ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Ion Pair Driven Self-Assembly of a Flexible Bis-Zwitterion in Polar Solution:  Formation of Discrete Nanometer-Sized Cyclic Dimers

View Author Information
University of Würzburg, Institute of Organic Chemistry, Am Hubland, 97074 Würzburg, Germany, and Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
Cite this: J. Am. Chem. Soc. 2006, 128, 5, 1430–1431
Publication Date (Web):January 13, 2006
https://doi.org/10.1021/ja056465c
Copyright © 2006 American Chemical Society

    Article Views

    1004

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (80 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    The self-complementary flexible bis-zwitterion 1 forms discrete nanometer-sized cyclic dimers via ion pair driven self-assembly even in polar solvents. The existence of such dimers was confirmed by DOSY NMR, FAB-MS, and scattering experiments (DLS, SANS) which all indicate the concentration-dependent formation of cyclic dimers with a hydrodynamic radius of rH ≈ 2.5 nm in solution.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

     University of Würzburg.

     Max Planck Institute for Polymer Research.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Details on the synthesis, the NMR, DOSY, ESI-MS, DLS, and SANS experiments and the molecular mechanics calculations.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 53 publications.

    1. Yuren Sun, Jun Gu, Hongyu Wang, Jonathan L. Sessler, Pall Thordarson, Yue-Jian Lin, Hegui Gong. AAAA–DDDD Quadruple H-Bond-Assisted Ionic Interactions: Robust Bis(guanidinium)/Dicarboxylate Heteroduplexes in Water. Journal of the American Chemical Society 2019, 141 (51) , 20146-20154. https://doi.org/10.1021/jacs.9b09503
    2. Seyedali Monemian, Keon-Soo Jang, Hossein Ghassemi, and LaShanda T. J. Korley . Probing the Interplay of Ultraviolet Cross-Linking and Noncovalent Interactions in Supramolecular Elastomers. Macromolecules 2014, 47 (16) , 5633-5642. https://doi.org/10.1021/ma501183a
    3. Junyong Jo, András Olasz, Chun-Hsing Chen, and Dongwhan Lee . Interdigitated Hydrogen Bonds: Electrophile Activation for Covalent Capture and Fluorescence Turn-On Detection of Cyanide. Journal of the American Chemical Society 2013, 135 (9) , 3620-3632. https://doi.org/10.1021/ja312313f
    4. Christian Ruthard, Michael Maskos, Ute Kolb, and Franziska Gröhn . Polystyrene Sulfonate–Porphyrin Assemblies: Influence of Polyelectrolyte and Porphyrin Structure. The Journal of Physical Chemistry B 2011, 115 (19) , 5716-5729. https://doi.org/10.1021/jp1078357
    5. Tom F. A. de Greef, Marko M. L. Nieuwenhuizen, Rint P. Sijbesma and E. W. Meijer. Competitive Intramolecular Hydrogen Bonding in Oligo(ethylene oxide) Substituted Quadruple Hydrogen Bonded Systems. The Journal of Organic Chemistry 2010, 75 (3) , 598-610. https://doi.org/10.1021/jo902053t
    6. Immanuel Willerich, Helmut Ritter and Franziska Gröhn. Structure and Thermodynamics of Ionic Dendrimer−Dye Assemblies. The Journal of Physical Chemistry B 2009, 113 (11) , 3339-3354. https://doi.org/10.1021/jp8096605
    7. Thomas Rehm,, Vladimir Stepanenko,, Xin Zhang,, Frank Würthner,, Franziska Gröhn,, Katja Klein, and, Carsten Schmuck. A New Type of Soft Vesicle-Forming Molecule:  An Amino Acid Derived Guanidiniocarbonyl Pyrrole Carboxylate Zwitterion. Organic Letters 2008, 10 (7) , 1469-1472. https://doi.org/10.1021/ol8002755
    8. David Carteau,, Isabelle Pianet,, Pascal Brunerie,, Bruno Guillemat, and, Dario M. Bassani. Probing the Initial Events in the Spontaneous Emulsification of trans-Anethole Using Dynamic NMR Spectroscopy. Langmuir 2007, 23 (7) , 3561-3565. https://doi.org/10.1021/la062339q
    9. Anja Krieger, Alexander Zika, Franziska Gröhn. Functional Nano-Objects by Electrostatic Self-Assembly: Structure, Switching, and Photocatalysis. Frontiers in Chemistry 2022, 9 https://doi.org/10.3389/fchem.2021.779360
    10. Jan-Erik Ostwaldt, Christoph Hirschhäuser, Stefan K Maier, Carsten Schmuck, Jochen Niemeyer. Supramolecular polymers with reversed viscosity/temperature profile for application in motor oils. Beilstein Journal of Organic Chemistry 2021, 17 , 105-114. https://doi.org/10.3762/bjoc.17.11
    11. Alexander Zika, Franziska Gröhn. Multiswitchable photoacid–hydroxyflavylium–polyelectrolyte nano-assemblies. Beilstein Journal of Organic Chemistry 2021, 17 , 166-185. https://doi.org/10.3762/bjoc.17.17
    12. Michael Giese, Jochen Niemeyer, Jens Voskuhl. Guanidiniocarbonyl‐Pyrroles (GCP) – 20 Years of the Schmuck Binding Motif. ChemPlusChem 2020, 85 (5) , 985-997. https://doi.org/10.1002/cplu.202000142
    13. Bo Li, Tian He, Yiqi Fan, Xinchao Yuan, Huayu Qiu, Shouchun Yin. Recent developments in the construction of metallacycle/metallacage-cored supramolecular polymers via hierarchical self-assembly. Chemical Communications 2019, 55 (56) , 8036-8059. https://doi.org/10.1039/C9CC02472G
    14. Bo Li, Tian He, Xi Shen, Danting Tang, Shouchun Yin. Fluorescent supramolecular polymers with aggregation induced emission properties. Polymer Chemistry 2019, 10 (7) , 796-818. https://doi.org/10.1039/C8PY01396A
    15. Hu Wang, Xiaofan Ji, Zhengtao Li, Feihe Huang. Fluorescent Supramolecular Polymeric Materials. Advanced Materials 2017, 29 (14) https://doi.org/10.1002/adma.201606117
    16. Le Fang, Yuanli Hu, Qiang Li, Shutao Xu, Manivannan Kalavathi Dhinakarank, Weitao Gong, Guiling Ning. Fluorescent cross-linked supramolecular polymers constructed from a novel self-complementary AABB-type heteromultitopic monomer. Organic & Biomolecular Chemistry 2016, 14 (17) , 4039-4045. https://doi.org/10.1039/C6OB00064A
    17. Yunshen Zhang, Yichao Huang, Jiangwei Zhang, Li Zhu, Kun Chen, Jian Hao. Two unprecedented aromatic guanidines supramolecular chains self-assembled by hydrogen bonding interaction. Journal of Molecular Structure 2015, 1097 , 145-150. https://doi.org/10.1016/j.molstruc.2015.05.024
    18. Hu Wang, Pi Wang, Hao Xing, Ning Li, Xiaofan Ji. A multistimuli‐responsive supramolecular polymer constructed by crown ether‐based molecular recognition and disulfide bond connection. Journal of Polymer Science Part A: Polymer Chemistry 2015, 53 (18) , 2079-2084. https://doi.org/10.1002/pola.27693
    19. Wei Wang, Jun Gu, Xiaoliang Zou, Weiqi Tong, Hegui Gong. Solid state studies of the assembly of diionic guanidinium/carboxylate compounds. Tetrahedron Letters 2015, 56 (21) , 2684-2687. https://doi.org/10.1016/j.tetlet.2015.03.123
    20. Christina Rest, Ramesh Kandanelli, Gustavo Fernández. Strategies to create hierarchical self-assembled structures via cooperative non-covalent interactions. Chemical Society Reviews 2015, 44 (8) , 2543-2572. https://doi.org/10.1039/C4CS00497C
    21. Andrei K. Yudin. Macrocycles: lessons from the distant past, recent developments, and future directions. Chemical Science 2015, 6 (1) , 30-49. https://doi.org/10.1039/C4SC03089C
    22. Chunlin Lv, Junjie Hu, Rao Naumaan Nasim Khan, Jin Zhang, Yongge Wei. Postfunctionalization of polyoxometalates: an efficient strategy to construct organic–inorganic zwitterions. Dalton Transactions 2015, 44 (38) , 16698-16702. https://doi.org/10.1039/C5DT02407B
    23. Ángel M. Valdivielso, Alba Catot, Ignacio Alfonso, Ciril Jimeno. Intramolecular hydrogen bonding guides a cationic amphiphilic organocatalyst to highly stereoselective aldol reactions in water. RSC Advances 2015, 5 (77) , 62331-62335. https://doi.org/10.1039/C5RA12135C
    24. Yosuke Hisamatsu, Supratim Banerjee, M. B. Avinash, T. Govindaraju, Carsten Schmuck. A Supramolecular Gel from a Quadruple Zwitterion that Responds to Both Acid and Base. Angewandte Chemie 2013, 125 (48) , 12782-12786. https://doi.org/10.1002/ange.201306986
    25. Yosuke Hisamatsu, Supratim Banerjee, M. B. Avinash, T. Govindaraju, Carsten Schmuck. A Supramolecular Gel from a Quadruple Zwitterion that Responds to Both Acid and Base. Angewandte Chemie International Edition 2013, 52 (48) , 12550-12554. https://doi.org/10.1002/anie.201306986
    26. Chunju Li, Kang Han, Jian Li, Yanyan Zhang, Wei Chen, Yihua Yu, Xueshun Jia. Supramolecular Polymers Based on Efficient Pillar[5]arene—Neutral Guest Motifs. Chemistry – A European Journal 2013, 19 (36) , 11892-11897. https://doi.org/10.1002/chem.201301022
    27. Carlos López, Elena Sanna, Lucas Carreras, Manel Vega, Carmen Rotger, Antoni Costa. Molecular Recognition of Zwitterions: Enhanced Binding and Selective Recognition of Miltefosine by a Squaramide‐Based Host. Chemistry – An Asian Journal 2013, 8 (1) , 84-87. https://doi.org/10.1002/asia.201200881
    28. Shengyi Dong, Lingyan Gao, Jianzhuang Chen, Guocan Yu, Bo Zheng, Feihe Huang. A supramolecular polymer formed by the combination of crown ether-based and charge-transfer molecular recognition. Polym. Chem. 2013, 4 (4) , 882-886. https://doi.org/10.1039/C2PY21028B
    29. Xiaodong Chi, Donghua Xu, Xuzhou Yan, Jianzhuang Chen, Mingming Zhang, Bingjie Hu, Yihua Yu, Feihe Huang. A water-soluble, shape-persistent, mouldable supramolecular polymer with redox-responsiveness in the presence of a molecular chaperone. Polymer Chemistry 2013, 4 (9) , 2767. https://doi.org/10.1039/c3py00201b
    30. Xuzhou Yan, Donghua Xu, Jianzhuang Chen, Mingming Zhang, Bingjie Hu, Yihua Yu, Feihe Huang. A self-healing supramolecular polymer gel with stimuli-responsiveness constructed by crown ether based molecular recognition. Polymer Chemistry 2013, 4 (11) , 3312. https://doi.org/10.1039/c3py00283g
    31. Xiaoyang Wang, Kang Han, Jian Li, Xueshun Jia, Chunju Li. Pillar[5]arene–neutral guest recognition based supramolecular alternating copolymer containing [c2]daisy chain and bis-pillar[5]arene units. Polymer Chemistry 2013, 4 (14) , 3998. https://doi.org/10.1039/c3py00462g
    32. Yoram Cohen, Liat Avram, Tamar Evan‐Salem, Sarit Slovak, Noam Shemesh, Limor Frish. Diffusion NMR in Supramolecular Chemistry and Complexed Systems. 2012, 197-285. https://doi.org/10.1002/9783527644131.ch6
    33. Tassilo Fenske, Hans‐Gert Korth, Andreas Mohr, Carsten Schmuck. Advances in Switchable Supramolecular Nanoassemblies. Chemistry – A European Journal 2012, 18 (3) , 738-755. https://doi.org/10.1002/chem.201102435
    34. Thomas H. Rehm, Franziska Gröhn, Carsten Schmuck. Self-assembly of a triple-zwitterion in polar solutions: hierarchical formation of nanostructures. Soft Matter 2012, 8 (11) , 3154. https://doi.org/10.1039/c2sm07153c
    35. Karsten Meyenberg, Antonina S. Lygina, Geert van den Bogaart, Reinhard Jahn, Ulf Diederichsen. SNARE derived peptide mimic inducing membrane fusion. Chemical Communications 2011, 47 (33) , 9405. https://doi.org/10.1039/c1cc12879e
    36. Fabian Rodler, Jürgen Linders, Tassilo Fenske, Thomas Rehm, Christian Mayer, Carsten Schmuck. pH‐schaltbare Vesikel aus einem von Serin abgeleiteten Guanidiniocarbonylpyrrol‐Carboxylat‐Zwitterion in DMSO. Angewandte Chemie 2010, 122 (46) , 8929-8932. https://doi.org/10.1002/ange.201003405
    37. Fabian Rodler, Jürgen Linders, Tassilo Fenske, Thomas Rehm, Christian Mayer, Carsten Schmuck. pH‐Switchable Vesicles from a Serine‐Derived Guanidiniocarbonyl Pyrrole Carboxylate Zwitterion in DMSO. Angewandte Chemie International Edition 2010, 49 (46) , 8747-8750. https://doi.org/10.1002/anie.201003405
    38. Pavel A. Belyakov, Valentine I. Kadentsev, Alexander O. Chizhov, Natal’ya G. Kolotyrkina, Alexander S. Shashkov, Valentine P. Ananikov. Mechanistic insight into organic and catalytic reactions by joint studies using mass spectrometry and NMR spectroscopy. Mendeleev Communications 2010, 20 (3) , 125-131. https://doi.org/10.1016/j.mencom.2010.05.001
    39. Ignacio Alfonso, Miriam Bru, M. Isabel Burguete, Eduardo García‐Verdugo, Santiago V. Luis. Structural Diversity in the Self‐Assembly of Pseudopeptidic Macrocycles. Chemistry – A European Journal 2010, 16 (4) , 1246-1255. https://doi.org/10.1002/chem.200902196
    40. Hiromitsu Maeda. Acyclic Oligopyrrolic Anion Receptors. 2010, 103-143. https://doi.org/10.1007/7081_2010_32
    41. Thomas H. Rehm, Carsten Schmuck. Ion-pair induced self-assembly in aqueous solvents. Chemical Society Reviews 2010, 39 (10) , 3597. https://doi.org/10.1039/b926223g
    42. Carolin Rether, Wilhelm Sicking, Roland Boese, Carsten Schmuck. Self-association of an indole based guanidinium-carboxylate-zwitterion: formation of stable dimers in solution and the solid state. Beilstein Journal of Organic Chemistry 2010, 6 https://doi.org/10.3762/bjoc.6.3
    43. Ümit Hakan Yildiz, Kaloian Koynov, Franziska Gröhn. Fluorescent Nanoparticles through Self‐Assembly of Linear Ionenes and Pyrenetetrasulfonate. Macromolecular Chemistry and Physics 2009, 210 (20) , 1678-1690. https://doi.org/10.1002/macp.200900224
    44. Franziska Gröhn. Electrostatic Self‐Assembly as Route to Supramolecular Structures. Macromolecular Chemistry and Physics 2008, 209 (22) , 2295-2301. https://doi.org/10.1002/macp.200800290
    45. Immanuel Willerich, Franziska Gröhn. Switchable Nanoassemblies from Macroions and Multivalent Dye Counterions. Chemistry – A European Journal 2008, 14 (30) , 9112-9116. https://doi.org/10.1002/chem.200801167
    46. Anne de Cuendias, Emmanuel Ibarboure, Sébastien Lecommandoux, Eric Cloutet, Henri Cramail. Synthesis and self‐assembly in water of coil‐rod‐coil amphiphilic block copolymers with central π‐conjugated sequence. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46 (13) , 4602-4616. https://doi.org/10.1002/pola.22793
    47. Elena Lestini, Kirill Nikitin, Helge Müller‐Bunz, Donald Fitzmaurice. Introducing Negative Charges into Bis‐ p ‐phenylene Crown Ethers: A Study of Bipyridinium‐Based [2]Pseudorotaxanes and [2]Rotaxanes. Chemistry – A European Journal 2008, 14 (4) , 1095-1106. https://doi.org/10.1002/chem.200700387
    48. Carsten Schmuck, Volker Bickert, Michael Merschky, Lars Geiger, Daniel Rupprecht, Jürgen Dudaczek, Peter Wich, Thomas Rehm, Uwe Machon. A Facile and Efficient Multi‐Gram Synthesis of N ‐Protected 5‐(Guanidinocarbonyl)‐1 H ‐pyrrole‐2‐carboxylic Acids. European Journal of Organic Chemistry 2008, 2008 (2) , 324-329. https://doi.org/10.1002/ejoc.200700756
    49. Thomas Rehm, Carsten Schmuck. How to achieve self-assembly in polar solvents based on specific interactions? Some general guidelines. Chem. Commun. 2008, 110 (7) , 801-813. https://doi.org/10.1039/B710951M
    50. Carsten Schmuck, Daniel Rupprecht, Matthias Junkers, Thomas Schrader. Artificial Ditopic Arg‐Gly‐Asp (RGD) Receptors. Chemistry – A European Journal 2007, 13 (24) , 6864-6873. https://doi.org/10.1002/chem.200601821
    51. Carsten Schmuck, Jürgen Dudaczek. Ion Pairing Between the Chain Ends Induces Folding of a Flexible Zwitterion in Methanol. European Journal of Organic Chemistry 2007, 2007 (20) , 3326-3330. https://doi.org/10.1002/ejoc.200700164
    52. Carsten Schmuck, Thomas Rehm, Katja Klein, Franziska Gröhn. Formation of Vesicular Structures through the Self‐Assembly of a Flexible Bis‐Zwitterion in Dimethyl Sulfoxide. Angewandte Chemie 2007, 119 (10) , 1723-1727. https://doi.org/10.1002/ange.200603629
    53. Carsten Schmuck, Thomas Rehm, Katja Klein, Franziska Gröhn. Formation of Vesicular Structures through the Self‐Assembly of a Flexible Bis‐Zwitterion in Dimethyl Sulfoxide. Angewandte Chemie International Edition 2007, 46 (10) , 1693-1697. https://doi.org/10.1002/anie.200603629

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect