevorgyan. Transition Metal Chemistry of Cyclopropenes and Cyclopropanes. Chemical Reviews 2007, 107 (7) , 3117-3179. https://doi.org/10.1021/cr050988l
    40. Yike Ni and, John Montgomery. Synthetic Studies and Mechanistic Insight in Nickel-Catalyzed [4+2+1] Cycloadditions. Journal of the American Chemical Society 2006, 128 (8) , 2609-2614. https://doi.org/10.1021/ja057741q
    41. Matyáš Turský,, David Nečas,, Pavel Drabina,, Miloš Sedlák, and, Martin Kotora. Rhodium-Catalyzed Deallylation of Allylmalonates and Related Compounds. Organometallics 2006, 25 (4) , 901-907. https://doi.org/10.1021/om0508583
    42. Chen-Long Li, Zhi-Xiang Yu. Progress in Transition-Metal-Catalyzed Carbonylative Cycloadditions Using Carbon Monoxide. Chinese Journal of Organic Chemistry 2024, 44 (4) , 1045. https://doi.org/10.6023/cjoc202310003
    43. Wei Wei, Ka Key Cheung, Ran Lin, Lam Cheung Kong, Ka Lok Chan, Herman H. Y. Sung, Ian D. Williams, Rongbiao Tong, Zhenyang Lin, Guochen Jia. [2+2+1+1] Cycloaddition for de novo Synthesis of Densely Functionalized Phenols. Angewandte Chemie 2023, 135 (36) https://doi.org/10.1002/ange.202307251
    44. Wei Wei, Ka Key Cheung, Ran Lin, Lam Cheung Kong, Ka Lok Chan, Herman H. Y. Sung, Ian D. Williams, Rongbiao Tong, Zhenyang Lin, Guochen Jia. [2+2+1+1] Cycloaddition for de novo Synthesis of Densely Functionalized Phenols. Angewandte Chemie International Edition 2023, 62 (36) https://doi.org/10.1002/anie.202307251
    45. Chaoxing Cui, Jianli Wu, Xixi Song, Miaomiao Li. Synthesis of para-Quinone Methides via Oxidative Ring-Opening of Spiro-cyclopropanyl-cyclohexadienones. Synthesis 2022, 54 (21) , 4802-4809. https://doi.org/10.1055/a-1878-8272
    46. Fuhao Zhang, Xuan Dai, Lei Dai, Wenrui Zheng, Wai‐Lun Chan, Xiaodong Tang, Xumu Zhang, Yixin Lu. Phosphine‐Catalyzed Enantioselective (3+2) Annulation of Vinylcyclopropanes with Imines for the Synthesis of Chiral Pyrrolidines. Angewandte Chemie 2022, 134 (24) https://doi.org/10.1002/ange.202203212
    47. Fuhao Zhang, Xuan Dai, Lei Dai, Wenrui Zheng, Wai‐Lun Chan, Xiaodong Tang, Xumu Zhang, Yixin Lu. Phosphine‐Catalyzed Enantioselective (3+2) Annulation of Vinylcyclopropanes with Imines for the Synthesis of Chiral Pyrrolidines. Angewandte Chemie International Edition 2022, 61 (24) https://doi.org/10.1002/anie.202203212
    48. . Carbonyl Compounds from Alkynes and Alkenes. 2022, 365-406. https://doi.org/10.1002/9783527804801.ch9
    49. Kobra Nikoofar, Fatemeh Molaei Yielzoleh. High-component Reactions (HCRs): An Overview of MCRs Containing Seven or More Components as Versatile Tools in Organic Synthesis. Current Organic Synthesis 2022, 19 (1) , 115-147. https://doi.org/10.2174/1570179418666210910111208
    50. Julien Caillé, Raphaël Robiette. Cycloaddition of cyclopropanes for the elaboration of medium-sized carbocycles. Organic & Biomolecular Chemistry 2021, 19 (26) , 5702-5724. https://doi.org/10.1039/D1OB00838B
    51. Kun-Long Song, Bin Wu, Wan-Er Gan, Wan-Chun Yang, Xiao-Bing Chen, Jian Cao, Li-Wen Xu. Palladium-catalyzed gaseous CO-free carbonylative C–C bond activation of cyclobutanones. Organic Chemistry Frontiers 2021, 8 (13) , 3398-3403. https://doi.org/10.1039/D1QO00467K
    52. Tsumoru Morimoto, JingWen Jia, Yoshiko Yamaguchi, Hiroki Tanimoto, Kiyomi Kakiuchi. Cationic Rhodium(I)‐Catalyzed Carbonylative [2+2+1] Cycloaddition of Diynes. Asian Journal of Organic Chemistry 2020, 9 (11) , 1778-1782. https://doi.org/10.1002/ajoc.202000436
    53. Nataliia V. Chechina, Nadezhda N. Kolos, Irina V. Omelchenko. One-Pot Three-Component Synthesis of Polysubstituted Tetrahydroindoles. Chemistry of Heterocyclic Compounds 2019, 55 (12) , 1190-1196. https://doi.org/10.1007/s10593-019-02600-8
    54. Ryan N. McCoy, Katherine N. Robertson, Kai E. O. Ylijoki. 7-(Biphenyl-4-yl)-6-hydroxyindan-1-one. IUCrData 2019, 4 (7) https://doi.org/10.1107/S2414314619009519
    55. Xing Fan, Cheng‐Hang Liu, Zhi‐Xiang Yu. Rhodium( I )‐Catalyzed Cycloadditions Involving Vinylcyclopropanes and Their Derivatives. 2019, 229-276. https://doi.org/10.1002/9783527811908.ch10
    56. Kaiqing Ma, Brandon S. Martin, Xianglin Yin, Mingji Dai. Natural product syntheses via carbonylative cyclizations. Natural Product Reports 2019, 36 (1) , 174-219. https://doi.org/10.1039/C8NP00033F
    57. Li‐Jun Wu, Ren‐Jie Song, Shenglian Luo, Jin‐Heng Li. Palladium‐Catalyzed Reductive [5+1] Cycloaddition of 3‐Acetoxy‐1,4‐enynes with CO: Access to Phenols Enabled by Hydrosilanes. Angewandte Chemie 2018, 130 (40) , 13492-13496. https://doi.org/10.1002/ange.201808388
    58. Li‐Jun Wu, Ren‐Jie Song, Shenglian Luo, Jin‐Heng Li. Palladium‐Catalyzed Reductive [5+1] Cycloaddition of 3‐Acetoxy‐1,4‐enynes with CO: Access to Phenols Enabled by Hydrosilanes. Angewandte Chemie International Edition 2018, 57 (40) , 13308-13312. https://doi.org/10.1002/anie.201808388
    59. Chunlin Wu, Naohiko Yoshikai. Cobalt‐Catalyzed Intramolecular Reactions between a Vinylcyclopropane and an Alkyne: Switchable [5+2] Cycloaddition and Homo‐Ene Pathways. Angewandte Chemie 2018, 130 (22) , 6668-6672. https://doi.org/10.1002/ange.201803162
    60. Chunlin Wu, Naohiko Yoshikai. Cobalt‐Catalyzed Intramolecular Reactions between a Vinylcyclopropane and an Alkyne: Switchable [5+2] Cycloaddition and Homo‐Ene Pathways. Angewandte Chemie International Edition 2018, 57 (22) , 6558-6562. https://doi.org/10.1002/anie.201803162
    61. Jun Wu, Yuhai Tang, Wen Wei, Yong Wu, Yang Li, Junjie Zhang, Yuansuo Zheng, Silong Xu. Phosphine‐Catalyzed Activation of Vinylcyclopropanes: Rearrangement of Vinylcyclopropylketones to Cycloheptenones. Angewandte Chemie 2018, 130 (21) , 6392-6396. https://doi.org/10.1002/ange.201800555
    62. Jun Wu, Yuhai Tang, Wen Wei, Yong Wu, Yang Li, Junjie Zhang, Yuansuo Zheng, Silong Xu. Phosphine‐Catalyzed Activation of Vinylcyclopropanes: Rearrangement of Vinylcyclopropylketones to Cycloheptenones. Angewandte Chemie International Edition 2018, 57 (21) , 6284-6288. https://doi.org/10.1002/anie.201800555
    63. Xi Zhang, Kai Long, Jiayi He, Jialian Fu, Furen Zhang, Chunmei Li. Efficient Domino Strategy for the Synthesis of Substituted Bipyrazole Derivatives. Journal of Heterocyclic Chemistry 2018, 55 (3) , 729-735. https://doi.org/10.1002/jhet.3096
    64. Jianqiang Wang, Wenhui Zhang, Zheng Zhao, Jingpeng Mao, Cheng Guo. Construction of benzo[d]imidazo[2,1-b]thiazole derivatives via a simple multi-component domino cyclization. Research on Chemical Intermediates 2018, 44 (1) , 613-628. https://doi.org/10.1007/s11164-017-3123-0
    65. Paresh N. Patel, Anju Chadha. A simple metal free highly diastereoselective synthesis of heteroaryl substituted (±) cyclohexanols by a branched domino reaction. Tetrahedron 2018, 74 (1) , 204-216. https://doi.org/10.1016/j.tet.2017.11.070
    66. Duncan K. Brownsey, Evgueni Gorobets, Darren J. Derksen. Beyond geminal diesters: increasing the scope of metal-mediated vinylcyclopropane annulations while decreasing pre-activation. Organic & Biomolecular Chemistry 2018, 16 (19) , 3506-3523. https://doi.org/10.1039/C8OB00593A
    67. Jeffrey S. Quesnel, Bruce A. Arndtsen. Metal‐Catalyzed Multicomponent Reactions. 2017, 1195-1220. https://doi.org/10.1002/9783527651733.ch19
    68. Behrooz Maleki, Roghaie Rooky, Esmail Rezaei-Seresht, Reza Tayebee. One-Pot Synthesis of Bicyclic ortho- Aminocarbonitrile and Multisubstituted Cyclohexa-1,3-dienamine Derivatives. Organic Preparations and Procedures International 2017, 49 (6) , 557-567. https://doi.org/10.1080/00304948.2017.1384282
    69. Qinghua Meng, Hui Xu, Jing Xu, Ganlu Hao, Xu Gao, Xiaoyu Hu, Liang‐Ce Rong, Peijun Cai. An Efficient Four‐component Reaction for the Synthesis of Spiroheterocyclic Compounds. Journal of Heterocyclic Chemistry 2017, 54 (3) , 1925-1930. https://doi.org/10.1002/jhet.2787
    70. Andrew J. Burnie, P. Andrew Evans. Recent Developments in Rhodium-Catalyzed Cyclocarbonylation Reactions. 2017, 167-230. https://doi.org/10.1007/3418_2016_169
    71. Shizuka Mei Bautista Maezono, Tej Narayan Poudel, Yong Rok Lee. One-pot construction of sterically challenging and diverse polyarylphenols via transition-metal-free benzannulation and their potent in vitro antioxidant activity. Organic & Biomolecular Chemistry 2017, 15 (9) , 2052-2062. https://doi.org/10.1039/C7OB00078B
    72. Wangze Song, Stephanie A. Blaszczyk, Jitian Liu, Shuojin Wang, Weiping Tang. Transition metal mediated carbonylative benzannulations. Organic & Biomolecular Chemistry 2017, 15 (36) , 7490-7504. https://doi.org/10.1039/C7OB01000A
    73. Tomas Hudlicky. Contributions of Ernest Wenkert to the Use of Cyclopropanes in Synthesis – Impact, Reflections, and Recollections. Israel Journal of Chemistry 2016, 56 (6-7) , 540-552. https://doi.org/10.1002/ijch.201500081
    74. Raju Suresh Kumar, Abdulrahman Almansour, Natarajan Arumugam, Mohammad Altaf, José Menéndez, Raju Kumar, Hasnah Osman. A Sustainable Approach to the Stereoselective Synthesis of Diazaheptacyclic Cage Systems Based on a Multicomponent Strategy in an Ionic Liquid. Molecules 2016, 21 (2) , 165. https://doi.org/10.3390/molecules21020165
    75. Takanori Matsuda. Reactions of Three‐Membered Ring Compounds. 2015, 35-88. https://doi.org/10.1002/9783527680092.ch2
    76. Xiao-Na Ke, Casi M. Schienebeck, Chen-Chen Zhou, Xiu-Fang Xu, Wei-Ping Tang. Mechanism and reactivity of rhodium-catalyzed intermolecular [5+1] cycloaddition of 3-acyloxy-1,4-enyne (ACE) and CO: A computational study. Chinese Chemical Letters 2015, 26 (6) , 730-734. https://doi.org/10.1016/j.cclet.2015.03.016
    77. Kiyoshi Kikukawa, Stephen A. Westcott, Mitchell P. Croatt, Travis J. Williams, Paul A. Wender, Yiming Li, Xuefeng Jiang. Carbonyl(chloro)bis(triphenylphosphine)rhodium(I). 2015, 1-22. https://doi.org/10.1002/047084289X.rc021.pub3
    78. Y. Wan, X‐X. Zhang, L‐L. Zhao, C. Wang, L‐F. Chen, G‐X. Liu, S‐Y. Huang, S‐N. Yue, W‐L. Zhang, H. Wu. Tandem Synthesis of Bicyclic ortho ‐Aminocarbonitrile Derivatives in Ionic Liquids. Journal of Heterocyclic Chemistry 2015, 52 (2) , 623-627. https://doi.org/10.1002/jhet.2088
    79. Takamasa Kawamura, Yasuaki Kawaguchi, Katsuya Sugikubo, Fuyuhiko Inagaki, Chisato Mukai. Rhodium(I)‐Catalyzed Cycloisomerization of Allene–Allenylcyclopropanes. European Journal of Organic Chemistry 2015, 2015 (4) , 719-722. https://doi.org/10.1002/ejoc.201403535
    80. Michaela‐Christina Melcher, Henrik von Wachenfeldt, Anders Sundin, Daniel Strand. Iridium Catalyzed Carbocyclizations: Efficient (5+2) Cycloadditions of Vinylcyclopropanes and Alkynes. Chemistry – A European Journal 2015, 21 (2) , 531-535. https://doi.org/10.1002/chem.201405729
    81. Behrooz Maleki, Safoora Sheikh. Nano polypropylenimine dendrimer (DAB-PPI-G 1 ): as a novel nano basic-polymer catalyst for one-pot synthesis of 2-amino-2-chromene derivatives. RSC Advances 2015, 5 (54) , 42997-43005. https://doi.org/10.1039/C5RA04458H
    82. Fiona R. Truscott, Giovanni Maestri, Raphael Rodriguez, Max Malacria. Catalytic Cycloaddition Reactions. 2014, 143-170. https://doi.org/10.1002/9783527677894.ch6
    83. Yu-Lu Ma, Kai-Min Wang, Xin-Rong Lin, Sheng-Jiao Yan, Jun Lin. Three-component cascade reaction synthesis of polycyclic 1,4-dihydropyridine derivatives in water. Tetrahedron 2014, 70 (37) , 6578-6584. https://doi.org/10.1016/j.tet.2014.07.017
    84. Gen‐Qiang Chen, Xiao‐Nan Zhang, Yin Wei, Xiang‐Ying Tang, Min Shi. Catalyst‐Dependent Divergent Synthesis of Pyrroles from 3‐Alkynyl Imine Derivatives: A Noncarbonylative and Carbonylative Approach. Angewandte Chemie 2014, 126 (32) , 8632-8637. https://doi.org/10.1002/ange.201405215
    85. Gen‐Qiang Chen, Xiao‐Nan Zhang, Yin Wei, Xiang‐Ying Tang, Min Shi. Catalyst‐Dependent Divergent Synthesis of Pyrroles from 3‐Alkynyl Imine Derivatives: A Noncarbonylative and Carbonylative Approach. Angewandte Chemie International Edition 2014, 53 (32) , 8492-8497. https://doi.org/10.1002/anie.201405215
    86. Chao Zhou, Jing Wang, Jisong Jin, Ping Lu, Yanguang Wang. Three‐Component Synthesis of α‐Amino‐α‐aryl Carbonitriles from Arynes, Aroyl Cyanides, and N , N ‐Dimethylformamide. European Journal of Organic Chemistry 2014, 2014 (9) , 1832-1835. https://doi.org/10.1002/ejoc.201400040
    87. Yang Gao, Xu-Fei Fu, Zhi-Xiang Yu. Transition Metal-Catalyzed Cycloadditions of Cyclopropanes for the Synthesis of Carbocycles: C–C Activation in Cyclopropanes. 2014, 195-231. https://doi.org/10.1007/128_2014_527
    88. Elena Soriano, Israel Fernández. Allenes and computational chemistry: from bonding situations to reaction mechanisms. Chemical Society Reviews 2014, 43 (9) , 3041. https://doi.org/10.1039/c3cs60457h
    89. Bing Liu, Enxiang Wei, Shaoxia Lin, Baozhong Zhao, Fushun Liang. Synthesis of spiro[isoquinolinone-4,2′-oxiranes] and isoindolinones via a multicomponent reaction of 2-acetyl-oxirane-2-carboxamides, arylaldehydes and malononitrile. Chemical Communications 2014, 50 (53) , 6995. https://doi.org/10.1039/c4cc02141j
    90. . References. 2013, 255-286. https://doi.org/10.1002/9781118709313.refs
    91. Paul A. Wender. Toward the ideal synthesis and transformative therapies: the roles of step economy and function oriented synthesis. Tetrahedron 2013, 69 (36) , 7529-7550. https://doi.org/10.1016/j.tet.2013.06.004
    92. Hao Sun, Haowei Zhang, Jianlin Han, Yi Pan, Guigen Li. Asymmetric C–C Bond Formation between Chiral N ‐Phosphonyl Imines and a Nickel(II)‐Complexed Glycine Schiff Base Provides Efficient Synthesis of α,β‐ syn ‐Diamino Acid Derivatives. European Journal of Organic Chemistry 2013, 2013 (22) , 4744-4747. https://doi.org/10.1002/ejoc.201300554
    93. Christophe Allais, Frédéric Liéby‐Muller, Jean Rodriguez, Thierry Constantieux. Metal‐Free Michael‐Addition‐Initiated Three‐Component Reaction for the Regioselective Synthesis of Highly Functionalized Pyridines: Scope, Mechanistic Investigations and Applications. European Journal of Organic Chemistry 2013, 2013 (19) , 4131-4145. https://doi.org/10.1002/ejoc.201300246
    94. Tse‐Lok Ho, Mary Fieser, Louis Fieser. Bis[dicarbonylchlororhodium( I )]. 2013, 60-63. https://doi.org/10.1002/9780471264194.fos11405.pub4
    95. Gen-Qiang Chen, Min Shi. Rhodium-catalyzed tandem Pauson–Khand type reactions of 1,4-enynes tethered by a cyclopropyl group. Chem. Commun. 2013, 49 (7) , 698-700. https://doi.org/10.1039/C2CC37587G
    96. Cheng-Pao Cao, Wei Lin, Ming-Hua Hu, Zhi-Bin Huang, Da-Qing Shi. Highly efficient construction of pentacyclic benzo[b]indeno-[1,2,3-de][1,8]naphthyridine derivatives via four-component domino reaction. Chemical Communications 2013, 49 (62) , 6983. https://doi.org/10.1039/c3cc43489c
    97. Jia-Yan Liu, Qiu-Yun Li, Bo Jiang, Shu-Jiang Tu. Three-component domino reactions providing rapid and efficient routes to fully substituted pyrroles. RSC Advances 2013, 3 (15) , 5056. https://doi.org/10.1039/c3ra40252e
    98. Abu T. Khan, Md. Musawwer Khan, Deb Kumar Das, Mohan Lal. Silica‐Supported Perchloric Acid (HClO 4 –SiO 2 ): An Efficient Catalyst for One‐Pot Synthesis of Functionalized Tetrahydropyrimidine Derivatives. Journal of Heterocyclic Chemistry 2012, 49 (6) , 1362-1369. https://doi.org/10.1002/jhet.1017
    99. Christophe Allais, Frédéric Liéby‐Muller, Thierry Constantieux, Jean Rodriguez. Dual Heterogeneous Catalysis for a Regioselective Three‐ Component Synthesis of Bi‐ and Tri(hetero)arylpyridines. Advanced Synthesis & Catalysis 2012, 354 (13) , 2537-2544. https://doi.org/10.1002/adsc.201200412
    100. Bo Jiang, Bao‐Ming Feng, Shu‐Liang Wang, Shu‐Jiang Tu, Guigen Li. Domino Constructions of Pentacyclic Indeno[2,1‐ c ]quinolines and Pyrano[4,3‐ b ]oxepines by [4+1]/[3+2+1]/[5+1] and [4+3] Multiple Cyclizations. Chemistry – A European Journal 2012, 18 (32) , 9823-9826. https://doi.org/10.1002/chem.201201109
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2005, 127, 9, 2836–2837
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja042728b
    Published February 11, 2005
    Copyright © 2005 American Chemical Society

    Article Views

    2167

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.