ACS Publications. Most Trusted. Most Cited. Most Read
Ruthenium-Catalyzed Cycloaddition of Alkynes and Organic Azides
My Activity

    Communication

    Ruthenium-Catalyzed Cycloaddition of Alkynes and Organic Azides
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, and Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
    Other Access OptionsSupporting Information (5)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2005, 127, 46, 15998–15999
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja054114s
    Published October 28, 2005
    Copyright © 2005 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Cp*RuCl(PPh3)2 is an effective catalyst for the regioselective “fusion” of organic azides and terminal alkynes, producing 1,5-disubstituted 1,2,3-triazoles. Internal alkynes also participate in this catalysis, resulting in fully substituted 1,2,3-triazoles.

    Copyright © 2005 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     The Hong Kong University of Science and Technology.

     The Scripps Research Institute.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    Click to copy section linkSection link copied!

    Experimental procedures and characterization data (PDF). X-ray crystallographic files (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 1015 publications.

    1. Akash Shrivastav, Raj Kumar Sahani, Subrato Bhattacharya. A Study on the [3+2] Cycloaddition Reaction of Square Planar Ni(II) Azido Complexes: Structure, Properties, and Catalytic Applications of the Products. Inorganic Chemistry 2025, 64 (17) , 8799-8818. https://doi.org/10.1021/acs.inorgchem.5c01111
    2. Mangal S. Yadav, Vinay K. Pandey, Manoj K. Jaiswal, Sumit K. Singh, Anindra Sharma, Mayank Singh, Vinod K. Tiwari. Late-Stage Functionalization Strategies of 1,2,3-Triazoles: A Post-Click Approach in Organic Synthesis. The Journal of Organic Chemistry 2025, 90 (17) , 5731-5762. https://doi.org/10.1021/acs.joc.5c00125
    3. Pankaj Sharma, Quan Jiang, Shao-Gang Li, Elissa Ocke, Kholiswa Tsotetsi, Paridhi Sukheja, Parul Singh, Shraddha Suryavanshi, Ethan Morrison, Srinivas Thadkapally, Riccardo Russo, Suyapa Penalva-Lopez, Julianna Cangialosi, Vijeta Sharma, Kyla Johnson, Jansy P. Sarathy, Andrew M. Nelson, Steven Park, Matthew D. Zimmerman, David Alland, Pradeep Kumar, Joel S. Freundlich. Evolution of Small Molecule Inhibitors of Mycobacterium tuberculosis Menaquinone Biosynthesis. Journal of Medicinal Chemistry 2025, 68 (5) , 5774-5803. https://doi.org/10.1021/acs.jmedchem.4c03156
    4. Manoj K. Jaiswal, Mangal S. Yadav, Shristy Maurya, Danish Ansari, Vinod K. Tiwari. HFIP-Mediated Synthesis of 4-Aryl-NH-1,2,3-Triazoles and 1,5-Disubstituted 1,2,3-Triazolyl Glycoconjugates. The Journal of Organic Chemistry 2024, 89 (23) , 17213-17227. https://doi.org/10.1021/acs.joc.4c01700
    5. Badaraita Gorachand, Gundam Surendra Reddy, Dhevalapally B. Ramachary. Direct Organocatalytic Chemoselective Synthesis of Pharmaceutically Active 1,2,3-Triazoles and 4,5′-Bitriazoles. ACS Organic & Inorganic Au 2024, 4 (5) , 534-544. https://doi.org/10.1021/acsorginorgau.4c00032
    6. Navaneet Kumar, Atul Kumar. Enzyme-Catalyzed Regioselective Synthesis of 4-Hetero-Functionalized 1,5-Disubstituted 1,2,3-Triazoles. Organic Letters 2024, 26 (36) , 7514-7519. https://doi.org/10.1021/acs.orglett.4c02341
    7. Brandon D. Nusser, Lucia E. Jenkins, Xinsong Lin, Lei Zhu. Regiospecific Synthesis of 1,4-Diaryl-5-cyano-1,2,3-triazoles and Their Photoconversion to 2- or 3-Cyanoindoles. The Journal of Organic Chemistry 2024, 89 (17) , 12610-12618. https://doi.org/10.1021/acs.joc.4c01533
    8. Yuefeng Bai, Chaofan Lan, Wen-Hao Yu, Ruo-Xin Li, Wenqian Li, Kan Zhang, Ke-Qing Zhao, Ping Hu, Yen Wei, Kangmin Niu. Triphenylene Discotic Pd(II) Metallomesogens Based on Triazole Ligands Derived from the Click Reaction. Crystal Growth & Design 2024, 24 (10) , 4045-4056. https://doi.org/10.1021/acs.cgd.3c01388
    9. Tzu-Ching Chi, Po-Chun Yang, Shao-Kung Hung, Hui-Wen Wu, Hong-Chi Wang, Hsin-Kuan Liu, Li-Wen Liu, Ho-Hsuan Chou. Synthesis of Multisubstituted 1,2,3-Triazoles: Regioselective Formation and Reaction Mechanism. The Journal of Organic Chemistry 2024, 89 (8) , 5401-5408. https://doi.org/10.1021/acs.joc.3c02836
    10. Natalia Berdzik, Hanna Koenig, Lucyna Mrówczyńska, Damian Nowak, Beata Jasiewicz, Tomasz Pospieszny. Synthesis and Hemolytic Activity of Bile Acid-Indole Bioconjugates Linked by Triazole. The Journal of Organic Chemistry 2023, 88 (24) , 16719-16734. https://doi.org/10.1021/acs.joc.3c00815
    11. Fabijan Pavošević, Robert L. Smith, Angel Rubio. Cavity Click Chemistry: Cavity-Catalyzed Azide–Alkyne Cycloaddition. The Journal of Physical Chemistry A 2023, 127 (48) , 10184-10188. https://doi.org/10.1021/acs.jpca.3c06285
    12. Renzo Carlucci, María-Natalia Lisa, Guillermo R. Labadie. 1,2,3-Triazoles in Biomolecular Crystallography: A Geometrical Data-Mining Approach. Journal of Medicinal Chemistry 2023, 66 (21) , 14377-14390. https://doi.org/10.1021/acs.jmedchem.3c01097
    13. Cong Guan, Jiabin Yin, Jian Ji, Jinhua Liu, Xiang Wu, Tong Zhu, Shunying Liu. Regioselectively Electrochemical Synthesis of N2-Selective C–H Amination of Ethers with N-Tosyl 1,2,3-Triazole via Triazole Radical Cation. Organic Letters 2023, 25 (28) , 5383-5388. https://doi.org/10.1021/acs.orglett.3c01896
    14. Chang-Qing Qin, Cheng Zhao, Guo-Shu Chen, Yun-Lin Liu. Catalytic Enantioselective Azide–Alkyne Cycloaddition Chemistry Opens Up New Prospects for Chiral Triazole Syntheses. ACS Catalysis 2023, 13 (9) , 6301-6311. https://doi.org/10.1021/acscatal.3c00911
    15. Linwei Zeng, Fengzhi Zhang, Sunliang Cui. Construction of Axial Chirality via Click Chemistry: Rh-Catalyzed Enantioselective Synthesis of 1-Triazolyl-2-Naphthylamines. Organic Letters 2023, 25 (2) , 443-448. https://doi.org/10.1021/acs.orglett.2c04247
    16. Menghan Cui, Rong Wang, Qing Yang, Chunxiang Kuang. Copper-Promoted One-Pot Sandmeyer-Type Reaction for the Synthesis of N-Aryltriazoles. The Journal of Organic Chemistry 2022, 87 (15) , 9654-9662. https://doi.org/10.1021/acs.joc.2c00697
    17. Giovanna Li Petri, Simona Di Martino, Maria De Rosa. Peptidomimetics: An Overview of Recent Medicinal Chemistry Efforts toward the Discovery of Novel Small Molecule Inhibitors. Journal of Medicinal Chemistry 2022, 65 (11) , 7438-7475. https://doi.org/10.1021/acs.jmedchem.2c00123
    18. Tiexin Li, Essam M. Dief, Zlatica Kalužná, Melanie MacGregor, Cina Foroutan-Nejad, Nadim Darwish. On-Surface Azide–Alkyne Cycloaddition Reaction: Does It Click with Ruthenium Catalysts?. Langmuir 2022, 38 (18) , 5532-5541. https://doi.org/10.1021/acs.langmuir.2c00100
    19. Rebecca T. Ruck, Jun Pan, Rishi G. Vaswani, Birgit Kosjek, Neil A. Strotman, Chaoxian Cai, Guy R. Humphrey. Harnessing the Power of Catalysis for the Synthesis of CRTH2 Antagonist MK-1029. Organic Process Research & Development 2022, 26 (3) , 648-656. https://doi.org/10.1021/acs.oprd.1c00128
    20. Zhanfeng Hou, Yuena Wang, Chuan Wan, Lijuan Song, Rui Wang, Xiaochun Guo, Dongyan Yang, Yaping Zhang, Xuan Qin, Ziyuan Zhou, Xinhao Zhang, Feng Yin, Zigang Li. Sulfonium Triggered Alkyne–Azide Click Cycloaddition. Organic Letters 2022, 24 (7) , 1448-1453. https://doi.org/10.1021/acs.orglett.2c00021
    21. Daniel Back, Brenda T. Shaffer, Joyce E. Loper, Benjamin Philmus. Untargeted Identification of Alkyne-Containing Natural Products Using Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reactions Coupled to LC-MS/MS. Journal of Natural Products 2022, 85 (1) , 105-114. https://doi.org/10.1021/acs.jnatprod.1c00798
    22. Ramananda Maity, Biprajit Sarkar. Chemistry of Compounds Based on 1,2,3-Triazolylidene-Type Mesoionic Carbenes. JACS Au 2022, 2 (1) , 22-57. https://doi.org/10.1021/jacsau.1c00338
    23. Mingxing Teng, Wenchao Lu, Katherine A. Donovan, Jialin Sun, Noah M. Krupnick, Radosław P. Nowak, Yen-Der Li, Adam S. Sperling, Tinghu Zhang, Benjamin L. Ebert, Eric S. Fischer, Nathanael S. Gray. Development of PDE6D and CK1α Degraders through Chemical Derivatization of FPFT-2216. Journal of Medicinal Chemistry 2022, 65 (1) , 747-756. https://doi.org/10.1021/acs.jmedchem.1c01832
    24. Leiyang Lv, Ge Gao, Yani Luo, Kuantao Mao, Zhiping Li. Three-Component Reactions of α-CF3 Carbonyls, NaN3, and Amines for the Synthesis of NH-1,2,3-Triazoles. The Journal of Organic Chemistry 2021, 86 (23) , 17197-17212. https://doi.org/10.1021/acs.joc.1c02288
    25. Andrey Bubyrev, Ksenia Malkova, Grigory Kantin, Dmitry Dar’in, Mikhail Krasavin. Metal-Free Synthesis of 1,5-Disubstituted 1,2,3-Triazoles. The Journal of Organic Chemistry 2021, 86 (23) , 17516-17522. https://doi.org/10.1021/acs.joc.1c02309
    26. Peter T. W. Cheng, Robert F. Kaltenbach III, Hao Zhang, Jun Shi, Shiwei Tao, Jun Li, Lawrence J. Kennedy, Steven J. Walker, Yan Shi, Ying Wang, Suresh Dhanusu, Ramesh Reddigunta, Selvakumar Kumaravel, Sutjano Jusuf, Daniel Smith, Subramaniam Krishnananthan, Jianqing Li, Tao Wang, Rebekah Heiry, Chi Shing Sum, Stephen S. Kalinowski, Chen-Pin Hung, Ching-Hsuen Chu, Anthony V. Azzara, Milinda Ziegler, Lisa Burns, Bradley A. Zinker, Stephanie Boehm, Joseph Taylor, Julia Sapuppo, Kathy Mosure, Gerry Everlof, Victor Guarino, Lisa Zhang, Yanou Yang, Qian Ruan, Carrie Xu, Atsu Apedo, Sarah C. Traeger, Mary Ellen Cvijic, Kimberley A. Lentz, Giridhar Tirucherai, Lakshmi Sivaraman, Jeffrey Robl, Bruce A. Ellsworth, Glenn Rosen, David A. Gordon, Matthew G. Soars, Michael Gill, Brian J. Murphy. Discovery of an Oxycyclohexyl Acid Lysophosphatidic Acid Receptor 1 (LPA1) Antagonist BMS-986278 for the Treatment of Pulmonary Fibrotic Diseases. Journal of Medicinal Chemistry 2021, 64 (21) , 15549-15581. https://doi.org/10.1021/acs.jmedchem.1c01256
    27. Roberta Pacifico, Dario Destro, Malachi W. Gillick-Healy, Brian G. Kelly, Mauro F. A. Adamo. Preparation of Acidic 5-Hydroxy-1,2,3-triazoles via the Cycloaddition of Aryl Azides with β-Ketoesters. The Journal of Organic Chemistry 2021, 86 (17) , 11354-11360. https://doi.org/10.1021/acs.joc.1c00778
    28. Anand K. Agrahari, Priyanka Bose, Manoj K. Jaiswal, Sanchayita Rajkhowa, Anoop S. Singh, Srinivas Hotha, Nidhi Mishra, Vinod K. Tiwari. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chemical Reviews 2021, 121 (13) , 7638-7956. https://doi.org/10.1021/acs.chemrev.0c00920
    29. Cynthia L. Lichorowic, Yingzhao Zhao, Steven P. Maher, Vivian Padín-Irizarry, Victoria C. Mendiola, Sagan T. de Castro, Jacob A. Worden, Debora Casandra, Dennis E. Kyle, Roman Manetsch. Synthesis of Mono- and Bisperoxide-Bridged Artemisinin Dimers to Elucidate the Contribution of Dimerization to Antimalarial Activity. ACS Infectious Diseases 2021, 7 (7) , 2013-2024. https://doi.org/10.1021/acsinfecdis.1c00066
    30. Nicolò Zuin Fantoni, Afaf H. El-Sagheer, Tom Brown. A Hitchhiker’s Guide to Click-Chemistry with Nucleic Acids. Chemical Reviews 2021, 121 (12) , 7122-7154. https://doi.org/10.1021/acs.chemrev.0c00928
    31. Yen-Hao Hsu, Andrew P. Dove, Matthew L. Becker. Crosslinked Internal Alkyne-Based Stereo Elastomers: Polymers with Tunable Mechanical Properties. Macromolecules 2021, 54 (10) , 4649-4657. https://doi.org/10.1021/acs.macromol.1c00246
    32. Xueyan Zhang, Fuqi Gou, Xiaojun Wang, Yong Wang, Shengtao Ding. Easily Functionalized and Readable Sequence-Defined Polytriazoles. ACS Macro Letters 2021, 10 (5) , 551-557. https://doi.org/10.1021/acsmacrolett.1c00145
    33. John A. Karas, John D. Wade, Mohammed Akhter Hossain. The Chemical Synthesis of Insulin: An Enduring Challenge. Chemical Reviews 2021, 121 (8) , 4531-4560. https://doi.org/10.1021/acs.chemrev.0c01251
    34. En-Chih Liu, Joseph J. Topczewski. Enantioselective Nickel-Catalyzed Alkyne–Azide Cycloaddition by Dynamic Kinetic Resolution. Journal of the American Chemical Society 2021, 143 (14) , 5308-5313. https://doi.org/10.1021/jacs.1c01354
    35. Nathalie M. Grob, Roger Schibli, Martin Béhé, Ibai E. Valverde, Thomas L. Mindt. 1,5-Disubstituted 1,2,3-Triazoles as Amide Bond Isosteres Yield Novel Tumor-Targeting Minigastrin Analogs. ACS Medicinal Chemistry Letters 2021, 12 (4) , 585-592. https://doi.org/10.1021/acsmedchemlett.0c00636
    36. Xue Cui, Xueying Zhang, Wei Wang, Xia Zhong, Yinfeng Tan, Yan Wang, Jianlan Zhang, Youbin Li, Xuesong Wang. Regitz Diazo Transfer Reaction for the Synthesis of 1,4,5-Trisubstituted 1,2,3-Triazoles and Subsequent Regiospecific Construction of 1,4-Disubstituted 1,2,3-Triazoles via C–C Bond Cleavage. The Journal of Organic Chemistry 2021, 86 (5) , 4071-4080. https://doi.org/10.1021/acs.joc.0c02912
    37. Alexis Lossouarn, Pierre-Yves Renard, Cyrille Sabot. Tailored Bioorthogonal and Bioconjugate Chemistry: A Source of Inspiration for Developing Kinetic Target-Guided Synthesis Strategies. Bioconjugate Chemistry 2021, 32 (1) , 63-72. https://doi.org/10.1021/acs.bioconjchem.0c00568
    38. G. Surendra Reddy, L. Mallikarjuna Reddy, A. Suresh Kumar, Dhevalapally B. Ramachary. Organocatalytic Selective [3 + 2] Cycloadditions: Synthesis of Functionalized 5-Arylthiomethyl-1,2,3-triazoles and 4-Arylthio-1,2,3-triazoles. The Journal of Organic Chemistry 2020, 85 (23) , 15488-15501. https://doi.org/10.1021/acs.joc.0c02247
    39. Qin Zhu, Shuwen Chen, Fangzhou Xu, Jun Zhu. Reaction Mechanisms on [3 + 2] Cycloaddition of Azides with Metal Carbyne Complexes: Significant Effects of Aromaticity, Substituent, and Metal Center. Inorganic Chemistry 2020, 59 (10) , 7318-7324. https://doi.org/10.1021/acs.inorgchem.0c00754
    40. Nathalie M. Grob, Sarah Schmid, Roger Schibli, Martin Behe, Thomas L. Mindt. Design of Radiolabeled Analogs of Minigastrin by Multiple Amide-to-Triazole Substitutions. Journal of Medicinal Chemistry 2020, 63 (9) , 4496-4505. https://doi.org/10.1021/acs.jmedchem.9b01937
    41. Enaam Masri, Ahsanullah, Matteo Accorsi, Jörg Rademann. Side-Chain Modification of Peptides Using a Phosphoranylidene Amino Acid. Organic Letters 2020, 22 (8) , 2976-2980. https://doi.org/10.1021/acs.orglett.0c00713
    42. Marzieh Hashemi, Avat Arman Taherpour. Structural Assessment of Hydrogen Bonds on Methylpentynol–Azide Clusters To Achieve Regiochemical Outcome of 1,3-Dipolar Cycloaddition Reactions Using Density Functional Theory. ACS Omega 2020, 5 (11) , 5964-5975. https://doi.org/10.1021/acsomega.9b04333
    43. Linwei Zeng, Zhencheng Lai, Chen Zhang, Hujun Xie, Sunliang Cui. Directing-Group-Enabled Cycloaddition of Azides and Alkynes toward Functionalized Triazoles. Organic Letters 2020, 22 (6) , 2220-2224. https://doi.org/10.1021/acs.orglett.0c00394
    44. Ping Wu, Yuan He, Hongmei Wang, Yong-Gui Zhou, Zhengkun Yu. Copper(II)-Catalyzed C–H Nitrogenation/Annulation Cascade of Ketene N,S-Acetals with Aryldiazonium Salts: A Direct Access to N2-Substituted Triazole and Triazine Derivatives. Organic Letters 2020, 22 (1) , 310-315. https://doi.org/10.1021/acs.orglett.9b04335
    45. Hoi Yee Chow, Yue Zhang, Eilidh Matheson, Xuechen Li. Ligation Technologies for the Synthesis of Cyclic Peptides. Chemical Reviews 2019, 119 (17) , 9971-10001. https://doi.org/10.1021/acs.chemrev.8b00657
    46. Heather D. Agnew, Matthew B. Coppock, Matthew N. Idso, Bert T. Lai, JingXin Liang, Amy M. McCarthy-Torrens, Carmen M. Warren, James R. Heath. Protein-Catalyzed Capture Agents. Chemical Reviews 2019, 119 (17) , 9950-9970. https://doi.org/10.1021/acs.chemrev.8b00660
    47. Kim T. Mortensen, Thomas J. Osberger, Thomas A. King, Hannah F. Sore, David R. Spring. Strategies for the Diversity-Oriented Synthesis of Macrocycles. Chemical Reviews 2019, 119 (17) , 10288-10317. https://doi.org/10.1021/acs.chemrev.9b00084
    48. Miguel A. Sierra, María C. de la Torre. 1,2,3-Triazolium-Derived Mesoionic Carbene Ligands Bearing Chiral Sulfur-Based Moieties: Synthesis, Catalytic Properties, and Their Role in Chirality Transfer. ACS Omega 2019, 4 (8) , 12983-12994. https://doi.org/10.1021/acsomega.9b01285
    49. Sangeetha Donikela, Prathama S. Mainkar, Kiranmai Nayani, Srivari Chandrasekhar. Metal Free Domino β-Azidation/[3 + 2] Cycloaddition Reaction for the Synthesis of 1,2,3-Triazole-Fused Dihydrobenzoxazinones. The Journal of Organic Chemistry 2019, 84 (16) , 10546-10553. https://doi.org/10.1021/acs.joc.9b01660
    50. Baixue Li, Yong Liu, Han Nie, Anjun Qin, Ben Zhong Tang. Phosphazene Base-Mediated Azide–Alkyne Click Polymerization toward 1,5-Regioregular Polytriazoles. Macromolecules 2019, 52 (12) , 4713-4720. https://doi.org/10.1021/acs.macromol.9b00620
    51. Harvey J. A. Dale, George R. Hodges, Guy C. Lloyd-Jones. Taming Ambident Triazole Anions: Regioselective Ion Pairing Catalyzes Direct N-Alkylation with Atypical Regioselectivity. Journal of the American Chemical Society 2019, 141 (17) , 7181-7193. https://doi.org/10.1021/jacs.9b02786
    52. Die Huang, Yong Liu, Anjun Qin, Ben Zhong Tang. Structure–Property Relationship of Regioregular Polytriazoles Produced by Ligand-Controlled Regiodivergent Ru(II)-Catalyzed Azide–Alkyne Click Polymerization. Macromolecules 2019, 52 (5) , 1985-1992. https://doi.org/10.1021/acs.macromol.8b02671
    53. Anastasia I. Govdi, Natalia A. Danilkina, Alexander V. Ponomarev, Irina A. Balova. 1-Iodobuta-1,3-diynes in Copper-Catalyzed Azide–Alkyne Cycloaddition: A One-Step Route to 4-Ethynyl-5-iodo-1,2,3-triazoles. The Journal of Organic Chemistry 2019, 84 (4) , 1925-1940. https://doi.org/10.1021/acs.joc.8b02916
    54. Ma Angeles Bonache, Silvia Moreno-Fernández, Marta Miguel, Beatriz Sabater-Muñoz, Rosario González-Muñiz. Small Library of Triazolyl Polyphenols Correlating Antioxidant Activity and Stability with Number and Position of Hydroxyl Groups. ACS Combinatorial Science 2018, 20 (12) , 694-699. https://doi.org/10.1021/acscombsci.8b00118
    55. Wangze Song, Nan Zheng, Ming Li, Kun Dong, Junhao Li, Karim Ullah, Yubin Zheng. Regiodivergent Rhodium(I)-Catalyzed Azide–Alkyne Cycloaddition (RhAAC) To Access Either Fully Substituted Sulfonyl-1,2,3-triazoles under Mild Conditions. Organic Letters 2018, 20 (21) , 6705-6709. https://doi.org/10.1021/acs.orglett.8b02794
    56. Ángela Vivancos, Candela Segarra, Martin Albrecht. Mesoionic and Related Less Heteroatom-Stabilized N-Heterocyclic Carbene Complexes: Synthesis, Catalysis, and Other Applications. Chemical Reviews 2018, 118 (19) , 9493-9586. https://doi.org/10.1021/acs.chemrev.8b00148
    57. Xuan Li, Jianghua He, Yuetao Zhang. BBr3-Assisted Preparation of Aromatic Alkyl Bromides from Lignin and Lignin Model Compounds. The Journal of Organic Chemistry 2018, 83 (18) , 11019-11027. https://doi.org/10.1021/acs.joc.8b01628
    58. Sivaraj Ramasamy, Chittibabu Petha, Shankar Tendulkar, Prantik Maity, Martin D. Eastgate, Rajappa Vaidyanathan. Synergistic Effect of Copper and Ruthenium on Regioselectivity in the Alkyne–Azide Click Reaction of Internal Alkynes. Organic Process Research & Development 2018, 22 (7) , 880-887. https://doi.org/10.1021/acs.oprd.8b00163
    59. Srinivasa R. Tala, Anamika Singh, Cody J. Lensing, Sathya M. Schnell, Katie T. Freeman, James R. Rocca, Carrie Haskell-Luevano. 1,2,3-Triazole Rings as a Disulfide Bond Mimetic in Chimeric AGRP-Melanocortin Peptides: Design, Synthesis, and Functional Characterization. ACS Chemical Neuroscience 2018, 9 (5) , 1001-1013. https://doi.org/10.1021/acschemneuro.7b00422
    60. Xiaoying Xu, Kaifan Zhang, Panpan Li, Hequan Yao, Aijun Lin. [3 + 3] Cycloaddition of Azides with in Situ Formed Azaoxyallyl Cations To Synthesize 1,2,3,4-Tetrazines. Organic Letters 2018, 20 (7) , 1781-1784. https://doi.org/10.1021/acs.orglett.8b00280
    61. Chad J. Pickens, Stephanie N. Johnson, Melissa M. Pressnall, Martin A. Leon, Cory J. Berkland. Practical Considerations, Challenges, and Limitations of Bioconjugation via Azide–Alkyne Cycloaddition. Bioconjugate Chemistry 2018, 29 (3) , 686-701. https://doi.org/10.1021/acs.bioconjchem.7b00633
    62. Fei-hu Cui, Jing Chen, Zu-yu Mo, Shi-xia Su, Yan-yan Chen, Xian-li Ma, Hai-tao Tang, Heng-shan Wang, Ying-ming Pan, and Yan-li Xu . Copper-Catalyzed Decarboxylative/Click Cascade Reaction: Regioselective Assembly of 5-Selenotriazole Anticancer Agents. Organic Letters 2018, 20 (4) , 925-929. https://doi.org/10.1021/acs.orglett.7b03734
    63. Ujjawal Kumar Bhagat and Rama Krishna Peddinti . Asymmetric Organocatalytic Approach to 2,4-Disubstituted 1,2,3-Triazoles by N2-Selective Aza-Michael Addition. The Journal of Organic Chemistry 2018, 83 (2) , 793-804. https://doi.org/10.1021/acs.joc.7b02793
    64. Kate Lauder, Anita Toscani, Nicolò Scalacci, and Daniele Castagnolo . Synthesis and Reactivity of Propargylamines in Organic Chemistry. Chemical Reviews 2017, 117 (24) , 14091-14200. https://doi.org/10.1021/acs.chemrev.7b00343
    65. Wangze Song and Nan Zheng . Iridium-Catalyzed Highly Regioselective Azide–Ynamide Cycloaddition to Access 5-Amido Fully Substituted 1,2,3-Triazoles under Mild, Air, Aqueous, and Bioorthogonal Conditions. Organic Letters 2017, 19 (22) , 6200-6203. https://doi.org/10.1021/acs.orglett.7b03123
    66. Juliane Schmid, Wolfgang Frey, and René Peters . Polynuclear Enantiopure Salen–Mesoionic Carbene Hybrid Complexes. Organometallics 2017, 36 (21) , 4313-4324. https://doi.org/10.1021/acs.organomet.7b00729
    67. Jens Engel-Andreasen, Isabelle Wellhöfer, Kathrine Wich, and Christian A. Olsen . Backbone-Fluorinated 1,2,3-Triazole-Containing Dipeptide Surrogates. The Journal of Organic Chemistry 2017, 82 (21) , 11613-11619. https://doi.org/10.1021/acs.joc.7b01744
    68. Yun Liao, Qianqian Lu, Gui Chen, Yinghua Yu, Chunsen Li, and Xueliang Huang . Rhodium-Catalyzed Azide–Alkyne Cycloaddition of Internal Ynamides: Regioselective Assembly of 5-Amino-Triazoles under Mild Conditions. ACS Catalysis 2017, 7 (11) , 7529-7534. https://doi.org/10.1021/acscatal.7b02558
    69. Woo Gyum Kim, Mi Eun Kang, Jae Bin Lee, Min Ho Jeon, Sungmin Lee, Jungha Lee, Bongseo Choi, Pedro M. S. D. Cal, Sebyung Kang, Jung-Min Kee, Gonçalo J. L. Bernardes, Jan-Uwe Rohde, Wonyoung Choe, and Sung You Hong . Nickel-Catalyzed Azide–Alkyne Cycloaddition To Access 1,5-Disubstituted 1,2,3-Triazoles in Air and Water. Journal of the American Chemical Society 2017, 139 (35) , 12121-12124. https://doi.org/10.1021/jacs.7b06338
    70. Xiang Fei, Megan E. Zavorka, Guillaume Malik, Christopher M. Connelly, Richard G. MacDonald, and David B. Berkowitz . General Linker Diversification Approach to Bivalent Ligand Assembly: Generation of an Array of Ligands for the Cation-Independent Mannose 6-Phosphate Receptor. Organic Letters 2017, 19 (16) , 4267-4270. https://doi.org/10.1021/acs.orglett.7b01914
    71. Xavier Creary, Kyle Chormanski, Gabriel Peirats, and Carol Renneburg . Electronic Properties of Triazoles. Experimental and Computational Determination of Carbocation and Radical-Stabilizing Properties. The Journal of Organic Chemistry 2017, 82 (11) , 5720-5730. https://doi.org/10.1021/acs.joc.7b00548
    72. Kelvin Pak Shing Cheung and Gavin Chit Tsui . Copper(I)-Catalyzed Interrupted Click Reaction with TMSCF3: Synthesis of 5-Trifluoromethyl 1,2,3-Triazoles. Organic Letters 2017, 19 (11) , 2881-2884. https://doi.org/10.1021/acs.orglett.7b01116
    73. Kai Huang, Guorong Sheng, Ping Lu, and Yanguang Wang . From 1-Sulfonyl-4-aryl-1,2,3-triazoles to 1-Allenyl-5-aryl-1,2,3-triazoles. The Journal of Organic Chemistry 2017, 82 (10) , 5294-5300. https://doi.org/10.1021/acs.joc.7b00627
    74. Ajay Gupta, Ramen Jamatia, Mrityunjoy Mahato, and Amarta Kumar Pal . Metalloprotein-Inspired Ruthenium Polymeric Complex: A Highly Efficient Catalyst in Parts per Million Level for 1,3-Dipolar Huisgen’s Reaction in Aqueous Medium at Room Temperature. Industrial & Engineering Chemistry Research 2017, 56 (9) , 2375-2382. https://doi.org/10.1021/acs.iecr.6b04863
    75. Wenjun Li, Manjaly J. Ajitha, Ming Lang, Kuo-Wei Huang, and Jian Wang . Catalytic Intermolecular Cross-Couplings of Azides and LUMO-Activated Unsaturated Acyl Azoliums. ACS Catalysis 2017, 7 (3) , 2139-2144. https://doi.org/10.1021/acscatal.6b03674
    76. Satoru Hiroto, Yoshihiro Miyake, and Hiroshi Shinokubo . Synthesis and Functionalization of Porphyrins through Organometallic Methodologies. Chemical Reviews 2017, 117 (4) , 2910-3043. https://doi.org/10.1021/acs.chemrev.6b00427
    77. Sampad Jana, Joice Thomas, and Wim Dehaen . A One-Pot Procedure for the Synthesis of “Click-Ready” Triazoles from Ketones. The Journal of Organic Chemistry 2016, 81 (24) , 12426-12432. https://doi.org/10.1021/acs.joc.6b02607
    78. Johan R. Johansson, Tamás Beke-Somfai, Anna Said Stålsmeden, and Nina Kann . Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reaction: Scope, Mechanism, and Applications. Chemical Reviews 2016, 116 (23) , 14726-14768. https://doi.org/10.1021/acs.chemrev.6b00466
    79. Kapil Kumar, Debabrata Konar, Sandeep Goyal, Mukesh Gangar, Mangilal Chouhan, Ravindra K. Rawal, and Vipin A. Nair . Water-Promoted Regiospecific Azidolysis and Copper-Catalyzed Azide–Alkyne Cycloaddition: One-Pot Synthesis of 3-Hydroxy-1-alkyl-3-[(4-aryl/alkyl-1H-1,2,3-triazol-1-yl)methyl]indolin-2-ones. The Journal of Organic Chemistry 2016, 81 (20) , 9757-9764. https://doi.org/10.1021/acs.joc.6b01819
    80. Idrees Mohammed, Indrasena Reddy Kummetha, Gatikrushna Singh, Natalia Sharova, Gianluigi Lichinchi, Jason Dang, Mario Stevenson, and Tariq M. Rana . 1,2,3-Triazoles as Amide Bioisosteres: Discovery of a New Class of Potent HIV-1 Vif Antagonists. Journal of Medicinal Chemistry 2016, 59 (16) , 7677-7682. https://doi.org/10.1021/acs.jmedchem.6b00247
    81. Kosuke Yamamoto, Theodora Bruun, Jung Yun Kim, Lei Zhang, and Mark Lautens . A New Multicomponent Multicatalyst Reaction (MC)2R: Chemoselective Cycloaddition and Latent Catalyst Activation for the Synthesis of Fully Substituted 1,2,3-Triazoles. Organic Letters 2016, 18 (11) , 2644-2647. https://doi.org/10.1021/acs.orglett.6b00975
    82. Zaira Monasterio, Aitziber Irastorza, José I. Miranda, and Jesus M. Aizpurua . Site-Selective N-Dealkylation of 1,2,3-Triazolium Salts: A Metal-Free Route to 1,5-Substituted 1,2,3-Triazoles and Related Bistriazoles. Organic Letters 2016, 18 (10) , 2511-2514. https://doi.org/10.1021/acs.orglett.6b01177
    83. Li-Li Zhu, Xiao-Qi Xu, Jin-Wei Shi, Bai-Ling Chen, and Zili Chen . N2-Selective Iodofunctionalization of Olefins with NH-1,2,3-Triazoles to provide N2-Alkyl-Substituted 1,2,3-Triazoles. The Journal of Organic Chemistry 2016, 81 (9) , 3568-3575. https://doi.org/10.1021/acs.joc.6b00185
    84. Vinod K. Tiwari, Bhuwan B. Mishra, Kunj B. Mishra, Nidhi Mishra, Anoop S. Singh, and Xi Chen . Cu-Catalyzed Click Reaction in Carbohydrate Chemistry. Chemical Reviews 2016, 116 (5) , 3086-3240. https://doi.org/10.1021/acs.chemrev.5b00408
    85. Shakir Ahamad, Ruchir Kant, and Kishor Mohanan . Metal-Free Three-Component Domino Approach to Phosphonylated Triazolines and Triazoles. Organic Letters 2016, 18 (2) , 280-283. https://doi.org/10.1021/acs.orglett.5b03437
    86. Maiara T. Saraiva, Gabriel P. Costa, Natália Seus, Ricardo F. Schumacher, Gelson Perin, Márcio W. Paixão, Rafael Luque, and Diego Alves . Room-Temperature Organocatalytic Cycloaddition of Azides with β-Keto Sulfones: Toward Sulfonyl-1,2,3-triazoles. Organic Letters 2015, 17 (24) , 6206-6209. https://doi.org/10.1021/acs.orglett.5b03196
    87. Steven B. Coffey, Gary Aspnes, and Allyn T. Londregan . Expedient Synthesis of N1-Substituted Triazole Peptidomimetics. ACS Combinatorial Science 2015, 17 (12) , 706-709. https://doi.org/10.1021/acscombsci.5b00150
    88. Xiaotian Qi, Heng Zhang, Ailong Shao, Lei Zhu, Ting Xu, Meng Gao, Chao Liu, and Yu Lan . Silver Migration Facilitates Isocyanide-Alkyne [3 + 2] Cycloaddition Reactions: Combined Experimental and Theoretical Study. ACS Catalysis 2015, 5 (11) , 6640-6647. https://doi.org/10.1021/acscatal.5b02009
    89. Jie-Ping Wan, Shuo Cao, and Yunyun Liu . A Metal- and Azide-Free Multicomponent Assembly toward Regioselective Construction of 1,5-Disubstituted 1,2,3-Triazoles. The Journal of Organic Chemistry 2015, 80 (18) , 9028-9033. https://doi.org/10.1021/acs.joc.5b01121
    90. Mei-Hua Shen, Ke Xu, Chu-Han Sun, and Hua-Dong Xu . The Reaction of 2,3-Dimethylimidazole-1-sulfonyl Azide Triflate with 3-Substituted Indoles: Reactivity and Scope. Organic Letters 2015, 17 (15) , 3654-3657. https://doi.org/10.1021/acs.orglett.5b01464
    91. Satoshi Okusu, Etsuko Tokunaga, and Norio Shibata . Difluoromethylation of Terminal Alkynes by Fluoroform. Organic Letters 2015, 17 (15) , 3802-3805. https://doi.org/10.1021/acs.orglett.5b01778
    92. Ting Li, Chen Fu, Zi Liu, Shuiliang Guo, Zicheng Liu, and Ting-Bin Wen . Half-Sandwich B-Oxy Boratabenzene Ruthenium Complexes: Synthesis, Characterization, and Reactivity of (η6-C5H5BOR)RuCl(PPh3)2 (R = Et, Me). Organometallics 2015, 34 (13) , 3292-3302. https://doi.org/10.1021/acs.organomet.5b00319
    93. Hui-Wen Bai, Zhong-Jian Cai, Shun-Yi Wang, and Shun-Jun Ji . Aerobic Oxidative Cycloaddition of α-Chlorotosylhydrazones with Arylamines: General Chemoselective Construction of 1,4-Disubstituted and 1,5-Disubstituted 1,2,3-Triazoles under Metal-Free and Azide-Free Conditions. Organic Letters 2015, 17 (12) , 2898-2901. https://doi.org/10.1021/acs.orglett.5b01000
    94. Fang Wei, Haoyu Li, Chuanling Song, Yudao Ma, Ling Zhou, Chen-Ho Tung, and Zhenghu Xu . Cu/Pd-Catalyzed, Three-Component Click Reaction of Azide, Alkyne, and Aryl Halide: One-Pot Strategy toward Trisubstituted Triazoles. Organic Letters 2015, 17 (11) , 2860-2863. https://doi.org/10.1021/acs.orglett.5b01342
    95. Sanjeev Kumar V. Vernekar, Li Qiu, Jing Zhang, Jayakanth Kankanala, Hongmin Li, Robert J. Geraghty, and Zhengqiang Wang . 5′-Silylated 3′-1,2,3-triazolyl Thymidine Analogues as Inhibitors of West Nile Virus and Dengue Virus. Journal of Medicinal Chemistry 2015, 58 (9) , 4016-4028. https://doi.org/10.1021/acs.jmedchem.5b00327
    96. K. Durga Bhaskar Yamajala, Mahendra Patil, and Shaibal Banerjee . Pd-Catalyzed Regioselective Arylation on the C-5 Position of N-Aryl 1,2,3-Triazoles. The Journal of Organic Chemistry 2015, 80 (6) , 3003-3011. https://doi.org/10.1021/jo5026145
    97. Huihui Chai, Ruiqiang Guo, Wei Yin, Lingping Cheng, Renhua Liu, and Changhu Chu . One-Pot, Three-Component Reaction Using Modified Julia Reagents: A Facile Synthesis of 4,5-Disubstituted 1,2,3-(NH)-Triazoles in a Wet Organic Solvent. ACS Combinatorial Science 2015, 17 (3) , 147-151. https://doi.org/10.1021/co5001597
    98. Yijin Su, Jeffrey L. Petersen, Tesia L. Gregg, and Xiaodong Shi . Ambient Benzotriazole Ring Opening through Intermolecular Radical Addition to Vinyltriazole. Organic Letters 2015, 17 (5) , 1208-1211. https://doi.org/10.1021/acs.orglett.5b00156
    99. Yunfeng Chen, Gang Nie, Qi Zhang, Shan Ma, Huan Li, and Qinquan Hu . Copper-Catalyzed [3 + 2] Cycloaddition/Oxidation Reactions between Nitro-olefins and Organic Azides: Highly Regioselective Synthesis of NO2-Substituted 1,2,3-Triazoles. Organic Letters 2015, 17 (5) , 1118-1121. https://doi.org/10.1021/ol503687w
    100. Jing-Mei Wang, Shang-Bo Yu, Zhi-Ming Li, Quan-Rui Wang, and Zhan-Ting Li . Mechanism of Samarium-Catalyzed 1,5-Regioselective Azide–Alkyne [3 + 2]-Cycloaddition: A Quantum Mechanical Investigation. The Journal of Physical Chemistry A 2015, 119 (8) , 1359-1368. https://doi.org/10.1021/jp5104615
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2005, 127, 46, 15998–15999
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja054114s
    Published October 28, 2005
    Copyright © 2005 American Chemical Society

    Article Views

    19k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.