ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Dynamics of Proteins Encapsulated in Silica Sol−Gel Glasses Studied with IR Vibrational Echo Spectroscopy

View Author Information
Contribution from the Department of Chemistry, Stanford University, Stanford, California 94305
Cite this: J. Am. Chem. Soc. 2006, 128, 12, 3990–3997
Publication Date (Web):March 8, 2006
https://doi.org/10.1021/ja058745y
Copyright © 2006 American Chemical Society

    Article Views

    844

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Spectrally resolved infrared stimulated vibrational echo spectroscopy is used to measure the fast dynamics of heme-bound CO in carbonmonoxy-myoglobin (MbCO) and -hemoglobin (HbCO) embedded in silica sol−gel glasses. On the time scale of ∼100 fs to several picoseconds, the vibrational dephasing of the heme-bound CO is measurably slower for both MbCO and HbCO relative to that of aqueous protein solutions. The fast structural dynamics of MbCO, as sensed by the heme-bound CO, are influenced more by the sol−gel environment than those of HbCO. Longer time scale structural dynamics (tens of picoseconds), as measured by the extent of spectral diffusion, are the same for both proteins encapsulated in sol−gel glasses compared to that in aqueous solutions. A comparison of the sol−gel experimental results to viscosity-dependent vibrational echo data taken on various mixtures of water and fructose shows that the sol−gel-encapsulated MbCO exhibits dynamics that are the equivalent of the protein in a solution that is nearly 20 times more viscous than bulk water. In contrast, the HbCO dephasing in the sol−gel reflects only a 2-fold increase in viscosity. Attempts to alter the encapsulating pore size by varying the molar ratio of silane precursor to water (R value) used to prepare the sol−gel glasses were found to have no effect on the fast or steady-state spectroscopic results. The vibrational echo data are discussed in the context of solvent confinement and protein−pore wall interactions to provide insights into the influence of a confined environment on the fast structural dynamics experienced by a biomolecule.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Additional details regarding frequency−frequency correlation function parameters used to fit aqueous and sol−gel data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 59 publications.

    1. Christopher J. Huber, RiAnna L. Butler, and Aaron M. Massari . Evolution of Ultrafast Vibrational Dynamics During Sol–Gel Aging. The Journal of Physical Chemistry C 2017, 121 (5) , 2933-2939. https://doi.org/10.1021/acs.jpcc.6b12717
    2. Cyril Falvo, Louis Daniault, Thibault Vieille, Vincent Kemlin, Jean-Christophe Lambry, Christoph Meier, Marten H. Vos, Adeline Bonvalet, and Manuel Joffre . Ultrafast Dynamics of Carboxy-Hemoglobin: Two-Dimensional Infrared Spectroscopy Experiments and Simulations. The Journal of Physical Chemistry Letters 2015, 6 (12) , 2216-2222. https://doi.org/10.1021/acs.jpclett.5b00811
    3. Christopher J. Huber and Aaron M. Massari . Characterizing Solvent Dynamics in Nanoscopic Silica Sol–Gel Glass Pores by 2D-IR Spectroscopy of an Intrinsic Vibrational Probe. The Journal of Physical Chemistry C 2014, 118 (44) , 25567-25578. https://doi.org/10.1021/jp508389u
    4. Amanda S. Harper-Leatherman, Mariam Iftikhar, Adela Ndoi, Steven J. Scappaticci, George P. Lisi, Kaitlyn L. Buzard, and Elizabeth M. Garvey . Simplified Procedure for Encapsulating Cytochrome c in Silica Aerogel Nanoarchitectures while Retaining Gas-Phase Bioactivity. Langmuir 2012, 28 (41) , 14756-14765. https://doi.org/10.1021/la3011025
    5. Megan C. Thielges, Jun Y. Axup, Daryl Wong, Hyun Soo Lee, Jean K. Chung, Peter G. Schultz, and Michael D. Fayer . Two-Dimensional IR Spectroscopy of Protein Dynamics Using Two Vibrational Labels: A Site-Specific Genetically Encoded Unnatural Amino Acid and an Active Site Ligand. The Journal of Physical Chemistry B 2011, 115 (38) , 11294-11304. https://doi.org/10.1021/jp206986v
    6. Audrey A. Eigner, Brynna H. Jones, Bryce W. Koprucki, and Aaron M. Massari . Static and Dynamic Structural Memory in Polyaniline Thin Films. The Journal of Physical Chemistry B 2011, 115 (27) , 8686-8695. https://doi.org/10.1021/jp201982z
    7. Megan C. Thielges, Jean K. Chung, Jun Y. Axup, and Michael D. Fayer . Influence of Histidine Tag Attachment on Picosecond Protein Dynamics. Biochemistry 2011, 50 (25) , 5799-5805. https://doi.org/10.1021/bi2003923
    8. Jean K. Chung, Megan C. Thielges, Sarah E. J. Bowman, Kara L. Bren, and M. D. Fayer . Temperature Dependent Equilibrium Native to Unfolded Protein Dynamics and Properties Observed with IR Absorption and 2D IR Vibrational Echo Experiments. Journal of the American Chemical Society 2011, 133 (17) , 6681-6691. https://doi.org/10.1021/ja111009s
    9. Audrey A. Eigner, Brynna H. Jones, Bryce W. Koprucki, and Aaron M. Massari . Ground-State Structural Dynamics in Doped and Undoped Polyaniline Films Probed by Two-Dimensional Infrared Vibrational Echo Spectroscopy. The Journal of Physical Chemistry B 2011, 115 (16) , 4583-4591. https://doi.org/10.1021/jp1113009
    10. Megan C. Thielges, Jean K. Chung, and Michael D. Fayer . Protein Dynamics in Cytochrome P450 Molecular Recognition and Substrate Specificity Using 2D IR Vibrational Echo Spectroscopy. Journal of the American Chemical Society 2011, 133 (11) , 3995-4004. https://doi.org/10.1021/ja109168h
    11. Sayan Bagchi, Benjamin T. Nebgen, Roger F. Loring, and M. D. Fayer . Dynamics of a Myoglobin Mutant Enzyme: 2D IR Vibrational Echo Experiments and Simulations. Journal of the American Chemical Society 2010, 132 (51) , 18367-18376. https://doi.org/10.1021/ja108491t
    12. Audrey A. Eigner, Timothy C. Anglin and Aaron M. Massari. 2D-IR Studies of Annealing-Induced Changes to Structural Dynamics in Organic Semiconductor Thin Films. The Journal of Physical Chemistry C 2010, 114 (28) , 12308-12315. https://doi.org/10.1021/jp101768w
    13. Eduardo Reátegui and Alptekin Aksan. Effects of the Low-Temperature Transitions of Confined Water on the Structures of Isolated and Cytoplasmic Proteins. The Journal of Physical Chemistry B 2009, 113 (39) , 13048-13060. https://doi.org/10.1021/jp903294q
    14. Sarah E. Hill, Jigar N. Bandaria, Michelle Fox, Elizabeth Vanderah, Amnon Kohen and Christopher M. Cheatum. Exploring the Molecular Origins of Protein Dynamics in the Active Site of Human Carbonic Anhydrase II. The Journal of Physical Chemistry B 2009, 113 (33) , 11505-11510. https://doi.org/10.1021/jp901321m
    15. Giuseppe Bellavia, Grazia Cottone, Sergio Giuffrida, Antonio Cupane and Lorenzo Cordone. Thermal Denaturation of Myoglobin in Water−Disaccharide Matrixes: Relation with the Glass Transition of the System. The Journal of Physical Chemistry B 2009, 113 (33) , 11543-11549. https://doi.org/10.1021/jp9041342
    16. Mariana Esquivelzeta-Rabell, Jorge Peon and Gabriel Cuevas. Rotational Diffusion of Dihydroxy Coumarins: Effect of OH Groups and Their Relative Position on Solute−Solvent Interactions. The Journal of Physical Chemistry B 2009, 113 (25) , 8599-8606. https://doi.org/10.1021/jp9010058
    17. Si Yang, Wen-Zhi Jia, Qing-Yun Qian, Yi-Ge Zhou and Xing-Hua Xia. Simple Approach for Efficient Encapsulation of Enzyme in Silica Matrix with Retained Bioactivity. Analytical Chemistry 2009, 81 (9) , 3478-3484. https://doi.org/10.1021/ac802739h
    18. Isabel Pastor, Manuel Prieto and C. Reyes Mateo . Effect of Sol−Gel Confinement on the Structural Dynamics of the Enzyme Bovine Cu,Zn Superoxide Dismutase. The Journal of Physical Chemistry B 2008, 112 (47) , 15021-15028. https://doi.org/10.1021/jp805368s
    19. Seongheun Kim, Jean K. Chung, Kyungwon Kwak, Sarah E. J. Bowman, Kara L. Bren, Biman Bagchi and M. D. Fayer . Native and Unfolded Cytochrome c—Comparison of Dynamics using 2D-IR Vibrational Echo Spectroscopy. The Journal of Physical Chemistry B 2008, 112 (32) , 10054-10063. https://doi.org/10.1021/jp802246h
    20. Naoya Shibayama. Slow Motion Analysis of Protein Folding Intermediates within Wet Silica Gels. Biochemistry 2008, 47 (21) , 5784-5794. https://doi.org/10.1021/bi8003582
    21. Stefania Abbruzzetti,, Elena Grandi,, Stefano Bruno,, Serena Faggiano,, Francesca Spyrakis,, Andrea Mozzarelli,, Elena Cacciatori,, Paola Dominici, and, Cristiano Viappiani. Ligand Migration in Nonsymbiotic Hemoglobin AHb1 from Arabidopsis thaliana. The Journal of Physical Chemistry B 2007, 111 (43) , 12582-12590. https://doi.org/10.1021/jp074954o
    22. Isabel Pastor,, Maria L. Ferrer,, M. Pilar Lillo,, Javier Gómez, and, C. Reyes Mateo. Structure and Dynamics of Lysozyme Encapsulated in a Silica Sol−Gel Matrix. The Journal of Physical Chemistry B 2007, 111 (39) , 11603-11610. https://doi.org/10.1021/jp074790b
    23. Grazia Cottone. A Comparative Study of Carboxy Myoglobin in Saccharide−Water Systems by Molecular Dynamics Simulation. The Journal of Physical Chemistry B 2007, 111 (13) , 3563-3569. https://doi.org/10.1021/jp0677288
    24. Junrong Zheng,, Kyungwon Kwak, and, M. D. Fayer. Ultrafast 2D IR Vibrational Echo Spectroscopy. Accounts of Chemical Research 2007, 40 (1) , 75-83. https://doi.org/10.1021/ar068010d
    25. Grazia Cottone, Antonio Cupane, Maurizio Leone, Valeria Vetri, Valeria Militello. A Long Journey into the Investigation of the Structure–Dynamics–Function Paradigm in Proteins through the Activities of the Palermo Biophysics Group. Biophysica 2022, 2 (4) , 452-474. https://doi.org/10.3390/biophysica2040040
    26. Hasini S. Senanayake, Jeffery A. Greathouse, Ward H. Thompson. Probing electrolyte–silica interactions through simulations of the infrared spectroscopy of nanoscale pores. The Journal of Chemical Physics 2022, 157 (3) https://doi.org/10.1063/5.0100583
    27. Cynthia G. Pyles, Joel G. Patrow, Yukun Cheng, Ian A. Tonks, Aaron M. Massari. Ruthenium hydrides encapsulated in sol–gel glasses exhibit new ultrafast vibrational dynamics. The Journal of Chemical Physics 2022, 156 (12) https://doi.org/10.1063/5.0082752
    28. Laura M. Kiefer, Kevin J. Kubarych. Two-dimensional infrared spectroscopy of coordination complexes: From solvent dynamics to photocatalysis. Coordination Chemistry Reviews 2018, 372 , 153-178. https://doi.org/10.1016/j.ccr.2018.05.006
    29. Alexander Carreño, Eduardo Schott, Ximena Zarate, Juan Manuel Manriquez, Juan C. Vega, Miguel Mardones, Alan H. Cowley, Ivonne Chavez, Juan P. Hinestroza, Ramiro Arratia-Perez. DFT studies on coordination models for adsorption essays of Cu(II) and Ni(II) solutions in modified silica gel with iminodiacetic groups. Chemical Papers 2017, 71 (6) , 1019-1030. https://doi.org/10.1007/s11696-016-0022-6
    30. Yu Zhang, Kieu The Loan Trinh, In-Sang Yoo, Nae Yoon Lee. One-step glass-like coating of polycarbonate for seamless DNA purification and amplification on an integrated monolithic microdevice. Sensors and Actuators B: Chemical 2014, 202 , 1281-1289. https://doi.org/10.1016/j.snb.2014.06.078
    31. Soumit S. Mandal, Viviana Cristiglio, Peter Lindner, Aninda J. Bhattacharyya. Small‐Angle Neutron Scattering Studies of Hemoglobin Confined Inside Silica Tubes of Varying Sizes. ChemPhysChem 2014, 15 (2) , 302-309. https://doi.org/10.1002/cphc.201300863
    32. Rajesh Kumar, Rishu Jain, Rajesh Kumar. Viscosity-dependent structural fluctuation of the M80-containing Ω-loop of horse ferrocytochrome c. Chemical Physics 2013, 418 , 57-64. https://doi.org/10.1016/j.chemphys.2013.04.009
    33. Stefania Abbruzzetti, Francesca Spyrakis, Axel Bidon-Chanal, F. Javier Luque, Cristiano Viappiani. Ligand migration through hemeprotein cavities: insights from laser flash photolysis and molecular dynamics simulations. Physical Chemistry Chemical Physics 2013, 15 (26) , 10686. https://doi.org/10.1039/c3cp51149a
    34. Rocío Esquembre, Sandra N. Pinto, José Antonio Poveda, Manuel Prieto, C. Reyes Mateo. Immobilization and characterization of giant unilamellar vesicles (GUVs) within porous silica glasses. Soft Matter 2012, 8 (2) , 408-417. https://doi.org/10.1039/C1SM06264F
    35. A. Yari, M. Dinarvand. Sol-gel film doped with bromopyrogallol red as a highly sensitive sensing element for a new pH optical sensor. Journal of the Iranian Chemical Society 2011, 8 (4) , 1091-1097. https://doi.org/10.1007/BF03246567
    36. Samrat Dutta, William Rock, Richard J. Cook, Amnon Kohen, Christopher M. Cheatum. Two-dimensional infrared spectroscopy of azido-nicotinamide adenine dinucleotide in water. The Journal of Chemical Physics 2011, 135 (5) https://doi.org/10.1063/1.3623418
    37. Jianhui Tian, Angel E. García. Simulations of the confinement of ubiquitin in self-assembled reverse micelles. The Journal of Chemical Physics 2011, 134 (22) https://doi.org/10.1063/1.3592712
    38. J. Timothy Sage, Yunbin Zhang, John McGeehan, Raimond B.G. Ravelli, Martin Weik, Jasper J. van Thor. Infrared protein crystallography. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2011, 1814 (6) , 760-777. https://doi.org/10.1016/j.bbapap.2011.02.012
    39. Jigar N. Bandaria, Samrat Dutta, Michael W. Nydegger, William Rock, Amnon Kohen, Christopher M. Cheatum. Characterizing the dynamics of functionally relevant complexes of formate dehydrogenase. Proceedings of the National Academy of Sciences 2010, 107 (42) , 17974-17979. https://doi.org/10.1073/pnas.0912190107
    40. Abdollah Yari, Hamzeh Adelpour Abdoli. Sol–gel derived highly selective optical sensor for sensitive determination of the mercury(II) ion in solution. Journal of Hazardous Materials 2010, 178 (1-3) , 713-717. https://doi.org/10.1016/j.jhazmat.2010.01.146
    41. Marina C. Crescimbeni, Verónica Nolan, Pedro D. Clop, Graciela N. Marín, María A. Perillo. Activity modulation and reusability of β-d-galactosidase confined in sol–gel derived porous silicate glass. Colloids and Surfaces B: Biointerfaces 2010, 76 (2) , 387-396. https://doi.org/10.1016/j.colsurfb.2009.11.005
    42. Alessandro Longo, Sergio Giuffrida, Grazia Cottone, Lorenzo Cordone. Myoglobin embedded in saccharide amorphous matrices: water-dependent domains evidenced by small angle X-ray scattering. Physical Chemistry Chemical Physics 2010, 12 (25) , 6852. https://doi.org/10.1039/b926977k
    43. Eduardo Reátegui, Alptekin Aksan. Effects of water on the structure and low/high temperature stability of confined proteins. Physical Chemistry Chemical Physics 2010, 12 (35) , 10161. https://doi.org/10.1039/c003517c
    44. Stefania Abbruzzetti, Serena Faggiano, Stefano Bruno, Francesca Spyrakis, Andrea Mozzarelli, Sylvia Dewilde, Luc Moens, Cristiano Viappiani. Ligand migration through the internal hydrophobic cavities in human neuroglobin. Proceedings of the National Academy of Sciences 2009, 106 (45) , 18984-18989. https://doi.org/10.1073/pnas.0905433106
    45. Stefano Bettati, Cristiano Viappiani, Andrea Mozzarelli. Hemoglobin, an “evergreen” red protein. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2009, 1794 (9) , 1317-1324. https://doi.org/10.1016/j.bbapap.2009.03.020
    46. Nikolas M. Eleftheriou, John D. Brennan. Probing the dynamics of domain III of human serum albumin entrapped in sol–gel derived silica using a Sudlow’s site II specific fluorescent ligand. Journal of Sol-Gel Science and Technology 2009, 50 (2) , 184-193. https://doi.org/10.1007/s10971-009-1966-6
    47. Feng Li, Wei Chen, Shusheng Zhang. Development of DNA electrochemical biosensor based on covalent immobilization of probe DNA by direct coupling of sol–gel and self-assembly technologies. Biosensors and Bioelectronics 2008, 24 (4) , 781-786. https://doi.org/10.1016/j.bios.2008.06.052
    48. Naoya Shibayama. Circular dichroism study on the early folding events of β‐lactoglobulin entrapped in wet silica gels. FEBS Letters 2008, 582 (17) , 2668-2672. https://doi.org/10.1016/j.febslet.2008.06.047
    49. Giorgio Schirò, Michele Sclafani, Francesca Natali, Antonio Cupane. Hydration dependent dynamics in sol–gel encapsulated myoglobin. European Biophysics Journal 2008, 37 (5) , 543-549. https://doi.org/10.1007/s00249-007-0249-9
    50. Haruto Ishikawa, Seongheun Kim, Kyungwon Kwak, Keisuke Wakasugi, Michael D. Fayer. Disulfide bond influence on protein structural dynamics probed with 2D-IR vibrational echo spectroscopy. Proceedings of the National Academy of Sciences 2007, 104 (49) , 19309-19314. https://doi.org/10.1073/pnas.0709760104
    51. Anne Goj, Roger F. Loring. Dephasing dynamics in confined myoglobin. Chemical Physics 2007, 341 (1-3) , 37-44. https://doi.org/10.1016/j.chemphys.2007.04.001
    52. Haruto Ishikawa, Ilya J. Finkelstein, Seongheun Kim, Kyungwon Kwak, Jean K. Chung, Keisuke Wakasugi, Aaron M. Massari, Michael D. Fayer. Neuroglobin dynamics observed with ultrafast 2D-IR vibrational echo spectroscopy. Proceedings of the National Academy of Sciences 2007, 104 (41) , 16116-16121. https://doi.org/10.1073/pnas.0707718104
    53. S Park, K Kwak, M D Fayer. Ultrafast 2D-IR vibrational echo spectroscopy: a probe of molecular dynamics. Laser Physics Letters 2007, 4 (10) , 704-718. https://doi.org/10.1002/lapl.200710046
    54. Uri Samuni, David Dantsker, Camille J. Roche, Joel M. Friedman. Ligand recombination and a hierarchy of solvent slaved dynamics: The origin of kinetic phases in hemeproteins. Gene 2007, 398 (1-2) , 234-248. https://doi.org/10.1016/j.gene.2007.04.032
    55. L Cordone, G Cottone, S Giuffrida. Role of residual water hydrogen bonding in sugar/water/biomolecule systems: a possible explanation for trehalose peculiarity. Journal of Physics: Condensed Matter 2007, 19 (20) , 205110. https://doi.org/10.1088/0953-8984/19/20/205110
    56. Ilya J. Finkelstein, Aaron M. Massari, M.D. Fayer. Viscosity-Dependent Protein Dynamics. Biophysical Journal 2007, 92 (10) , 3652-3662. https://doi.org/10.1529/biophysj.106.093708
    57. Ilya J. Finkelstein, Haruto Ishikawa, Seongheun Kim, Aaron M. Massari, M. D. Fayer. Substrate binding and protein conformational dynamics measured by 2D-IR vibrational echo spectroscopy. Proceedings of the National Academy of Sciences 2007, 104 (8) , 2637-2642. https://doi.org/10.1073/pnas.0610027104
    58. . Conformational Dynamics of Heme-pocket in Myoglobin Encapsulated in Silica Sol-gel Glasses. Bulletin of the Korean Chemical Society 2007, 339-342. https://doi.org/10.5012/bkcs.2007.28.2.339
    59. Ilya J. Finkelstein, Junrong Zheng, Haruto Ishikawa, Seongheun Kim, Kyungwon Kwak, Michael D. Fayer. Probing dynamics of complex molecular systems with ultrafast 2D IR vibrational echo spectroscopy. Physical Chemistry Chemical Physics 2007, 9 (13) , 1533. https://doi.org/10.1039/b618158a

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect