Structural Evidence for an Enolate Intermediate in GFP Fluorophore BiosynthesisClick to copy article linkArticle link copied!
Abstract
The Aequorea victoria green fluorescent protein (GFP) creates a fluorophore from its component amino acids Ser65, Tyr66, and Gly67 through a remarkable post-translational modification, involving spontaneous peptide backbone cyclization, dehydration, and oxidation reactions. Here we test and extend the understanding of fluorophore biosynthesis by coupling chemical reduction and anaerobic methodologies with kinetic analyses and protein structure determination. Two high-resolution structures of dithionite-treated GFP variants reveal a previously uncharacterized enolate intermediate form of the chromophore that is viable in generating a fluorophore (t1/2 = 39 min-1) upon exposure to air. Isolation of this enolate intermediate will now allow specific probing of the rate-limiting oxidation step for fluorophore biosynthesis in GFP and its red fluorescent protein homologues. Such targeted characterizations may lead to the design of faster maturing proteins with enhanced applications in biotechnology and cell biology. Moreover, our results reveal how the GFP protein environment mimics enzyme systems, by stabilizing an otherwise high energy enolate intermediate to achieve its post-translational modification.
*
In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.
Cited By
This article is cited by 49 publications.
- Ismael A. Elayan, Alex Brown. Non-Degenerate Two-Photon Absorption of Fluorescent Protein Chromophores. The Journal of Physical Chemistry A 2024, 128
(36)
, 7511-7523. https://doi.org/10.1021/acs.jpca.3c08402
- Sanjeev Kumar, M. Achanna Venkatesha, Padmanabhan Balaram. Mechanistic Investigations on N–Cα Bond Cleavages in Dibasic Peptides Containing Internal Lys and Arg Residues. Journal of the American Society for Mass Spectrometry 2022, 33
(9)
, 1598-1606. https://doi.org/10.1021/jasms.2c00055
- Justin Nwafor, Christian Salguero, Franceine Welcome, Sercan Durmus, Rachel N. Glasser, Marc Zimmer, Tanya L. Schneider. Why Are Gly31, Gly33, and Gly35 Highly Conserved in All Fluorescent Proteins?. Biochemistry 2021, 60
(49)
, 3762-3770. https://doi.org/10.1021/acs.biochem.1c00587
- Alexander V. Nemukhin, Bella L. Grigorenko, Maria G. Khrenova, Anna I. Krylov. Computational Challenges in Modeling of Representative Bioimaging Proteins: GFP-Like Proteins, Flavoproteins, and Phytochromes. The Journal of Physical Chemistry B 2019, 123
(29)
, 6133-6149. https://doi.org/10.1021/acs.jpcb.9b00591
- Bella L. Grigorenko, Anna I. Krylov, and Alexander V. Nemukhin . Molecular Modeling Clarifies the Mechanism of Chromophore Maturation in the Green Fluorescent Protein. Journal of the American Chemical Society 2017, 139
(30)
, 10239-10249. https://doi.org/10.1021/jacs.7b00676
- Yingying Ma, Hao Zhang, Qiao Sun, and Sean C. Smith . New Insights on the Mechanism of Cyclization in Chromophore Maturation of Wild-Type Green Fluorescence Protein: A Computational Study. The Journal of Physical Chemistry B 2016, 120
(24)
, 5386-5394. https://doi.org/10.1021/acs.jpcb.6b04406
- Yingying Ma, Qiao Sun, Zhen Li, Jian-Guo Yu, and Sean C. Smith . Theoretical Studies of Chromophore Maturation in the Wild-Type Green Fluorescent Protein: ONIOM(DFT:MM) Investigation of the Mechanism of Cyclization. The Journal of Physical Chemistry B 2012, 116
(4)
, 1426-1436. https://doi.org/10.1021/jp208749v
- Akihiko Ishii, Yuki Yamaguchi, and Norio Nakata . Fluorescent 3-Methylene-2,3-Dihydrochalcogenophenes Incorporated in a Rigid Dibenzobarrelene Skeleton. Organic Letters 2011, 13
(14)
, 3702-3705. https://doi.org/10.1021/ol2013523
- Yingying Ma, Qiao Sun, Hong Zhang, Liang Peng, Jian-Guo Yu and Sean C. Smith . The Mechanism of Cyclization in Chromophore Maturation of Green Fluorescent Protein: A Theoretical Study. The Journal of Physical Chemistry B 2010, 114
(29)
, 9698-9705. https://doi.org/10.1021/jp1039817
- Rita L. Strack, Daniel E. Strongin, Laurens Mets, Benjamin S. Glick and Robert J. Keenan . Chromophore Formation in DsRed Occurs by a Branched Pathway. Journal of the American Chemical Society 2010, 132
(24)
, 8496-8505. https://doi.org/10.1021/ja1030084
- Ai Shinobu and Noam Agmon. Mapping Proton Wires in Proteins: Carbonic Anhydrase and GFP Chromophore Biosynthesis. The Journal of Physical Chemistry A 2009, 113
(26)
, 7253-7266. https://doi.org/10.1021/jp8102047
- Lauren J. Pouwels, Liping Zhang, Nam H. Chan, Pieter C. Dorrestein and Rebekka M. Wachter . Kinetic Isotope Effect Studies on the de Novo Rate of Chromophore Formation in Fast- and Slow-Maturing GFP Variants. Biochemistry 2008, 47
(38)
, 10111-10122. https://doi.org/10.1021/bi8007164
- Rebekka M. Wachter. Chromogenic Cross-Link Formation in Green Fluorescent Protein. Accounts of Chemical Research 2007, 40
(2)
, 120-127. https://doi.org/10.1021/ar040086r
- Yury A. Gubarev, Elena S. Yurina, Natalia Sh. Lebedeva. Detection of green fluorescence in serum albumin upon excitation with 375 nm light: revealing new fluorescent properties. Mendeleev Communications 2024, 34
(3)
, 421-423. https://doi.org/10.1016/j.mencom.2024.04.035
- Rémi Hocq, Sara Bottone, Arnaud Gautier, Stefan Pflügl. A fluorescent reporter system for anaerobic thermophiles. Frontiers in Bioengineering and Biotechnology 2023, 11 https://doi.org/10.3389/fbioe.2023.1226889
- Konstantin M. Boyko, Maria G. Khrenova, Alena Y. Nikolaeva, Pavel V. Dorovatovskii, Anna V. Vlaskina, Oksana M. Subach, Vladimir O. Popov, Fedor V. Subach. Combined Structural and Computational Study of the mRubyFT Fluorescent Timer Locked in Its Blue Form. International Journal of Molecular Sciences 2023, 24
(9)
, 7906. https://doi.org/10.3390/ijms24097906
- Rochelle D. Ahmed, Husam Sabah Auhim, Harley L. Worthy, D. Dafydd Jones. Fluorescent Proteins: Crystallization, Structural Determination, and Nonnatural Amino Acid Incorporation. 2023, 99-119. https://doi.org/10.1007/978-1-0716-2667-2_5
- Asuma Janeena, Velmurugan Nagabalaji, Prem Suresh, Kamini Numbi Ramudu, Shanmugam Venkatachalam Srinivasan, Ganesh Shanmugam, Niraikulam Ayyadurai. Engineering microbial cells with metal chelating hydroxylated unnatural amino acids for removable of synthetic pollutants from water. Chemosphere 2023, 311 , 136756. https://doi.org/10.1016/j.chemosphere.2022.136756
- Abigail Roldán‐Salgado, Liya Muslinkina, Sergei Pletnev, Nadya Pletneva, Vladimir Pletnev, Paul Gaytán. A novel violet fluorescent protein contains a unique oxidized tyrosine as the simplest chromophore ever reported in fluorescent proteins. Protein Science 2022, 31
(3)
, 688-700. https://doi.org/10.1002/pro.4265
- Songtao Ye, Yuqi Tang, Xin Zhang. Principles, modulation, and applications of fluorescent protein chromophores. Chemical Physics Reviews 2022, 3
(1)
https://doi.org/10.1063/5.0080417
- Mayilvahanan Aarthy, Augustine George, Niraikulam Ayyadurai. Beyond protein tagging: Rewiring the genetic code of fluorescent proteins – A review. International Journal of Biological Macromolecules 2021, 191 , 840-851. https://doi.org/10.1016/j.ijbiomac.2021.09.108
- Husam Sabah Auhim, Bella L. Grigorenko, Tessa K. Harris, Ozan E. Aksakal, Igor V. Polyakov, Colin Berry, Gabriel dos Passos Gomes, Igor V. Alabugin, Pierre J. Rizkallah, Alexander V. Nemukhin, D. Dafydd Jones. Stalling chromophore synthesis of the fluorescent protein Venus reveals the molecular basis of the final oxidation step. Chemical Science 2021, 12
(22)
, 7735-7745. https://doi.org/10.1039/D0SC06693A
- Nadya V. Pletneva, Eugene G. Maksimov, Elena A. Protasova, Anastasia V. Mamontova, Tatiana R. Simonyan, Rustam H. Ziganshin, Konstantin A. Lukyanov, Liya Muslinkina, Sergei Pletnev, Alexey M. Bogdanov, Vladimir Z. Pletnev. Amino acid residue at the 165th position tunes EYFP chromophore maturation. A structure-based design. Computational and Structural Biotechnology Journal 2021, 19 , 2950-2959. https://doi.org/10.1016/j.csbj.2021.05.017
- Alexey A. Pakhomov, Anastasiya Yu. Frolova, Valentin M. Tabakmakher, Anton O. Chugunov, Roman G. Efremov, Vladimir I. Martynov. Impact of external amino acids on fluorescent protein chromophore biosynthesis revealed by molecular dynamics and mutagenesis studies. Journal of Photochemistry and Photobiology B: Biology 2020, 206 , 111853. https://doi.org/10.1016/j.jphotobiol.2020.111853
- Jun Guo, Srinivasan Ramachandran, Ruibo Zhong, Ratnesh Lal, Feng Zhang. Generating Cyan Fluorescence with De Novo Tripeptides: An In Vitro Mutation Study on the Role of Single Amino Acid Residues and Their Sequence. ChemBioChem 2019, 20
(18)
, 2324-2330. https://doi.org/10.1002/cbic.201900166
- N. V. Pletneva, E. A. Goryacheva, I. V. Artemyev, S. F. Arkhipova, V. Z. Pletnev. Structure of Chromophores in GFP-Like Proteins: X-Ray Data. Russian Journal of Bioorganic Chemistry 2019, 45
(3)
, 187-194. https://doi.org/10.1134/S106816201903004X
- Liya Muslinkina, Abigail Roldán-Salgado, Paul Gaytán, Víctor R. Juárez-González, Enrique Rudiño, Nadya Pletneva, Vladimir Pletnev, Zbigniew Dauter, Sergei Pletnev. Structural Factors Enabling Successful GFP-Like Proteins with Alanine as the Third Chromophore-Forming Residue. Journal of Molecular Biology 2019, 431
(7)
, 1397-1408. https://doi.org/10.1016/j.jmb.2019.02.013
- Bella L. Grigorenko, Ekaterina D. Kots, Anna I. Krylov, Alexander V. Nemukhin. Modeling of the glycine tripeptide cyclization in the Ser65Gly/Tyr66Gly mutant of green fluorescent protein. Mendeleev Communications 2019, 29
(2)
, 187-189. https://doi.org/10.1016/j.mencom.2019.03.024
- Hossein Roohi, Roghayeh Nokhostin. Molecular engineering of the photo switching in the ortho chromophores of the nanostructured green fluorescence protein. Journal of Luminescence 2018, 196 , 406-424. https://doi.org/10.1016/j.jlumin.2017.12.056
- Teerapong Pirojsirikul, Andreas W. Götz, John Weare, Ross C. Walker, Karol Kowalski, Marat Valiev. Combined quantum‐mechanical molecular mechanics calculations with NWChem and AMBER: Excited state properties of green fluorescent protein chromophore analogue in aqueous solution. Journal of Computational Chemistry 2017, 38
(18)
, 1631-1639. https://doi.org/10.1002/jcc.24804
- Yingying Ma, Qiao Sun, Sean C. Smith. The mechanism of oxidation in chromophore maturation of wild-type green fluorescent protein: a theoretical study. Physical Chemistry Chemical Physics 2017, 19
(20)
, 12942-12952. https://doi.org/10.1039/C6CP07983K
- Abigail Roldán-Salgado, Celidee Sánchez-Barreto, Paul Gaytán. LanFP10-A, first functional fluorescent protein whose chromophore contains the elusive mutation G67A. Gene 2016, 592
(2)
, 281-290. https://doi.org/10.1016/j.gene.2016.07.026
- Gregor Jung. Fluorescent Proteins: The Show Must Go On!. 2016, 55-90. https://doi.org/10.1002/9781119179320.ch4
- Yingying Ma, Jian-Guo Yu, Qiao Sun, Zhen Li, Sean C. Smith. The mechanism of dehydration in chromophore maturation of wild-type green fluorescent protein: A theoretical study. Chemical Physics Letters 2015, 631-632 , 42-46. https://doi.org/10.1016/j.cplett.2015.04.061
- Scott Classen, Greg L. Hura, James M. Holton, Robert P. Rambo, Ivan Rodic, Patrick J. McGuire, Kevin Dyer, Michal Hammel, George Meigs, Kenneth A. Frankel, John A. Tainer. Implementation and performance of SIBYLS: a dual endstation small-angle X-ray scattering and macromolecular crystallography beamline at the Advanced Light Source. Journal of Applied Crystallography 2013, 46
(1)
, 1-13. https://doi.org/10.1107/S0021889812048698
- Amit Choudhary, Kimberli J. Kamer, Ronald T. Raines. A conserved interaction with the chromophore of fluorescent proteins. Protein Science 2012, 21
(2)
, 171-177. https://doi.org/10.1002/pro.762
- Binsen Li, Ramza Shahid, Paola Peshkepija, Marc Zimmer. Water diffusion in and out of the β-barrel of GFP and the fast maturing fluorescent protein, TurboGFP. Chemical Physics 2012, 392
(1)
, 143-148. https://doi.org/10.1016/j.chemphys.2011.11.001
- Ryo Iizuka, Mai Yamagishi-Shirasaki, Takashi Funatsu. Kinetic study of de novo chromophore maturation of fluorescent proteins. Analytical Biochemistry 2011, 414
(2)
, 173-178. https://doi.org/10.1016/j.ab.2011.03.036
- Jasper J. van Thor. Photoconversion of the Green Fluorescent Protein and Related Proteins. 2011, 183-216. https://doi.org/10.1007/4243_2011_20
- Li‐June Ming. Biological Aspects of Metal Enolates. 2010https://doi.org/10.1002/9780470682531.pat0427
- U. Terranova, R. Nifosı`. A role for molecular compression in the post-translational formation of the Green Fluorescent Protein chromophore. Chemical Physics 2010, 371
(1-3)
, 76-83. https://doi.org/10.1016/j.chemphys.2010.04.006
- Nadya V. Pletneva, Vladimir Z. Pletnev, Konstantin A. Lukyanov, Nadya G. Gurskaya, Ekaterina A. Goryacheva, Vladimir I. Martynov, Alexander Wlodawer, Zbigniew Dauter, Sergei Pletnev. Structural Evidence for a Dehydrated Intermediate in Green Fluorescent Protein Chromophore Biosynthesis. Journal of Biological Chemistry 2010, 285
(21)
, 15978-15984. https://doi.org/10.1074/jbc.M109.092320
- Fabienne Merola, Bernard Levy, Isabelle Demachy, Helene Pasquier. Photophysics and Spectroscopy of Fluorophores in the Green Fluorescent Protein Family. 2010, 347-383. https://doi.org/10.1007/978-3-642-04702-2_11
- Benjamin T. Andrews, Melinda Roy, Patricia A. Jennings. Chromophore Packing Leads to Hysteresis in GFP. Journal of Molecular Biology 2009, 392
(1)
, 218-227. https://doi.org/10.1016/j.jmb.2009.06.072
- A. A. Pakhomov, V. I. Martynov. Posttranslational chemistry of proteins of the GFP family. Biochemistry (Moscow) 2009, 74
(3)
, 250-259. https://doi.org/10.1134/S000629790903002X
- Stephen R. Meech. Excited state reactions in fluorescent proteins. Chemical Society Reviews 2009, 38
(10)
, 2922. https://doi.org/10.1039/b820168b
- Timothy D. Craggs. Green fluorescent protein: structure, folding and chromophore maturation. Chemical Society Reviews 2009, 38
(10)
, 2865. https://doi.org/10.1039/b903641p
- Alexey A. Pakhomov, Vladimir I. Martynov. GFP Family: Structural Insights into Spectral Tuning. Chemistry & Biology 2008, 15
(8)
, 755-764. https://doi.org/10.1016/j.chembiol.2008.07.009
- S James Remington. Fluorescent proteins: maturation, photochemistry and photophysics. Current Opinion in Structural Biology 2006, 16
(6)
, 714-721. https://doi.org/10.1016/j.sbi.2006.10.001
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.