ACS Publications. Most Trusted. Most Cited. Most Read
Preparation and Evaluation of Unimolecular Pentavalent and Hexavalent Antigenic Constructs Targeting Prostate and Breast Cancer:  A Synthetic Route to Anticancer Vaccine Candidates
My Activity

Figure 1Loading Img
    Article

    Preparation and Evaluation of Unimolecular Pentavalent and Hexavalent Antigenic Constructs Targeting Prostate and Breast Cancer:  A Synthetic Route to Anticancer Vaccine Candidates
    Click to copy article linkArticle link copied!

    View Author Information
    Contribution from the Laboratory of Tumor Vaccinology, Clinical Immunology Service, Department of Medicine, the Laboratory for Bioorganic Chemistry, and the Organic Synthesis Core Laboratory, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, New York 10021, and Department of Chemistry, Columbia University, Havemeyer Hall, 3000 Broadway, New York, New York 10027
    Other Access OptionsSupporting Information (2)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2006, 128, 8, 2715–2725
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja057244+
    Published February 2, 2006
    Copyright © 2006 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Several novel, fully synthetic, carbohydrate-based antitumor vaccines have been assembled. Each construct consists of multiple cancer-related antigens displayed on a single polypeptide backbone. Recent advances in synthetic methodology have allowed for the incorporation of a complex oligosaccharide terminating in a sialic acid residue (i.e., GM2) as one of the carbohydrate antigens. Details of the vaccine synthesis as well as the results of preliminary immunological investigations are described herein.

    Copyright © 2006 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Laboratory of Tumor Vaccinology, Clinical Immunology Service, Department of Medicine, Sloan-Kettering Institute for Cancer Research.

     Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research.

    §

     Organic Synthesis Core Laboratory, Sloan-Kettering Institute for Cancer Research.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

     Columbia University.

    Supporting Information Available

    Click to copy section linkSection link copied!

    Experimental procedures and characterization data for compounds 12, 13, and 1622. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 115 publications.

    1. Xavier S. Streety, Jennifer C. Obike, Steven D. Townsend. A Hitchhiker’s Guide to Problem Selection in Carbohydrate Synthesis. ACS Central Science 2023, 9 (7) , 1285-1296. https://doi.org/10.1021/acscentsci.3c00507
    2. Sachin S. Shivatare, Vidya S. Shivatare, Chi-Huey Wong. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chemical Reviews 2022, 122 (20) , 15603-15671. https://doi.org/10.1021/acs.chemrev.1c01032
    3. Chiang-Yun Chen, Yu-Wei Lin, Szu-Wen Wang, Yung-Chu Lin, Yang-Yu Cheng, Chien-Tai Ren, Chi-Huey Wong, Chung-Yi Wu. Synthesis of Azido-Globo H Analogs for Immunogenicity Evaluation. ACS Central Science 2022, 8 (1) , 77-85. https://doi.org/10.1021/acscentsci.1c01277
    4. Matteo Panza, Salvatore G. Pistorio, Keith J. Stine, Alexei V. Demchenko. Automated Chemical Oligosaccharide Synthesis: Novel Approach to Traditional Challenges. Chemical Reviews 2018, 118 (17) , 8105-8150. https://doi.org/10.1021/acs.chemrev.8b00051
    5. Danyang Feng, Abdul Sami Shaikh, and Fengshan Wang . Recent Advance in Tumor-associated Carbohydrate Antigens (TACAs)-based Antitumor Vaccines. ACS Chemical Biology 2016, 11 (4) , 850-863. https://doi.org/10.1021/acschembio.6b00084
    6. Hsin-Yu Lee, Chien-Yu Chen, Tsung-I Tsai, Shiou-Ting Li, Kun-Hsien Lin, Yang-Yu Cheng, Chien-Tai Ren, Ting-Jen R. Cheng, Chung-Yi Wu, and Chi-Huey Wong . Immunogenicity Study of Globo H Analogues with Modification at the Reducing or Nonreducing End of the Tumor Antigen. Journal of the American Chemical Society 2014, 136 (48) , 16844-16853. https://doi.org/10.1021/ja508040d
    7. Kenneth Lin and Andrea M. Kasko . Carbohydrate-Based Polymers for Immune Modulation. ACS Macro Letters 2014, 3 (7) , 652-657. https://doi.org/10.1021/mz5002417
    8. Peter M. Moyle, Wei Dai, Yingkai Zhang, Michael R. Batzloff, Michael F. Good, and Istvan Toth . Site-Specific Incorporation of Three Toll-Like Receptor 2 Targeting Adjuvants into Semisynthetic, Molecularly Defined Nanoparticles: Application to Group A Streptococcal Vaccines. Bioconjugate Chemistry 2014, 25 (5) , 965-978. https://doi.org/10.1021/bc500108b
    9. David R. Bundle, Pui-Hang Tam, Huu-Anh Tran, Eugenia Paszkiewicz, Jonathan Cartmell, Joanna M. Sadowska, Susmita Sarkar, Maju Joe, and Pavel I. Kitov . Oligosaccharides and Peptide Displayed on an Amphiphilic Polymer Enable Solid Phase Assay of Hapten Specific Antibodies. Bioconjugate Chemistry 2014, 25 (4) , 685-697. https://doi.org/10.1021/bc400486w
    10. Rebecca M. Wilson and Samuel J. Danishefsky . A Vision for Vaccines Built from Fully Synthetic Tumor-Associated Antigens: From the Laboratory to the Clinic. Journal of the American Chemical Society 2013, 135 (39) , 14462-14472. https://doi.org/10.1021/ja405932r
    11. Alison L. Parry, Natasha A. Clemson, James Ellis, Stefan S. R. Bernhard, Benjamin G. Davis, and Neil R. Cameron . ‘Multicopy Multivalent’ Glycopolymer-Stabilized Gold Nanoparticles as Potential Synthetic Cancer Vaccines. Journal of the American Chemical Society 2013, 135 (25) , 9362-9365. https://doi.org/10.1021/ja4046857
    12. Sourav Sarkar, Alex C. D. Salyer, Katherine A. Wall, and Steven J. Sucheck . Synthesis and Immunological Evaluation of a MUC1 Glycopeptide Incorporated into l-Rhamnose Displaying Liposomes. Bioconjugate Chemistry 2013, 24 (3) , 363-375. https://doi.org/10.1021/bc300422a
    13. Maciej A. Walczak and Samuel J. Danishefsky . Solving the Convergence Problem in the Synthesis of Triantennary N-Glycan Relevant to Prostate-Specific Membrane Antigen (PSMA). Journal of the American Chemical Society 2012, 134 (39) , 16430-16433. https://doi.org/10.1021/ja307628w
    14. F. Ivy Carroll, Bruce E. Blough, Ramakrishna R. Pidaparthi, Philip Abraham, Paul K. Gong, Liu Deng, Xiaodong Huang, Melinda Gunnell, Jackson O. Lay, Jr., Eric C. Peterson, and S. Michael Owens . Synthesis of Mercapto-(+)-methamphetamine Haptens and Their Use for Obtaining Improved Epitope Density on (+)-Methamphetamine Conjugate Vaccines. Journal of Medicinal Chemistry 2011, 54 (14) , 5221-5228. https://doi.org/10.1021/jm2004943
    15. Didier Astruc, Elodie Boisselier and Cátia Ornelas. Dendrimers Designed for Functions: From Physical, Photophysical, and Supramolecular Properties to Applications in Sensing, Catalysis, Molecular Electronics, Photonics, and Nanomedicine. Chemical Reviews 2010, 110 (4) , 1857-1959. https://doi.org/10.1021/cr900327d
    16. Srinivasa Rao Vidadala, Shivaji A. Thadke and Srinivas Hotha. Orthogonal Activation of Propargyl and n-Pentenyl Glycosides and 1,2-Orthoesters. The Journal of Organic Chemistry 2009, 74 (23) , 9233-9236. https://doi.org/10.1021/jo901837z
    17. Insik Jeon, Karthik Iyer and Samuel J. Danishefsky . A Practical Total Synthesis of Globo-H for Use in Anticancer Vaccines. The Journal of Organic Chemistry 2009, 74 (21) , 8452-8455. https://doi.org/10.1021/jo901682p
    18. Insik Jeon, Dongjoo Lee, Isaac J. Krauss and Samuel J. Danishefsky . A New Model for the Presentation of Tumor-Associated Antigens and the Quest for an Anticancer Vaccine: A Solution to the Synthesis Challenge via Ring-Closing Metathesis. Journal of the American Chemical Society 2009, 131 (40) , 14337-14344. https://doi.org/10.1021/ja9052625
    19. Gonçalo J. L. Bernardes, Bastien Castagner and Peter H. Seeberger . Combined Approaches to the Synthesis and Study of Glycoproteins. ACS Chemical Biology 2009, 4 (9) , 703-713. https://doi.org/10.1021/cb900014n
    20. Pavel Nagorny, Woo Han Kim, Qian Wan, Dongjoo Lee and Samuel J. Danishefsky . On the Emerging Role of Chemistry in the Fashioning of Biologics: Synthesis of a Bidomainal Fucosyl GM1-Based Vaccine for the Treatment of Small Cell Lung Cancer. The Journal of Organic Chemistry 2009, 74 (15) , 5157-5162. https://doi.org/10.1021/jo900918m
    21. Jianglong Zhu, Qian Wan, Dongjoo Lee, Guangbin Yang, Maria K. Spassova, Ouathek Ouerfelli, Govind Ragupathi, Payal Damani, Philip O. Livingston and Samuel J. Danishefsky . From Synthesis to Biologics: Preclinical Data on a Chemistry Derived Anticancer Vaccine. Journal of the American Chemical Society 2009, 131 (26) , 9298-9303. https://doi.org/10.1021/ja901415s
    22. Zhongping Tan, Shiying Shang, Tamara Halkina, Yu Yuan and Samuel J. Danishefsky . Toward Homogeneous Erythropoietin: Non-NCL-Based Chemical Synthesis of the Gln78−Arg166 Glycopeptide Domain. Journal of the American Chemical Society 2009, 131 (15) , 5424-5431. https://doi.org/10.1021/ja808704m
    23. Jianglong Zhu, Qian Wan, Govind Ragupathi, Constantine M. George, Philip O. Livingston and Samuel J. Danishefsky . Biologics through Chemistry: Total Synthesis of a Proposed Dual-Acting Vaccine Targeting Ovarian Cancer by Orchestration of Oligosaccharide and Polypeptide Domains. Journal of the American Chemical Society 2009, 131 (11) , 4151-4158. https://doi.org/10.1021/ja810147j
    24. Chinatsu Ozawa, Hidekazu Katayama, Hironobu Hojo, Yuko Nakahara and Yoshiaki Nakahara. Efficient Sequential Segment Coupling Using N-Alkylcysteine-Assisted Thioesterification for Glycopeptide Dendrimer Synthesis. Organic Letters 2008, 10 (16) , 3531-3533. https://doi.org/10.1021/ol801340m
    25. Corrada Geraci, Grazia M. L. Consoli, Eva Galante, Ennio Bousquet, Maria Pappalardo and Angelo Spadaro . Calix[4]arene Decorated with Four Tn Antigen Glycomimetic Units and P3CS Immunoadjuvant: Synthesis, Characterization, and Anticancer Immunological Evaluation. Bioconjugate Chemistry 2008, 19 (3) , 751-758. https://doi.org/10.1021/bc700411w
    26. David Crich and, Feng Cai. Stereocontrolled Glycoside and Glycosyl Ester Synthesis. Neighboring Group Participation and Hydrogenolysis of 3-(2‘-Benzyloxyphenyl)-3,3-dimethylpropanoates. Organic Letters 2007, 9 (8) , 1613-1615. https://doi.org/10.1021/ol070449y
    27. Rebecca M. Wilson and, Samuel J. Danishefsky. Small Molecule Natural Products in the Discovery of Therapeutic Agents:  The Synthesis Connection. The Journal of Organic Chemistry 2006, 71 (22) , 8329-8351. https://doi.org/10.1021/jo0610053
    28. Qian Wan,, Jiehao Chen,, Gong Chen, and, Samuel J. Danishefsky. A Potentially Valuable Advance in the Synthesis of Carbohydrate-Based Anticancer Vaccines through Extended Cycloaddition Chemistry. The Journal of Organic Chemistry 2006, 71 (21) , 8244-8249. https://doi.org/10.1021/jo061406i
    29. Srinivas Hotha and, Sudhir Kashyap. Propargyl Glycosides as Stable Glycosyl Donors:  Anomeric Activation and Glycoside Syntheses. Journal of the American Chemical Society 2006, 128 (30) , 9620-9621. https://doi.org/10.1021/ja062425c
    30. Nitin Kumar, Monika Yadav, Sudhir Kashyap. Reagent-controlled chemo/stereoselective glycosylation of ʟ-fucal to access rare deoxysugars. Carbohydrate Research 2024, 535 , 108992. https://doi.org/10.1016/j.carres.2023.108992
    31. Ariza Khanam, Shashiprabha Dubey, Pintu Kumar Mandal. Mild method for the synthesis of α-glycosyl chlorides: A convenient protocol for quick one-pot glycosylation. Carbohydrate Research 2023, 534 , 108976. https://doi.org/10.1016/j.carres.2023.108976
    32. René Roy, Leila Mousavifar. Carrier diversity and chemical ligations in the toolbox for designing tumor-associated carbohydrate antigens (TACAs) as synthetic vaccine candidates. Chemical Society Reviews 2023, 52 (10) , 3353-3396. https://doi.org/10.1039/D2CS01032A
    33. Chiang-Yun Chen, Kuo-Shiang Liao, Chung-Yi Wu. Glycan Based Vaccines. 2023, 422-436. https://doi.org/10.1016/B978-0-12-821618-7.00020-1
    34. Deying Yang, Xiang Luo, Qinghai Lian, Lingqiang Gao, Chengxin Wang, Xiaoxiao Qi, Rong Zhang, Zhongqiu Liu, Guochao Liao. Fully synthetic Tn-based three-component cancer vaccine using covalently linked TLR4 ligand MPLA and iNKT cell agonist KRN-7000 as built-in adjuvant effectively protects mice from tumor development. Acta Pharmaceutica Sinica B 2022, 12 (12) , 4432-4445. https://doi.org/10.1016/j.apsb.2022.05.028
    35. Melanie Shadrick, Keith J. Stine, Alexei V. Demchenko. Expanding the scope of stereoselective α-galactosylation using glycosyl chlorides. Bioorganic & Medicinal Chemistry 2022, 73 , 117031. https://doi.org/10.1016/j.bmc.2022.117031
    36. Farzana Hossain, Shruthi Kandalai, Xiaozhuang Zhou, Nan Zhang, Qingfei Zheng. Chemical and Synthetic Biology Approaches for Cancer Vaccine Development. Molecules 2022, 27 (20) , 6933. https://doi.org/10.3390/molecules27206933
    37. Deniz Ince, Taryn M. Lucas, Stacy A. Malaker. Current strategies for characterization of mucin-domain glycoproteins. Current Opinion in Chemical Biology 2022, 69 , 102174. https://doi.org/10.1016/j.cbpa.2022.102174
    38. Leonardo da Silva Neto, Angélica Faleiros da Silva Maia, Adriana Martins Godin, Paulo Sérgio de Almeida Augusto, Raissa Lima Gonçalves Pereira, Sordaini Maria Caligiorne, Rosemeire Brondi Alves, Simone Odília Antunes Fernandes, Valbert Nascimento Cardoso, Gisele Assis Castro Goulart, Felipe Terra Martins, Maila de Castro Lourenço das Neves, Frederico Duarte Garcia, Ângelo de Fátima. Calix[n]arene-based immunogens: A new non-proteic strategy for anti-cocaine vaccine. Journal of Advanced Research 2022, 38 , 285-298. https://doi.org/10.1016/j.jare.2021.09.003
    39. Nora Berois, Alvaro Pittini, Eduardo Osinaga. Targeting Tumor Glycans for Cancer Therapy: Successes, Limitations, and Perspectives. Cancers 2022, 14 (3) , 645. https://doi.org/10.3390/cancers14030645
    40. Xiang Luo, Qinghai Lian, Wenwei Li, Liqing Chen, Renyu Zhang, Deying Yang, Lingqiang Gao, Xiaoxiao Qi, Zhongqiu Liu, Guochao Liao. Fully synthetic Mincle-dependent self-adjuvanting cancer vaccines elicit robust humoral and T cell-dependent immune responses and protect mice from tumor development. Chemical Science 2021, 12 (48) , 15998-16013. https://doi.org/10.1039/D1SC05736G
    41. Daisuke Sato, Zhiyuan Wu, Hikaru Fujita, Jonathan Lindsey. Design, Synthesis, and Utility of Defined Molecular Scaffolds. Organics 2021, 2 (3) , 161-273. https://doi.org/10.3390/org2030013
    42. Ernest G. Nolen, Ezra S. Hornik, Kendra B. Jeans, Weiyu Zhong, Danielle M. LaPaglia. Synthesis of C-linked α-Gal and α-GalNAc-1′-hydroxyalkanes by way of C2 functionality transfer. Tetrahedron Letters 2021, 73 , 153109. https://doi.org/10.1016/j.tetlet.2021.153109
    43. Anna Niedzwiecka, Nnenna Achebe, Chang-Chun Ling. Glycoclusters and Glycodendrimers. 2021, 263-345. https://doi.org/10.1016/B978-0-12-819475-1.00039-0
    44. Ravinder Mettu, Chiang-Yun Chen, Chung-Yi Wu. Synthetic carbohydrate-based vaccines: challenges and opportunities. Journal of Biomedical Science 2020, 27 (1) https://doi.org/10.1186/s12929-019-0591-0
    45. Natalia Rodrigues Mantuano, Marina Natoli, Alfred Zippelius, Heinz Läubli. Tumor-associated carbohydrates and immunomodulatory lectins as targets for cancer immunotherapy. Journal for ImmunoTherapy of Cancer 2020, 8 (2) , e001222. https://doi.org/10.1136/jitc-2020-001222
    46. Francesco Papi, Arnaud Pâris, Pierre Lafite, Richard Daniellou, Cristina Nativi. Synthesis of an STnThr analogue, structurally based on a TnThr antigen mimetic. Organic & Biomolecular Chemistry 2020, 18 (37) , 7366-7372. https://doi.org/10.1039/D0OB01749C
    47. Ariza Khanam, Ashwani Tiwari, Pintu Kumar Mandal. Chiral auxiliaries: Usefullness in stereoselective glycosylation reactions and their synthetic applications. Carbohydrate Research 2020, 495 , 108045. https://doi.org/10.1016/j.carres.2020.108045
    48. Kristopher A. Kleski, Kevin R. Trabbic, Mengchao Shi, Jean-Paul Bourgault, Peter R. Andreana. Enhanced Immune Response Against the Thomsen-Friedenreich Tumor Antigen Using a Bivalent Entirely Carbohydrate Conjugate. Molecules 2020, 25 (6) , 1319. https://doi.org/10.3390/molecules25061319
    49. Farzana Hossain, Peter R. Andreana. Developments in Carbohydrate-Based Cancer Therapeutics. Pharmaceuticals 2019, 12 (2) , 84. https://doi.org/10.3390/ph12020084
    50. Yuji Yamazaki, Yukiko Nambu, Masashi Ohmae, Manabu Sugai, Shunsaku Kimura. Immune responses against Lewis Y tumor-associated carbohydrate antigen displayed densely on self-assembling nanocarriers. Organic & Biomolecular Chemistry 2018, 16 (43) , 8095-8105. https://doi.org/10.1039/C8OB01955J
    51. Simon S. Park, Hsiao-Wu Hsieh, Jacquelyn Gervay-Hague. Anomeric O-Functionalization of Carbohydrates for Chemical Conjugation to Vaccine Constructs. Molecules 2018, 23 (7) , 1742. https://doi.org/10.3390/molecules23071742
    52. Laura F. Hutchins, Issam Makhoul, Peter D. Emanuel, Angela Pennisi, Eric R. Siegel, Fariba Jousheghany, Xueyan Guo, Anastas D. Pashov, Behjatolah Monzavi-Karbassi, Thomas Kieber-Emmons. Targeting tumor-associated carbohydrate antigens: a phase I study of a carbohydrate mimetic-peptide vaccine in stage IV breast cancer subjects. Oncotarget 2017, 8 (58) , 99161-99178. https://doi.org/10.18632/oncotarget.21959
    53. Yingxue Hu, Ghamdan Beshr, Christopher J. Garvey, Rico F. Tabor, Alexander Titz, Brendan L. Wilkinson. Photoswitchable Janus glycodendrimer micelles as multivalent inhibitors of LecA and LecB from Pseudomonas aeruginosa. Colloids and Surfaces B: Biointerfaces 2017, 159 , 605-612. https://doi.org/10.1016/j.colsurfb.2017.08.016
    54. Y. Fujita, H. Taguchi. Nanoparticle-Based Peptide Vaccines. 2017, 149-170. https://doi.org/10.1016/B978-0-323-39981-4.00008-7
    55. Seyed I. Sadraei, Michael R. Reynolds, John F. Trant. The Synthesis and Biological Characterization of Acetal-Free Mimics of the Tumor-Associated Carbohydrate Antigens. 2017, 137-237. https://doi.org/10.1016/bs.accb.2017.10.003
    56. Md Hossain, Katherine Wall. Immunological Evaluation of Recent MUC1 Glycopeptide Cancer Vaccines. Vaccines 2016, 4 (3) , 25. https://doi.org/10.3390/vaccines4030025
    57. Roisin O’Cearbhaill, Govind Ragupathi, Jianglong Zhu, Qian Wan, Svetlana Mironov, Guangbin Yang, Maria Spassova, Alexia Iasonos, Sara Kravetz, Ouathek Ouerfelli, David Spriggs, Samuel Danishefsky, Paul Sabbatini. A Phase I Study of Unimolecular Pentavalent (Globo-H-GM2-sTn-TF-Tn) Immunization of Patients with Epithelial Ovarian, Fallopian Tube, or Peritoneal Cancer in First Remission. Cancers 2016, 8 (4) , 46. https://doi.org/10.3390/cancers8040046
    58. Blaine G. McCarthy, Nicholas S. MacArthur, Charles E. Jakobsche. A simple synthesis of 6-hydroxynorleucine based on the rearrangement of an N-nitrosodichloroacetamide. Tetrahedron Letters 2016, 57 (4) , 502-504. https://doi.org/10.1016/j.tetlet.2015.12.070
    59. Isabel M. Gimeno, Nik M. Faiz, Aneg L. Cortes, Taylor Barbosa, Tarsicio Villalobos, Arun R. Pandiri. In Ovo Vaccination with Turkey Herpesvirus Hastens Maturation of Chicken Embryo Immune Responses in Specific-Pathogen-Free Chickens. Avian Diseases 2015, 59 (3) , 375-383. https://doi.org/10.1637/11060-031115-Reg.1
    60. Damiano Cancogni, Matteo Fusari, Niccolò Poggi, Luigi Lay. Major Advances in the Development of Synthetic Oligosaccharide-Based Vaccines. 2015, 2065-2116. https://doi.org/10.1007/978-3-319-16298-0_65
    61. Hong-Yang Chuang. RM2 Antigen: Synthesis of Glycoconjugates. 2015, 67-95. https://doi.org/10.1007/978-3-662-46848-7_3
    62. Swati S. Nigudkar, Alexei V. Demchenko. Stereocontrolled 1,2-cis glycosylation as the driving force of progress in synthetic carbohydrate chemistry. Chemical Science 2015, 6 (5) , 2687-2704. https://doi.org/10.1039/C5SC00280J
    63. Zhi-Hua Huang, Zhan-Yi Sun, Yue Gao, Pu-Guang Chen, Yan-Fang Liu, Yong-Xiang Chen, Yan-Mei Li. Strategy for Designing a Synthetic Tumor Vaccine: Multi-Component, Multivalency and Antigen Modification. Vaccines 2014, 2 (3) , 549-562. https://doi.org/10.3390/vaccines2030549
    64. Rajesh Sunasee, Christian K Adokoh, James Darkwa, Ravin Narain. Therapeutic potential of carbohydrate-based polymeric and nanoparticle systems. Expert Opinion on Drug Delivery 2014, 11 (6) , 867-884. https://doi.org/10.1517/17425247.2014.902048
    65. Damiano Cancogni, Matteo Fusari, Niccolò Poggi, Luigi Lay. Major Advances in the Development of Synthetic Oligosaccharide-Based Vaccines. 2014, 1-45. https://doi.org/10.1007/978-3-319-03751-6_65-1
    66. Sumati Bhatia, Mathias Dimde, Rainer Haag. Multivalent glycoconjugates as vaccines and potential drug candidates. Med. Chem. Commun. 2014, 5 (7) , 862-878. https://doi.org/10.1039/C4MD00143E
    67. Sravanthi Chittela, Thurpu Raghavender Reddy, Palakodety Radha Krishna, Sudhir Kashyap. “One-pot” access to α- d -mannopyranosides from glycals employing ruthenium catalysis. RSC Adv. 2014, 4 (86) , 46327-46331. https://doi.org/10.1039/C4RA08241A
    68. Víctor Rojas, Javier Carreras, Francisco Corzana, Alberto Avenoza, Jesús H. Busto, Jesús M. Peregrina. Synthesis and conformational analysis of neoglycoconjugates derived from O- and S-glucose. Carbohydrate Research 2013, 373 , 1-8. https://doi.org/10.1016/j.carres.2013.02.013
    69. M. Carmen Galan, Pascal Dumy, Olivier Renaudet. Multivalent glyco(cyclo)peptides. Chem. Soc. Rev. 2013, 42 (11) , 4599-4612. https://doi.org/10.1039/C2CS35413F
    70. Francesco Peri. Clustered carbohydrates in synthetic vaccines. Chem. Soc. Rev. 2013, 42 (11) , 4543-4556. https://doi.org/10.1039/C2CS35422E
    71. Nikola Gaidzik, Ulrika Westerlind, Horst Kunz. The development of synthetic antitumour vaccines from mucin glycopeptide antigens. Chemical Society Reviews 2013, 42 (10) , 4421. https://doi.org/10.1039/c3cs35470a
    72. Chang-Cheng Liu, Xin-Shan Ye. Carbohydrate-based cancer vaccines: target cancer with sugar bullets. Glycoconjugate Journal 2012, 29 (5-6) , 259-271. https://doi.org/10.1007/s10719-012-9399-9
    73. Srinivasa Rao Vidadala, Shivaji A. Thadke, Srinivas Hotha, Sudhir Kashyap. Synthesis of Thioglycosides from Propargyl Glycosides Exploiting Alkynophilic Gold Catalyst. Journal of Carbohydrate Chemistry 2012, 31 (3) , 241-251. https://doi.org/10.1080/07328303.2011.652789
    74. Zhaojun Yin, Xuefei Huang. Recent Development in Carbohydrate Based Anticancer Vaccines. Journal of Carbohydrate Chemistry 2012, 31 (3) , 143-186. https://doi.org/10.1080/07328303.2012.659364
    75. Rachel Hevey, Chang-Chun Ling. Recent advances in developing synthetic carbohydrate-based vaccines for cancer immunotherapies. Future Medicinal Chemistry 2012, 4 (4) , 545-584. https://doi.org/10.4155/fmc.11.193
    76. Ulrika Westerlind, Horst Kunz. Antitumor Vaccines Based on Synthetic Mucin Glycopeptides. 2012, 255-281. https://doi.org/10.1007/978-3-7091-0870-3_11
    77. Francesca Pertici, Roland J. Pieters. Potent divalent inhibitors with rigid glucose click spacers for Pseudomonas aeruginosa lectin LecA. Chemical Communications 2012, 48 (33) , 4008. https://doi.org/10.1039/c2cc30234a
    78. Marco Filice, Jose M. Palomo. Monosaccharide derivatives as central scaffolds in the synthesis of glycosylated drugs. RSC Advances 2012, 2 (5) , 1729. https://doi.org/10.1039/c2ra00515h
    79. Ian J. Talisman, Vineet Kumar, Jeffrey R. Deschamps, Mark Frisch, Sanjay V. Malhotra. Application of silver N-heterocyclic carbene complexes in O-glycosidation reactions. Carbohydrate Research 2011, 346 (15) , 2337-2341. https://doi.org/10.1016/j.carres.2011.07.025
    80. Yun Wang, Xing Liang, Pengfei Wang. Concise synthesis of Bacillus anthracis exosporium tetrasaccharide via two-stage activation of allyl glycosyl donor strategy. Tetrahedron Letters 2011, 52 (30) , 3912-3915. https://doi.org/10.1016/j.tetlet.2011.05.089
    81. N.W. Owens, F. Schweizer. Peptides and Glycopeptides. 2011, 121-138. https://doi.org/10.1016/B978-0-08-088504-9.00012-X
    82. N.W. Owens, F. Schweizer. Peptides and Glycopeptides. 2011, 98-115. https://doi.org/10.1016/B978-0-444-64046-8.00010-0
    83. Anna Kabanova, Immaculada Margarit, Francesco Berti, Maria R. Romano, Guido Grandi, Giuliano Bensi, Emiliano Chiarot, Daniela Proietti, Erwin Swennen, Emilia Cappelletti, Paola Fontani, Daniele Casini, Roberto Adamo, Vittoria Pinto, David Skibinski, Sabrina Capo, Giada Buffi, Marilena Gallotta, William J. Christ, A. Stewart Campbell, John Pena, Peter H. Seeberger, Rino Rappuoli, Paolo Costantino. Evaluation of a Group A Streptococcus synthetic oligosaccharide as vaccine candidate. Vaccine 2010, 29 (1) , 104-114. https://doi.org/10.1016/j.vaccine.2010.09.018
    84. Lyn H. Jones. Chemologics. 2010, 204-223. https://doi.org/10.1039/9781849732178-00204
    85. Yen-Lin Huang, Chung-Yi Wu. Carbohydrate-based vaccines: challenges and opportunities. Expert Review of Vaccines 2010, 9 (11) , 1257-1274. https://doi.org/10.1586/erv.10.120
    86. Nicole Miller, Geoffrey M. Williams, Margaret A. Brimble. Synthesis of Neoglycopeptides via Click Chemistry. International Journal of Peptide Research and Therapeutics 2010, 16 (3) , 125-132. https://doi.org/10.1007/s10989-010-9201-4
    87. Ulrika Westerlind, Horst Kunz. Synthetic vaccines based on N- and O- glycopeptides–molecular tools for immunotherapy and diagnostics. 2010, 1-37. https://doi.org/10.1039/9781849730891-00001
    88. Bernd Lepenies, Peter H. Seeberger. The promise of glycomics, glycan arrays and carbohydrate-based vaccines. Immunopharmacology and Immunotoxicology 2010, 32 (2) , 196-207. https://doi.org/10.3109/08923970903292663
    89. Rena D. Astronomo, Dennis R. Burton. Carbohydrate vaccines: developing sweet solutions to sticky situations?. Nature Reviews Drug Discovery 2010, 9 (4) , 308-324. https://doi.org/10.1038/nrd3012
    90. Qianli Wang, Zhongwu Guo. Carbohydrate Vaccines. 2010, 91-122. https://doi.org/10.1016/B978-008045382-8.00122-2
    91. Chad M. Whitman, Michelle R. Bond, Jennifer J. Kohler. Chemical Glycobiology. 2010, 175-224. https://doi.org/10.1016/B978-008045382-8.00681-X
    92. Jianglong Zhu, J David Warren, Samuel J Danishefsky. Synthetic carbohydrate-based anticancer vaccines: the Memorial Sloan-Kettering experience. Expert Review of Vaccines 2009, 8 (10) , 1399-1413. https://doi.org/10.1586/erv.09.95
    93. Govind Ragupathi, Payal Damani, Geeta Srivastava, Om Srivastava, Steven J. Sucheck, Yoshi Ichikawa, Philip O. Livingston. Synthesis of sialyl Lewisa (sLea, CA19-9) and construction of an immunogenic sLea vaccine. Cancer Immunology, Immunotherapy 2009, 58 (9) , 1397-1405. https://doi.org/10.1007/s00262-008-0654-7
    94. Dongjoo Lee, Samuel J. Danishefsky. ‘Biologic’ level structures through chemistry: a total synthesis of a unimolecular pentavalent MUCI glycopeptide construct. Tetrahedron Letters 2009, 50 (19) , 2167-2170. https://doi.org/10.1016/j.tetlet.2009.02.138
    95. Jianglong Zhu, Qian Wan, Samuel J. Danishefsky. Synthesis of biotinylated tumor-associated carbohydrate antigens for immunological studies. Tetrahedron Letters 2009, 50 (6) , 712-714. https://doi.org/10.1016/j.tetlet.2008.11.113
    96. Robert V. Stick, Spencer J. Williams. Classics in Carbohydrate Chemistry and Glycobiology. 2009, 413-443. https://doi.org/10.1016/B978-0-240-52118-3.00012-0
    97. Papapida Pornsuriyasak, Sneha C. Ranade, Aixiao Li, M. Cristina Parlato, Charles R. Sims, Olga V. Shulga, Keith J. Stine, Alexei V. Demchenko. STICS: surface-tethered iterative carbohydrate synthesis. Chemical Communications 2009, 3 (14) , 1834. https://doi.org/10.1039/b817684a
    98. Srinivasa Rao Vidadala, Srinivas Hotha. Methyl glycosides are identified as glycosyl donors for the synthesis of glycosides, disaccharides and oligosaccharides. Chemical Communications 2009, 291 (18) , 2505. https://doi.org/10.1039/b822526e
    99. Therese Buskas, Pamela Thompson, Geert-Jan Boons. Immunotherapy for cancer: synthetic carbohydrate-based vaccines. Chemical Communications 2009, 105 (36) , 5335. https://doi.org/10.1039/b908664c
    100. Susanne A. Stalford, Colin A. Kilner, Andrew G. Leach, W. Bruce Turnbull. Neighbouring group participation vs. addition to oxacarbenium ions: studies on the synthesis of mycobacterial oligosaccharides. Organic & Biomolecular Chemistry 2009, 7 (23) , 4842. https://doi.org/10.1039/b914417j
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2006, 128, 8, 2715–2725
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja057244+
    Published February 2, 2006
    Copyright © 2006 American Chemical Society

    Article Views

    2553

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.