ACS Publications. Most Trusted. Most Cited. Most Read
Origin of the Relative Stereoselectivity of the β-Lactam Formation in the Staudinger Reaction
My Activity

Figure 1Loading Img
    Article

    Origin of the Relative Stereoselectivity of the β-Lactam Formation in the Staudinger Reaction
    Click to copy article linkArticle link copied!

    View Author Information
    Contribution from the Key Laboratory of Biooganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2006, 128, 18, 6060–6069
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja056711k
    Published April 14, 2006
    Copyright © 2006 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The relative (cis, trans) stereoselectivity of the β-lactam formation is one of the critical issues in the Staudinger reaction. Although many attempts have been made to explain and to predict the stereochemical outcomes, the origin of the stereoselectivity remains obscure. We are proposing a model that explains the relative stereoselectivity based on a kinetic analysis of the cis/trans ratios of reaction products. The results were derived from detailed Hammett analyses. Cyclic imines were employed to investigate the electronic effect of the ketene substituents, and it was found that the stereoselectivity could not be simply attributed to the torquoelectronic model. Based on our results, the origin of the relative stereoselectivity can be described as follows:  (1) the stereoselectivity is generated as a result of the competition between the direct ring closure and the isomerization of the imine moiety in the zwitterionic intermediate; (2) the ring closure step is most likely an intramolecular nucleophilic addition of the enolate to the imine moiety, which is obviously affected by the electronic effect of the ketene and imine substituents; (3) electron-donating ketene substituents and electron-withdrawing imine substituents accelerate the direct ring closure, leading to a preference for cis-β-lactam formation, while electron-withdrawing ketene substituents and electron-donating imine substituents slow the direct ring closure, leading to a preference for trans-β-lactam formation; and (4) the electronic effect of the substituents on the isomerization is a minor factor in influencing the stereoselectivity.

    Copyright © 2006 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    Click to copy section linkSection link copied!

    Additional experiments and discussion, detailed kinetic treatment, experimental details, representative spectra for determining the cis/trans ratios, and spectroscopic data and 1H NMR spectra of all β-lactam products. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 232 publications.

    1. Ekaterina Levashova, Maria Adamchik, Dmitrii Nikolaev, Mikhail Ryazantsev, Dmitry Dar’in. 3-Diazopiperidine-2,4-diones as Convenient Precursors to Rare Polysubstituted Spiro Bis-β,γ-lactams and 2-Oxopyrrolidine-3-carboxylic Acid Derivatives via the Thermally Promoted Wolff Rearrangement. The Journal of Organic Chemistry 2024, 89 (22) , 16721-16735. https://doi.org/10.1021/acs.joc.4c02017
    2. Wenlai Xie, Jiaxi Xu. Stereoselective Synthesis of trans-1,2,4-Trihydrobenzo[d][1,2]azaphosphinine 3-Oxides from In Situ Formed Phosphenes and Formaldimines. The Journal of Organic Chemistry 2024, 89 (20) , 15206-15216. https://doi.org/10.1021/acs.joc.4c01986
    3. Chengjie Wang, Huanfeng Jiang, Wei Zeng. Rh(III)-Catalyzed [3 + 3]-Coupling Cyclization of 3-Hydroxyisoindolinones with Carbenoids: Rapid Access to Spirolactam Skeletons. Organic Letters 2024, 26 (36) , 7728-7732. https://doi.org/10.1021/acs.orglett.4c02889
    4. Vasilisa Krivovicheva, Ivan Lyutin, Grigory Kantin, Dmitry Dar’in. Access to Spiro Bis-β-lactams via a Metal-Free Microwave-Assisted Wolff Rearrangement/Staudinger [2+2] Cycloaddition Cascade Involving 3-Diazotetramic Acids and Imines. The Journal of Organic Chemistry 2024, 89 (5) , 3585-3589. https://doi.org/10.1021/acs.joc.3c02494
    5. August Runemark, Mario Martos, Martin Nigríni, Francoise M. Amombo Noa, Lars Öhrström, Henrik Sundén. Photochemical Access to Substituted β-Lactams and β-Lactones via the Zimmerman–O’Connell–Griffin Rearrangement. Organic Letters 2023, 25 (29) , 5520-5524. https://doi.org/10.1021/acs.orglett.3c01990
    6. Hakimeh Hassani Nadiki, Mohammad Reza Islami, Sara Soltanian. Thermal and Microwave-Assisted Synthesis of New Highly Functionalized Bis-β-lactams from Available Compounds via Bisketene as an Intermediate. ACS Omega 2022, 7 (37) , 33320-33329. https://doi.org/10.1021/acsomega.2c03902
    7. Xingyang Fu, Xinyao Li, Jiaxi Xu. Synthesis of β-Phosphinolactams from Phosphenes and Imines. Organic Letters 2021, 23 (22) , 8733-8737. https://doi.org/10.1021/acs.orglett.1c03182
    8. Yuki Yamamoto, Shintaro Kodama, Riku Nishimura, Akihiro Nomoto, Michio Ueshima, Akiya Ogawa. One-Pot Construction of Diverse β-Lactam Scaffolds via the Green Oxidation of Amines and Its Application to the Diastereoselective Synthesis of β-Amino Acids. The Journal of Organic Chemistry 2021, 86 (17) , 11571-11582. https://doi.org/10.1021/acs.joc.1c01128
    9. Zhenjie Qi, Shaozhong Wang. Copper-Catalyzed β-Lactam Formation Initiated by 1,3-Azaprotio Transfer of Oximes and Methyl Propiolate. Organic Letters 2021, 23 (15) , 5777-5781. https://doi.org/10.1021/acs.orglett.1c01937
    10. Anant S. Balijepalli, James H. McNeely, Aladin Hamoud, Mark W. Grinstaff. Guidelines for β-Lactam Synthesis: Glycal Protecting Groups Dictate Stereoelectronics and [2+2] Cycloaddition Kinetics. The Journal of Organic Chemistry 2020, 85 (19) , 12044-12057. https://doi.org/10.1021/acs.joc.0c00510
    11. Kazaf KC Chan, Yuk Fai Wong, Derek Yang, Thomas R. R. Pettus. Nucleophilic Imines and Electrophilic o-Quinone Methides, a Three-Component Assembly of Assorted 3,4-Dihydro-2H-1,3-benzoxazines. Organic Letters 2019, 21 (19) , 7746-7749. https://doi.org/10.1021/acs.orglett.9b02655
    12. Bing-Yu Li, Ye Lin, Da-Ming Du. Organocatalytic Asymmetric Mannich Addition of 3-Fluorooxindoles to Dibenzo[b,f][1,4]oxazepines: Highly Enantioselective Construction of Tetrasubstituted C–F Stereocenters. The Journal of Organic Chemistry 2019, 84 (18) , 11752-11762. https://doi.org/10.1021/acs.joc.9b01507
    13. Judith Synofzik, Dmitry Dar’in, Mikhail S. Novikov, Grigory Kantin, Olga Bakulina, Mikhail Krasavin. α-Acyl-α-diazoacetates in Transition-Metal-Free β-Lactam Synthesis. The Journal of Organic Chemistry 2019, 84 (18) , 12101-12110. https://doi.org/10.1021/acs.joc.9b02030
    14. Pankaj Sharma, Rahulkumar Rajmani Singh, Sovan Sundar Giri, Liang-Yu Chen, Mu-Jeng Cheng, Rai-Shung Liu. Gold-Catalyzed Oxidation of Thioalkynes To Form Phenylthio Ketene Derivatives via a Noncarbene Route. Organic Letters 2019, 21 (14) , 5475-5479. https://doi.org/10.1021/acs.orglett.9b01768
    15. Long Chen, Linxing Zhang, Ying Shao, Guangyang Xu, Xinhao Zhang, Shengbiao Tang, Jiangtao Sun. Rhodium-Catalyzed C═N Bond Formation through a Rebound Hydrolysis Mechanism and Application in β-Lactam Synthesis. Organic Letters 2019, 21 (11) , 4124-4127. https://doi.org/10.1021/acs.orglett.9b01312
    16. Long Chen, Kai Wang, Ying Shao, Jiangtao Sun. Stereoselective Synthesis of Fully Substituted β-Lactams via Metal–Organo Relay Catalysis. Organic Letters 2019, 21 (10) , 3804-3807. https://doi.org/10.1021/acs.orglett.9b01255
    17. Jie S. Zhu, Clarabella J. Li, Ka Yi Tsui, Niklas Kraemer, Jung-Ho Son, Makhluf J. Haddadin, Dean J. Tantillo, Mark J. Kurth. Accessing Multiple Classes of 2H-Indazoles: Mechanistic Implications for the Cadogan and Davis–Beirut Reactions. Journal of the American Chemical Society 2019, 141 (15) , 6247-6253. https://doi.org/10.1021/jacs.8b13481
    18. Lena Decuyper, Jorick Franceus, Shari Dhaene, Maarten Debruyne, Kevin Vandoorne, Nicola Piens, Griet Dewitte, Tom Desmet, Matthias D’hooghe. Chemoenzymatic Approach toward the Synthesis of 3-O-(α/β)-Glucosylated 3-Hydroxy-β-lactams. ACS Omega 2018, 3 (11) , 15235-15245. https://doi.org/10.1021/acsomega.8b01969
    19. Irina P. Beletskaya, Carmen Nájera, Miguel Yus. Stereodivergent Catalysis. Chemical Reviews 2018, 118 (10) , 5080-5200. https://doi.org/10.1021/acs.chemrev.7b00561
    20. Xiang Wu, Hai-Jun Wang, Yong-Shuang Huang, Wei-Dong Z. Li. Intramolecular [2 + 2] Cycloadditions of Alkyl(phenylthio)ketenes: Total Synthesis of (+)-Sphaerodiol. Organic Letters 2018, 20 (7) , 1871-1874. https://doi.org/10.1021/acs.orglett.8b00407
    21. Manjinder S. Lall, Yong Tao, Joel T. Arcari, David C. Boyles, Matthew F. Brown, David B. Damon, Susan C. Lilley, Mark J. Mitton-Fry, Jeremy Starr, Andrew Morgan Stewart, III, and Jianmin Sun . Process Development for the Synthesis of Monocyclic β-Lactam Core 17. Organic Process Research & Development 2018, 22 (2) , 212-218. https://doi.org/10.1021/acs.oprd.7b00359
    22. Chenikkayala Balachandra and Nagendra K. Sharma . Direct/Reversible Amidation of Troponyl Alkylglycinates via Cationic Troponyl Lactones and Mechanistic Insights. ACS Omega 2018, 3 (1) , 997-1013. https://doi.org/10.1021/acsomega.7b01540
    23. Gerardo M. Torres, Maximiliano De La Higuera Macias, Jeffrey S. Quesnel, Oliver P. Williams, Veeranna Yempally, Ashfaq A. Bengali, and Bruce A. Arndtsen . Palladium-Catalyzed, Multicomponent Approach to β-Lactams via Aryl Halide Carbonylation. The Journal of Organic Chemistry 2016, 81 (24) , 12106-12115. https://doi.org/10.1021/acs.joc.6b02405
    24. Zhanhui Yang, Wei He, Baoxiang Cheng, and Jiaxi Xu . Stereochemistry and Mechanistic Insight in the [2k+2i+2i] Annulations of Ketenes and Imines. The Journal of Organic Chemistry 2016, 81 (11) , 4506-4515. https://doi.org/10.1021/acs.joc.6b00279
    25. Zhongyan Huang, Chen Wang, Etsuko Tokunaga, Yuji Sumii, and Norio Shibata . Stereoselective Synthesis of β-Lactam-triflones under Catalyst-Free Conditions. Organic Letters 2015, 17 (22) , 5610-5613. https://doi.org/10.1021/acs.orglett.5b02827
    26. Motoyuki Isoda, Kazuyuki Sato, Masato Funakoshi, Keiko Omura, Atsushi Tarui, Masaaki Omote, and Akira Ando . Diastereoselective Synthesis of syn-β-Lactams Using Rh-Catalyzed Reductive Mannich-Type Reaction of α,β-Unsaturated Esters. The Journal of Organic Chemistry 2015, 80 (16) , 8398-8405. https://doi.org/10.1021/acs.joc.5b01233
    27. Xinyao Li, Xin Jin, and Jiaxi Xu . Annuloselectivity in Reactions of Diacyl Dichlorides and Imines: Combined Experimental and Theoretical Studies. The Journal of Organic Chemistry 2015, 80 (14) , 6976-6985. https://doi.org/10.1021/acs.joc.5b00573
    28. Zhanhui Yang, Ning Chen, and Jiaxi Xu . Substituent-Controlled Annuloselectivity and Stereoselectivity in the Sulfa-Staudinger Cycloadditions. The Journal of Organic Chemistry 2015, 80 (7) , 3611-3620. https://doi.org/10.1021/acs.joc.5b00312
    29. Zhanhui Yang and Jiaxi Xu . Insights into the β-Sultam Ring Formation in the Sulfa-Staudinger Cycloadditions. The Journal of Organic Chemistry 2014, 79 (21) , 10703-10708. https://doi.org/10.1021/jo5020933
    30. Han-Ming Zhang, Zhong-Hua Gao, and Song Ye . Bifunctional N-Heterocyclic Carbene-Catalyzed Highly Enantioselective Synthesis of Spirocyclic Oxindolo-β-lactams. Organic Letters 2014, 16 (11) , 3079-3081. https://doi.org/10.1021/ol501205v
    31. Insu Kim, Sang Weon Roh, Dong Gil Lee, and Chulbom Lee . Rhodium-Catalyzed Oxygenative [2 + 2] Cycloaddition of Terminal Alkynes and Imines for the Synthesis of β-Lactams. Organic Letters 2014, 16 (9) , 2482-2485. https://doi.org/10.1021/ol500856z
    32. Bagher Eftekhari-Sis, Maryam Zirak, and Ali Akbari . Arylglyoxals in Synthesis of Heterocyclic Compounds. Chemical Reviews 2013, 113 (5) , 2958-3043. https://doi.org/10.1021/cr300176g
    33. Xinyao Li and Jiaxi Xu . Annuloselectivity in Cycloadditions of Ketenes with Imines: A DFT Study. The Journal of Organic Chemistry 2013, 78 (2) , 347-355. https://doi.org/10.1021/jo302216d
    34. Matthias D’hooghe, Karen Mollet, Rob De Vreese, Tim H. M. Jonckers, Géry Dams, and Norbert De Kimpe . Design, Synthesis, and Antiviral Evaluation of Purine-β-lactam and Purine-aminopropanol Hybrids. Journal of Medicinal Chemistry 2012, 55 (11) , 5637-5641. https://doi.org/10.1021/jm300383k
    35. Alexander Dömling, Wei Wang, and Kan Wang . Chemistry and Biology Of Multicomponent Reactions. Chemical Reviews 2012, 112 (6) , 3083-3135. https://doi.org/10.1021/cr100233r
    36. Farida Tripodi, Roberto Pagliarin, Gabriele Fumagalli, Alessandra Bigi, Paola Fusi, Fulvia Orsini, Milo Frattini, and Paola Coccetti . Synthesis and Biological Evaluation of 1,4-Diaryl-2-azetidinones as Specific Anticancer Agents: Activation of Adenosine Monophosphate Activated Protein Kinase and Induction of Apoptosis. Journal of Medicinal Chemistry 2012, 55 (5) , 2112-2124. https://doi.org/10.1021/jm201344a
    37. Yolanda Arroyo, M. Ascensión Sanz-Tejedor, Inés Alonso, and José L. García-Ruano . Synthesis of Optically Pure vic-Sulfanyl Amines Mediated by a Remote Sulfinyl Group. Organic Letters 2011, 13 (17) , 4534-4537. https://doi.org/10.1021/ol201696y
    38. Zhenhua Zhang, Yiyang Liu, Lin Ling, Yuxue Li, Yian Dong, Mingxing Gong, Xiaokun Zhao, Yan Zhang, and Jianbo Wang . Pd-Catalyzed Carbonylation of Diazo Compounds at Atmospheric Pressure: A Catalytic Approach to Ketenes. Journal of the American Chemical Society 2011, 133 (12) , 4330-4341. https://doi.org/10.1021/ja107351d
    39. Mohammad Reza Islami, Annette D. Allen, Sinisa Vukovic, and Thomas T. Tidwell. N-Pyrrolylketene: A Nonconjugated Heteroarylketene. Organic Letters 2011, 13 (3) , 494-497. https://doi.org/10.1021/ol102837n
    40. Karen Mollet, Matthias D’hooghe, and Norbert De Kimpe . Transformation of trans-4-Aryl-3-chloro-1-(2-chloroethyl)azetidin-2-ones into 3-Aryl-2-(ethylamino)propan-1-ols via Intermediate 1-(1-Aryl-2-chloro-3-hydroxypropyl)aziridines and trans-2-Aryl-3-(hydroxymethyl)aziridines. The Journal of Organic Chemistry 2011, 76 (1) , 264-269. https://doi.org/10.1021/jo1020932
    41. Yehia A. Ibrahim, Talal F. Al-Azemi and Mohamed D. Abd El-Halim. Sequential Staudinger Ketene−Imine Cycloaddition, RCM Approach to Highly Rigid Macrocrocyclic Bisazetidinones. The Journal of Organic Chemistry 2010, 75 (13) , 4508-4513. https://doi.org/10.1021/jo100679d
    42. Giuseppe Cremonesi , Piero Dalla Croce , Francesco Fontana and Concetta La Rosa . Enantiomerically Pure Polyheterocyclic Spiro-β-lactams from trans-4-Hydroxy-l-proline. The Journal of Organic Chemistry 2010, 75 (6) , 2010-2017. https://doi.org/10.1021/jo100061s
    43. Andrés A. Poeylaut-Palena and Ernesto G. Mata. Cross Metathesis on Solid Support. Novel Strategy for the Generation of β-Lactam Libraries Based on a Versatile and Multidetachable Olefin Linker. Journal of Combinatorial Chemistry 2009, 11 (5) , 791-794. https://doi.org/10.1021/cc900072z
    44. Yehia A. Ibrahim, Talal F. Al-Azemi, Mohamed D. Abd El-Halim and Elizabeth John. Staudinger Ketene−Imine Cycloaddition, RCM Approach to Macrocrocyclic Bisazetidinones. The Journal of Organic Chemistry 2009, 74 (11) , 4305-4310. https://doi.org/10.1021/jo9006392
    45. Yong Liang, Lei Jiao, Shiwei Zhang, Zhi-Xiang Yu and Jiaxi Xu . New Insights into the Torquoselectivity of the Staudinger Reaction. Journal of the American Chemical Society 2009, 131 (4) , 1542-1549. https://doi.org/10.1021/ja808046e
    46. Claire C. A. Cariou, Guy J. Clarkson and Michael Shipman. Rapid Synthesis of 1,3,4,4-Tetrasubstituted β-Lactams from Methyleneaziridines Using a Four-Component Reaction. The Journal of Organic Chemistry 2008, 73 (24) , 9762-9764. https://doi.org/10.1021/jo801664g
    47. Clarisse Olier, Nadia Azzi, Gérard Gil, Stéphane Gastaldi and Michèle P. Bertrand . Dicobalt Hexacarbonyl Complexes of Alkynyl Imines in a Sequential Staudinger/Pauson−Khand Process. A Route to New Fused Tricyclic β-Lactams. The Journal of Organic Chemistry 2008, 73 (21) , 8469-8473. https://doi.org/10.1021/jo801668b
    48. Israel Fernández, Miguel A. Sierra, María J. Mancheño, Mar Gómez-Gallego and Fernando P. Cossío. Deeper Insight into the Mechanism of the Reaction of Photogenerated Metallaketenes and Imines. Journal of the American Chemical Society 2008, 130 (42) , 13892-13899. https://doi.org/10.1021/ja8024406
    49. Francisco Tato, Vincent Reboul and Patrick Metzner. A Novel Synthesis of 1-Nosyl 3,3-Dichloro-β-Lactams and Derivatives. The Journal of Organic Chemistry 2008, 73 (19) , 7837-7840. https://doi.org/10.1021/jo8014193
    50. Alberto Brandi, Stefano Cicchi and Franca M. Cordero. Novel Syntheses of Azetidines and Azetidinones. Chemical Reviews 2008, 108 (9) , 3988-4035. https://doi.org/10.1021/cr800325e
    51. Fernando P. Cossío, Ana Arrieta and Miguel A. Sierra . The Mechanism of the Ketene−Imine (Staudinger) Reaction in Its Centennial: Still an Unsolved Problem?. Accounts of Chemical Research 2008, 41 (8) , 925-936. https://doi.org/10.1021/ar800033j
    52. Erika Leemans,, Matthias D'hooghe,, Yves Dejaegher,, Karl W. Törnroos, and, Norbert De Kimpe. Novel Diastereoselective Synthesis of Bicyclic β-Lactams through Radical Cyclization and Their Reduction toward 2-(1-Alkoxy-2-hydroxyethyl)piperidines and 2-(1-Alkoxy-2-hydroxyethyl)azepanes. The Journal of Organic Chemistry 2008, 73 (4) , 1422-1428. https://doi.org/10.1021/jo702263p
    53. Yan-Rong Zhang,, Lin He,, Xu Wu,, Pan-Lin Shao, and, Song Ye. Chiral N-Heterocyclic Carbene Catalyzed Staudinger Reaction of Ketenes with Imines:  Highly Enantioselective Synthesis of N-Boc β-Lactams. Organic Letters 2008, 10 (2) , 277-280. https://doi.org/10.1021/ol702759b
    54. Ricardo Ferraz,, José R. B. Gomes,, Eliandre de Oliveira,, Rui Moreira, and, Paula Gomes. Unanticipated Stereoselectivity in the Reaction of Primaquine α-Aminoamides with Substituted Benzaldehydes:  A Computational and Experimental Study. The Journal of Organic Chemistry 2007, 72 (11) , 4189-4197. https://doi.org/10.1021/jo0703202
    55. Miguel A. Sierra,, Daniel Pellico,, Mar Gómez-Gallego,, María José Mancheño, and, Rosario Torres. Synthesis of Highly Functionalized Macrocycles by the Peripheral Functionalization of Macrocyclic Diimines. The Journal of Organic Chemistry 2006, 71 (23) , 8787-8793. https://doi.org/10.1021/jo0614689
    56. Parvaneh Agharezaei, Mohammad Reza Islami, Kazem Saidi, Payam Khazaeli. Transforming theophylline-7-acetic acid into novel beta-lactam derivatives via an unstable ketene containing imidazole moiety and assessing their antibacterial efficacy. Journal of the Iranian Chemical Society 2024, 32 https://doi.org/10.1007/s13738-024-03146-z
    57. Marija S. Genčić, Nikola M. Stojanović, Jelena M. Denić, Zorica Z. Stojanović-Radić, Predrag Stojanović, Kristof Van Hecke, Ljiljana S. Jovanović, Marija Vukelić Nikolić, Tatjana Jevtović-Stoimenov, Niko S. Radulović, Matthias D'hooghe. Repurposing of monocyclic β-lactams as anti-inflammatory agents – The case of new ferrocene-azetidin-2-one hybrids. European Journal of Medicinal Chemistry 2024, 280 , 116910. https://doi.org/10.1016/j.ejmech.2024.116910
    58. Imtiaz Ahmed, Nikita Gupta, Ajit Kumar Gupta, Vijay Kumar Das. Photochemically Induced Approaches to the Syntheses of β‐Lactams. Advanced Synthesis & Catalysis 2024, 366 (22) , 4548-4558. https://doi.org/10.1002/adsc.202400715
    59. Hao‐Yuan Li, Shen‐Zhen Zhang, Xiaoying Niu, Qing‐Yuan Meng, Xiu‐Long Yang. Visible Light Photocatalyzed Norrish Type II Reaction of Acrylamides for the Synthesis of β ‐Lactams. Advanced Synthesis & Catalysis 2024, 6 https://doi.org/10.1002/adsc.202400976
    60. Suvidha Pandey, Reshma Nagpal, Aarti Thakur, Shamsher S. Bari, Prasant Kumar Nanda, Renu Thapar. Synthesis of novel isoxazole/dihydroisoxazole tethered β-lactam hybrids via regiospecific 1,3-dipolar cycloaddition methodology on 3-phenylthio-β-lactams. Journal of Sulfur Chemistry 2024, 45 (6) , 950-971. https://doi.org/10.1080/17415993.2024.2398574
    61. Pooja Yadav, Nasreen Fatimah, S. C. Sahoo, Sumeeta Kumari, Shiwani Berry, Reenu, Anil Kumar Pinnaka, Aman Bhalla. Design, Synthesis and Biological Evaluation of C3 ‐Indolyl/(3‐chloro‐indolyl)‐ C4 ‐aryl/heteroaryl‐azetidin‐2‐ones. ChemMedChem 2024, 19 (17) https://doi.org/10.1002/cmdc.202400157
    62. Zitong Lin, Ying Yu, Rixin Liu, Weiwei Zi. Design, Preparation, and Implementation of Axially Chiral Benzotetramisoles as Lewis Base Catalysts for Asymmetric Cycloadditions. Angewandte Chemie 2024, 136 (30) https://doi.org/10.1002/ange.202401181
    63. Zitong Lin, Ying Yu, Rixin Liu, Weiwei Zi. Design, Preparation, and Implementation of Axially Chiral Benzotetramisoles as Lewis Base Catalysts for Asymmetric Cycloadditions. Angewandte Chemie International Edition 2024, 63 (30) https://doi.org/10.1002/anie.202401181
    64. Pooja Yadav, Shiwani Berry, Aman Bhalla. Chemical Methods for the Construction of Spirocyclic β-Lactams and Their Biological Importance. Synthesis 2024, 87 https://doi.org/10.1055/a-2368-8443
    65. Yinqiao Wang, Jiaxi Xu. Linear Free Energy Analysis on the Ring‐Expansion of Arylthiiranes with Ketenes. ChemistrySelect 2024, 9 (23) https://doi.org/10.1002/slct.202401248
    66. Kiran Sharma, Pankaj kumar, Amita Sharma, Shamsher S. Bari, Gaganpreet Bhullar, Subhash C. Sahoo, Aman Bhalla. Dual site reactivity of indole-3-Schiff bases with S/Se/Cl substituted ketenes for stereoselective C-4 substituted indole-β-lactams, biological evaluations, magic chloro effect and molecular docking studies. Bioorganic Chemistry 2024, 147 , 107337. https://doi.org/10.1016/j.bioorg.2024.107337
    67. Jiaxi Xu. Recent Advances in π-Stacking Interaction-Controlled Asymmetric Synthesis. Molecules 2024, 29 (7) , 1454. https://doi.org/10.3390/molecules29071454
    68. Mladenka Jurin, Višnja Stepanić, Krunoslav Bojanić, Denis Vadlja, Darko Kontrec, Tonko Dražić, Marin Roje. Novel (±)- trans - β -lactam ureas: Synthesis, in silico and in vitro biological profiling. Acta Pharmaceutica 2024, 74 (1) , 37-59. https://doi.org/10.2478/acph-2024-0008
    69. Kun Zhang, Shiqi Liu, Leyi Wang, Xiangrui Liu, Jiaxi Xu, Ning Chen. Annuloselectivity of Dibenzoxazepines and Arynes in the Presence of CO 2 : [2+2] vs [2+2+2] Annulation. ChemistrySelect 2024, 9 (4) https://doi.org/10.1002/slct.202304458
    70. Shalu Thakur, Aman Bhalla. Nanomaterial-mediated synthesis of β-lactams and exploration of their enhanced biological activities: recent advances. 2024, 79-99. https://doi.org/10.1016/B978-0-443-16164-3.00005-4
    71. Aarif Latif Shaikh, Devalina Ray, Bimal Krishna Banik. Recent advances in asymmetric synthesis of β-lactams. 2024, 597-651. https://doi.org/10.1016/B978-0-443-16166-7.00025-6
    72. Jiaxi Xu, Simin Sun. Difluorocarbene in Cycloadditions and Annulations for the Synthesis of gem ‐Difluorocarbocycles and gem ‐Difluoroheterocycles. European Journal of Organic Chemistry 2023, 2 https://doi.org/10.1002/ejoc.202301031
    73. Eavan C. McLoughlin, Brendan Twamley, John E. O'Brien, Patricia Hannon Barroeta, Daniela M. Zisterer, Mary J. Meegan, Niamh M. O'Boyle. Synthesis by diastereomeric resolution, biochemical evaluation and molecular modelling of chiral 3-hydroxyl b-lactam microtubule-targeting agents for the treatment of triple negative breast and chemoresistant colorectal cancers. Bioorganic Chemistry 2023, 141 , 106877. https://doi.org/10.1016/j.bioorg.2023.106877
    74. Farideh Pahlavan, Sedigheh Saddat Moosavi, Amin Reza Zolghadr, Nasser Iranpoor. Electronic origins of the stereochemistry in β-lactam formed through the Staudinger reaction catalyzed by a nucleophile. RSC Advances 2023, 13 (48) , 33654-33667. https://doi.org/10.1039/D3RA05286A
    75. Sangar Ali Hassan, Dara Muhammed Aziz, Media Noori Abdullah, Ajmal R. Bhat, Rajendra S. Dongre, Sumeer Ahmed, Aziz Kalilur Rahiman, Taibi Ben Hadda, Malika Berredjem, Joazaizulfazli Jamalis. Design and synthesis of oxazepine derivatives from sulfonamide Schiff bases as antimicrobial and antioxidant agents with low cytotoxicity and hemolytic prospective. Journal of Molecular Structure 2023, 1292 , 136121. https://doi.org/10.1016/j.molstruc.2023.136121
    76. Mohammed B. Alshammari, Ashraf A. Aly, Akil Ahmad, Alan B. Brown, Asmaa H. Mohamed. Recent synthetic strategies of spiro-azetidin-2-one, -pyrrolidine, -indol(one) and -pyran derivatives-a review. RSC Advances 2023, 13 (46) , 32786-32823. https://doi.org/10.1039/D3RA06054C
    77. Jiao-Mei Wang, Yu Zhao, Wen-Ping Li, Xiang-Jun Kong, Chang-Sheng Yao, Kai Zhang. Synthesis of tetracyclic dibenzo[ b , f ][1,4]oxazepine-fused β-lactams via visible-light-induced Staudinger annulation. Organic & Biomolecular Chemistry 2023, 21 (35) , 7106-7114. https://doi.org/10.1039/D3OB01078C
    78. Preety Saini, Shalu Thakur, Ankita Garg, S. S. Bari, Aman Bhalla. Stereoselective synthesis of trans -benzo[ d ]oxazolyl)phenyl substituted β-lactams decorated with C-3 thio/seleno rich motifs: synthetic intermediates for diverse heterocycles. Journal of Sulfur Chemistry 2023, 44 (5) , 602-617. https://doi.org/10.1080/17415993.2023.2206968
    79. Shiqi Liu, Kun Zhang, Yutong Meng, Jiaxi Xu, Ning Chen. Aryne and CO 2 -based formal [2 + 2 + 2] annulation to access tetrahydroisoquinoline-fused benzoxazinones. Organic & Biomolecular Chemistry 2023, 21 (34) , 6892-6897. https://doi.org/10.1039/D3OB01147J
    80. Linqing Wang, Dongxu Yang. Take Advantage of the N‐Nucleophilicity of Imine in Catalytic Cyclization Reactions. ChemCatChem 2023, 15 (9) https://doi.org/10.1002/cctc.202300189
    81. Navjeet Kaur. Synthesis of azetidines by cycloaddition of imines to ketenes-II. 2023, 125-159. https://doi.org/10.1016/B978-0-443-19204-3.00012-7
    82. Bibhuti Bhusana Palai, Saket Awadhesbhai Patel, Nagendra K. Sharma, Manjusha Dixit. One-pot synthesis of cyclic-aminotropiminium carboxylate derivatives with DNA binding and anticancer properties. Communications Chemistry 2022, 5 (1) https://doi.org/10.1038/s42004-022-00798-x
    83. Merve Yildirim, Bunyamin Ozgeris, Arzu Gormez. Substituted phenethylamine-based β-lactam derivatives: Antimicrobial, anticancer, and β-lactamase inhibitory properties. Bioorganic Chemistry 2022, 129 , 106212. https://doi.org/10.1016/j.bioorg.2022.106212
    84. Meghan J. Oddy, Daniel A. Kusza, Ryan G. Epton, Jason M. Lynam, William P. Unsworth, Wade F. Petersen. Visible‐Light‐Mediated Energy Transfer Enables the Synthesis of β‐Lactams via Intramolecular Hydrogen Atom Transfer. Angewandte Chemie 2022, 134 (48) https://doi.org/10.1002/ange.202213086
    85. Meghan J. Oddy, Daniel A. Kusza, Ryan G. Epton, Jason M. Lynam, William P. Unsworth, Wade F. Petersen. Visible‐Light‐Mediated Energy Transfer Enables the Synthesis of β‐Lactams via Intramolecular Hydrogen Atom Transfer. Angewandte Chemie International Edition 2022, 61 (48) https://doi.org/10.1002/anie.202213086
    86. Preety Saini, Shamsher S. Bari, Pooja Yadav, Sadhika Khullar, Sanjay K. Mandal, Aman Bhalla. Synthesis of C2 ‐Formamide(thiophene)pyrazolyl‐ C4 ’‐carbaldehyde and their Transformation to Schiff's Bases and Stereoselective trans ‐β‐Lactams: Mechanistic and Theoretical Insights. ChemistrySelect 2022, 7 (37) https://doi.org/10.1002/slct.202202172
    87. Simin Sun, Mengyao Zhang, Jiaxi Xu. Direct synthesis of highly strained bifunctionalized 2 H -thiete 1,1-dioxides. Organic Chemistry Frontiers 2022, 9 (12) , 3335-3341. https://doi.org/10.1039/D2QO00556E
    88. Yongzheng Ding, Hanmin Huang. Carbonylative cycloaddition of alkenes and imines to β-lactams enabled by resolving the acid-base paradox. Chem Catalysis 2022, 2 (6) , 1467-1479. https://doi.org/10.1016/j.checat.2022.04.021
    89. Ying Shao, Shijie Tian, Jie Zhu, Shengbiao Tang, Jiangtao Sun. Diastereoselective formation of β-lactams via a three-component reaction. New Journal of Chemistry 2022, 46 (21) , 9989-9993. https://doi.org/10.1039/D2NJ01129H
    90. Tania Muller, Laurent Demizieux, Stéphanie Troy-Fioramonti, Chloé Buch, Julia Leemput, Christine Belloir, Jean-Paul Pais de Barros, Tony Jourdan, Patricia Passilly-Degrace, Xavier Fioramonti, Anne-Marie Le Bon, Bruno Vergès, Jean-Michel Robert, Pascal Degrace. Chemical Synthesis, Pharmacokinetic Properties and Biological Effects of JM-00266, a Putative Non-Brain Penetrant Cannabinoid Receptor 1 Inverse Agonist. International Journal of Molecular Sciences 2022, 23 (6) , 2923. https://doi.org/10.3390/ijms23062923
    91. Wenlai Xie, Simin Sun, Jiaxi Xu. Experimental Evidence on the Formation of Highly Strained 6,7‐Dihydroazeto[2,1‐ b ]oxazol‐3‐ium Derivatives as Reactive Intermediates. Helvetica Chimica Acta 2022, 105 (2) https://doi.org/10.1002/hlca.202100187
    92. Katarina Grabrijan, Nika Strašek, Stanislav Gobec. Synthesis of 3-Amino-4-substituted Monocyclic ß-Lactams—Important Structural Motifs in Medicinal Chemistry. International Journal of Molecular Sciences 2022, 23 (1) , 360. https://doi.org/10.3390/ijms23010360
    93. Fernando P. Cossío, Abel de Cózar, Miguel A. Sierra, Luis Casarrubios, Jaime G. Muntaner, Bimal K. Banik, Debasish Bandyopadhyay. Role of imine isomerization in the stereocontrol of the Staudinger reaction between ketenes and imines. RSC Advances 2021, 12 (1) , 104-117. https://doi.org/10.1039/D1RA06114C
    94. Sari Deketelaere, Elias Van Den Broeck, Lore Cools, Daan Deturck, Hannes Naeyaert, Kristof Van Hecke, Christian V. Stevens, Veronique Van Speybroeck, Matthias D'hooghe. Unexpected Formation of 2,2‐Dichloro‐ N ‐(chloromethyl)acetamides during Attempted Staudinger 2,2‐Dichloro‐β‐lactam Synthesis. European Journal of Organic Chemistry 2021, 2021 (42) , 5823-5830. https://doi.org/10.1002/ejoc.202100975
    95. Mahesh Kumar Mishra, Vedeshwar Narayan Singh, Khursheed Ahmad, Sitaram Sharma. Synthesis and antimicrobial activities of some novel diastereoselective monocyclic cis-β-lactams using 2-ethoxy carbonyl DCPN as a carboxylic acid activator. Molecular Diversity 2021, 25 (4) , 2073-2087. https://doi.org/10.1007/s11030-020-10099-x
    96. Vedeshwar Narayan Singh, Sitaram Sharma. The facile and efficient synthesis of novel monocyclic cis -β-lactam conjugates with a 1-methyl-1 H -imidazole-2-thiol nucleus. New Journal of Chemistry 2021, 45 (41) , 19347-19357. https://doi.org/10.1039/D1NJ03566E
    97. Federica Minuto, Chiara Lambruschini, Andrea Basso. Ketene 3‐Component Staudinger Reaction (K‐3CSR) to β‐Lactams: A New Entry in the Class of Photoinduced Multicomponent Reactions. European Journal of Organic Chemistry 2021, 2021 (22) , 3270-3273. https://doi.org/10.1002/ejoc.202100577
    98. Roghayeh Heiran, Aliasghar Jarrahpour, Elham Riazimontazer, Ahmad Gholami, Azza Troudi, Carole Digiorgio, Jean Michel Brunel, Edward Turos. Sulfonamide‐β‐lactam Hybrids Incorporating the Piperazine Moiety as Potential Antiinflammatory Agent with Promising Antibacterial Activity. ChemistrySelect 2021, 6 (21) , 5313-5319. https://doi.org/10.1002/slct.202101194
    99. Jian‐Heng Ye, Peter Bellotti, Tiffany O. Paulisch, Constantin G. Daniliuc, Frank Glorius. Durch sichtbares Licht vermittelte Cycloadditionen von α‐Ketoacylsilanen mit Iminen: Einfache Synthese von β‐Lactamen. Angewandte Chemie 2021, 133 (24) , 13785-13790. https://doi.org/10.1002/ange.202102451
    100. Jian‐Heng Ye, Peter Bellotti, Tiffany O. Paulisch, Constantin G. Daniliuc, Frank Glorius. Visible‐Light‐Induced Cycloaddition of α‐Ketoacylsilanes with Imines: Facile Access to β‐Lactams. Angewandte Chemie International Edition 2021, 60 (24) , 13671-13676. https://doi.org/10.1002/anie.202102451
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2006, 128, 18, 6060–6069
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja056711k
    Published April 14, 2006
    Copyright © 2006 American Chemical Society

    Article Views

    4525

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.