Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Conformational Flexibility, Internal Hydrogen Bonding, and Passive Membrane Permeability:  Successful in Silico Prediction of the Relative Permeabilities of Cyclic Peptides
My Activity

Figure 1Loading Img
    Article

    Conformational Flexibility, Internal Hydrogen Bonding, and Passive Membrane Permeability:  Successful in Silico Prediction of the Relative Permeabilities of Cyclic Peptides
    Click to copy article linkArticle link copied!

    View Author Information
    Contribution from the Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, California 95064, and Department of Pharmaceutical Chemistry, University of California at San Francisco, 600 16th Street, San Francisco, California 94143-2240
    Other Access OptionsSupporting Information (3)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2006, 128, 43, 14073–14080
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja063076p
    Published October 6, 2006
    Copyright © 2006 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We report an atomistic physical model for the passive membrane permeability of cyclic peptides. The computational modeling was performed in advance of the experiments and did not involve the use of “training data”. The model explicitly treats the conformational flexibility of the peptides by extensive conformational sampling in low (membrane) and high (water) dielectric environments. The passive membrane permeabilities of 11 cyclic peptides were obtained experimentally using a parallel artificial membrane permeability assay (PAMPA) and showed a linear correlation with the computational results with R2 = 0.96. In general, the results support the hypothesis, already well established in the literature, that the ability to form internal hydrogen bonds is critical for passive membrane permeability and can be the distinguishing factor among closely related compounds, such as those studied here. However, we have found that the number of internal hydrogen bonds that can form in the membrane and the solvent-exposed polar surface area correlate more poorly with PAMPA permeability than our model, which quantitatively estimates the solvation free energy losses upon moving from high-dielectric water to the low-dielectric interior of a membrane.

    Copyright © 2006 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     University of California at Santa Cruz.

     University of California at San Francisco.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    Click to copy section linkSection link copied!

    Detailed experimental procedures on compound synthesis and PAMPA, computationally predicted low-dielectric structures for all cyclic peptides tested experimentally, and detailed computational data for the virtual cyclic peptide library. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 336 publications.

    1. Mingyue Li, Jianguo Li, Xingyu Lu, Ryan Schroder, Arun Chandramohan, W. Peter Wuelfing, Allen C. Templeton, Wei Xu, Marian Gindy, Filippos Kesisoglou, Jing Ling, Tomi Sawyer, Chandra S. Verma, Anthony W. Partridge, Yongchao Su. Molecular Mechanism of P53 Peptide Permeation through Lipid Membranes from Solid-State NMR Spectroscopy and Molecular Dynamics Simulations. Journal of the American Chemical Society 2024, 146 (33) , 23075-23091. https://doi.org/10.1021/jacs.4c04230
    2. Xiaorong Tan, Qianhui Liu, Yanpeng Fang, Yingli Zhu, Fei Chen, Wenbin Zeng, Defang Ouyang, Jie Dong. Predicting Peptide Permeability Across Diverse Barriers: A Systematic Investigation. Molecular Pharmaceutics 2024, 21 (8) , 4116-4127. https://doi.org/10.1021/acs.molpharmaceut.4c00478
    3. Justin H. Faris, Emel Adaligil, Nataliya Popovych, Satoshi Ono, Mifune Takahashi, Huy Nguyen, Emile Plise, Jaru Taechalertpaisarn, Hsiau-Wei Lee, Michael F. T. Koehler, Christian N. Cunningham, R. Scott Lokey. Membrane Permeability in a Large Macrocyclic Peptide Driven by a Saddle-Shaped Conformation. Journal of the American Chemical Society 2024, 146 (7) , 4582-4591. https://doi.org/10.1021/jacs.3c10949
    4. Lujing Cao, Zhenyu Xu, Tianfeng Shang, Chengyun Zhang, Xinyi Wu, Yejian Wu, Silong Zhai, Zhajun Zhan, Hongliang Duan. Multi_CycGT: A Deep Learning-Based Multimodal Model for Predicting the Membrane Permeability of Cyclic Peptides. Journal of Medicinal Chemistry 2024, 67 (3) , 1888-1899. https://doi.org/10.1021/acs.jmedchem.3c01611
    5. Dongjae Lee, Jieun Choi, Min June Yang, Chin-Ju Park, Jiwon Seo. Controlling the Chameleonic Behavior and Membrane Permeability of Cyclosporine Derivatives via Backbone and Side Chain Modifications. Journal of Medicinal Chemistry 2023, 66 (18) , 13189-13204. https://doi.org/10.1021/acs.jmedchem.3c01140
    6. Thomas Seidel, Christian Permann, Oliver Wieder, Stefan M. Kohlbacher, Thierry Langer. High-Quality Conformer Generation with CONFORGE: Algorithm and Performance Assessment. Journal of Chemical Information and Modeling 2023, 63 (17) , 5549-5570. https://doi.org/10.1021/acs.jcim.3c00563
    7. Pauline Navals, Anna Kwiatkowska, Nawel Mekdad, Frédéric Couture, Roxane Desjardins, Robert Day, Yves L. Dory. Enhancing the Drug-Like Profile of a Potent Peptide PACE4 Inhibitor by the Formation of a Host–Guest Inclusion Complex with β-Cyclodextrin. Molecular Pharmaceutics 2023, 20 (9) , 4559-4573. https://doi.org/10.1021/acs.molpharmaceut.3c00261
    8. Tiffani Hui, Marc L. Descoteaux, Jiayuan Miao, Yu-Shan Lin. Training Neural Network Models Using Molecular Dynamics Simulation Results to Efficiently Predict Cyclic Hexapeptide Structural Ensembles. Journal of Chemical Theory and Computation 2023, 19 (14) , 4757-4769. https://doi.org/10.1021/acs.jctc.3c00154
    9. Sedat Karabulut, Dananjana V. Wijerathne, James W. Gauld. Computational Insights into the Formation and Structure of S–N Containing Cyclic Peptides. ACS Omega 2023, 8 (20) , 18234-18244. https://doi.org/10.1021/acsomega.3c01764
    10. Jillene Moxam, Sarah Naylon, Alexis D. Richaud, Guangkuan Zhao, Alberto Padilla, Stéphane P. Roche. Passive Membrane Permeability of Sizable Acyclic β-Hairpin Peptides. ACS Medicinal Chemistry Letters 2023, 14 (3) , 278-284. https://doi.org/10.1021/acsmedchemlett.2c00486
    11. Stephanie M. Linker, Christian Schellhaas, Anna S. Kamenik, Mac M. Veldhuizen, Franz Waibl, Hans-Jörg Roth, Marianne Fouché, Stephane Rodde, Sereina Riniker. Lessons for Oral Bioavailability: How Conformationally Flexible Cyclic Peptides Enter and Cross Lipid Membranes. Journal of Medicinal Chemistry 2023, 66 (4) , 2773-2788. https://doi.org/10.1021/acs.jmedchem.2c01837
    12. Takuya Oguma, Shota Uehara, Kenji Nakahara, Yuya Okuyama, Kouki Fuchino, Naoyuki Suzuki, Yukiko Kan, Naoki Kanegawa, Yuki Ogata, Ken-ichi Kusakabe. A Quantum Mechanics-Based Method to Predict Intramolecular Hydrogen Bond Formation Reflecting P-glycoprotein Recognition. ACS Medicinal Chemistry Letters 2023, 14 (2) , 223-228. https://doi.org/10.1021/acsmedchemlett.2c00427
    13. Billy J. Williams-Noonan, Melissa N. Speer, Tu C. Le, Maiada M. Sadek, Philip E. Thompson, Raymond S. Norton, Elizabeth Yuriev, Nicholas Barlow, David K. Chalmers, Irene Yarovsky. Membrane Permeating Macrocycles: Design Guidelines from Machine Learning. Journal of Chemical Information and Modeling 2022, 62 (19) , 4605-4619. https://doi.org/10.1021/acs.jcim.2c00809
    14. Masatake Sugita, Takuya Fujie, Keisuke Yanagisawa, Masahito Ohue, Yutaka Akiyama. Lipid Composition Is Critical for Accurate Membrane Permeability Prediction of Cyclic Peptides by Molecular Dynamics Simulations. Journal of Chemical Information and Modeling 2022, 62 (18) , 4549-4560. https://doi.org/10.1021/acs.jcim.2c00931
    15. Anna A. Rzepiela, Lauren A. Viarengo-Baker, Victor Tatarskii, Roman Kombarov, Adrian Whitty. Conformational Effects on the Passive Membrane Permeability of Synthetic Macrocycles. Journal of Medicinal Chemistry 2022, 65 (15) , 10300-10317. https://doi.org/10.1021/acs.jmedchem.1c02090
    16. Tomi K. Sawyer Kaustav Biswas . Peptide Drug Discovery Raison d’Etre: Engineering Mindset, Design Rules and Screening Tools. , 1-25. https://doi.org/10.1021/bk-2022-1417.ch001
    17. Anna Sophia Kamenik Stephanie Maria Linker Sereina Riniker . Matching Simulations and Experiments of Conformationally Flexible Cyclic Peptides: Steps toward a Holistic View of Passive Membrane Permeability. , 137-154. https://doi.org/10.1021/bk-2022-1417.ch005
    18. Emel Adaligil Wayne J. Fairbrother . NMR Spectroscopy for Studying Peptide Conformations and Cell Permeability. , 155-177. https://doi.org/10.1021/bk-2022-1417.ch006
    19. Andrei A. Golosov Alec N. Flyer Lauren G. Monovich . Design and Discovery of Orally Bioavailable Macrocycles: Toward Orally Bioavailable Peptide Therapeutics. , 199-222. https://doi.org/10.1021/bk-2022-1417.ch008
    20. Maximilian Meixner, Martin Zachmann, Sebastian Metzler, Jonathan Scheerer, Martin Zacharias, Iris Antes. Dynamic Docking of Macrocycles in Bound and Unbound Protein Structures with DynaDock. Journal of Chemical Information and Modeling 2022, 62 (14) , 3426-3441. https://doi.org/10.1021/acs.jcim.2c00436
    21. Armin Shayesteh Zadeh, Baron Peters. Conformational Interconversion Kinetics, Boundary Layer Transport, and Crystal Growth Impedance. Crystal Growth & Design 2022, 22 (7) , 4298-4304. https://doi.org/10.1021/acs.cgd.2c00277
    22. Wyatt C. Powell, Garrett E. Evenson, Maciej A. Walczak. Site-Selective Amide Functionalization by Catalytic Azoline Engrafting. ACS Catalysis 2022, 12 (13) , 7789-7797. https://doi.org/10.1021/acscatal.2c01938
    23. Vincent Faugeras, Olivier Duclos, Didier Bazile, Abdou Rachid Thiam. Impact of Cyclization and Methylation on Peptide Penetration through Droplet Interface Bilayers. Langmuir 2022, 38 (18) , 5682-5691. https://doi.org/10.1021/acs.langmuir.2c00269
    24. Viki Kumar Prasad, Alberto Otero-de-la-Roza, Gino A. DiLabio. Fast and Accurate Quantum Mechanical Modeling of Large Molecular Systems Using Small Basis Set Hartree–Fock Methods Corrected with Atom-Centered Potentials. Journal of Chemical Theory and Computation 2022, 18 (4) , 2208-2232. https://doi.org/10.1021/acs.jctc.1c01128
    25. Victoria G. Klein, Adam G. Bond, Conner Craigon, R. Scott Lokey, Alessio Ciulli. Amide-to-Ester Substitution as a Strategy for Optimizing PROTAC Permeability and Cellular Activity. Journal of Medicinal Chemistry 2021, 64 (24) , 18082-18101. https://doi.org/10.1021/acs.jmedchem.1c01496
    26. Mosavverul Hassan, Evangelos A. Coutsias. Kinematic Reconstruction of Cyclic Peptides and Protein Backbones from Partial Data. Journal of Chemical Information and Modeling 2021, 61 (10) , 4975-5000. https://doi.org/10.1021/acs.jcim.1c00453
    27. Karen M. Corbett, Leigh Ford, Dallas B. Warren, Colin W. Pouton, David K. Chalmers. Cyclosporin Structure and Permeability: From A to Z and Beyond. Journal of Medicinal Chemistry 2021, 64 (18) , 13131-13151. https://doi.org/10.1021/acs.jmedchem.1c00580
    28. Shuzhe Wang, Gerhard König, Hans-Jörg Roth, Marianne Fouché, Stephane Rodde, Sereina Riniker. Effect of Flexibility, Lipophilicity, and the Location of Polar Residues on the Passive Membrane Permeability of a Series of Cyclic Decapeptides. Journal of Medicinal Chemistry 2021, 64 (17) , 12761-12773. https://doi.org/10.1021/acs.jmedchem.1c00775
    29. Ester Canepa, Davide Bochicchio, Matteo Gasbarri, Davide Odino, Claudio Canale, Riccardo Ferrando, Fabio Canepa, Francesco Stellacci, Giulia Rossi, Silvia Dante, Annalisa Relini. Cholesterol Hinders the Passive Uptake of Amphiphilic Nanoparticles into Fluid Lipid Membranes. The Journal of Physical Chemistry Letters 2021, 12 (35) , 8583-8590. https://doi.org/10.1021/acs.jpclett.1c02077
    30. Masatake Sugita, Satoshi Sugiyama, Takuya Fujie, Yasushi Yoshikawa, Keisuke Yanagisawa, Masahito Ohue, Yutaka Akiyama. Large-Scale Membrane Permeability Prediction of Cyclic Peptides Crossing a Lipid Bilayer Based on Enhanced Sampling Molecular Dynamics Simulations. Journal of Chemical Information and Modeling 2021, 61 (7) , 3681-3695. https://doi.org/10.1021/acs.jcim.1c00380
    31. Dongjae Lee, Sungjin Lee, Jieun Choi, Yoo-Kyung Song, Min Ju Kim, Dae-Seop Shin, Myung Ae Bae, Yong-Chul Kim, Chin-Ju Park, Kyeong-Ryoon Lee, Jun-Ho Choi, Jiwon Seo. Interplay among Conformation, Intramolecular Hydrogen Bonds, and Chameleonicity in the Membrane Permeability and Cyclophilin A Binding of Macrocyclic Peptide Cyclosporin O Derivatives. Journal of Medicinal Chemistry 2021, 64 (12) , 8272-8286. https://doi.org/10.1021/acs.jmedchem.1c00211
    32. Fabio Begnini, Vasanthanathan Poongavanam, Yoseph Atilaw, Mate Erdelyi, Stefan Schiesser, Jan Kihlberg. Cell Permeability of Isomeric Macrocycles: Predictions and NMR Studies. ACS Medicinal Chemistry Letters 2021, 12 (6) , 983-990. https://doi.org/10.1021/acsmedchemlett.1c00126
    33. Hiroki Kitagawa, Masaki Kikuchi, Shin Sato, Hisami Watanabe, Naoki Umezawa, Maiko Kato, Yosuke Hisamatsu, Takashi Umehara, Tsunehiko Higuchi. Structure-Based Identification of Potent Lysine-Specific Demethylase 1 Inhibitor Peptides and Temporary Cyclization to Enhance Proteolytic Stability and Cell Growth-Inhibitory Activity. Journal of Medicinal Chemistry 2021, 64 (7) , 3707-3719. https://doi.org/10.1021/acs.jmedchem.0c01371
    34. Rafael Santana Nunes, Diogo Vila-Viçosa, Paulo J. Costa. Halogen Bonding: An Underestimated Player in Membrane–Ligand Interactions. Journal of the American Chemical Society 2021, 143 (11) , 4253-4267. https://doi.org/10.1021/jacs.0c12470
    35. Andrei A. Golosov, Alec N. Flyer, Jakal Amin, Charles Babu, Christian Gampe, Jingzhou Li, Eugene Liu, Katsumasa Nakajima, David Nettleton, Tajesh J. Patel, Patrick C. Reid, Lihua Yang, Lauren G. Monovich. Design of Thioether Cyclic Peptide Scaffolds with Passive Permeability and Oral Exposure. Journal of Medicinal Chemistry 2021, 64 (5) , 2622-2633. https://doi.org/10.1021/acs.jmedchem.0c01505
    36. Takayuki Kawai, Yasuhiro Mihara, Makiko Morita, Masahiko Ohkubo, Taiji Asami, Tomonobu M. Watanabe. Quantitation of Cell Membrane Permeability of Cyclic Peptides by Single-Cell Cytoplasm Mass Spectrometry. Analytical Chemistry 2021, 93 (7) , 3370-3377. https://doi.org/10.1021/acs.analchem.0c03901
    37. Amber L. H. Gray, Carlos A. Steren, Isaac W. Haynes, Guillermo A. Bermejo, Filippo Favretto, Markus Zweckstetter, Thanh D. Do. Structural Flexibility of Cyclosporine A Is Mediated by Amide Cis–Trans Isomerization and the Chameleonic Roles of Calcium. The Journal of Physical Chemistry B 2021, 125 (5) , 1378-1391. https://doi.org/10.1021/acs.jpcb.0c11152
    38. Flaviu Cipcigan, Paul Smith, Jason Crain, Anders Hogner, Leonardo De Maria, Antonio Llinas, Ekaterina Ratkova. Membrane Permeability in Cyclic Peptides is Modulated by Core Conformations. Journal of Chemical Information and Modeling 2021, 61 (1) , 263-269. https://doi.org/10.1021/acs.jcim.0c00803
    39. Giulia Caron, Jan Kihlberg, Gilles Goetz, Ekaterina Ratkova, Vasanthanathan Poongavanam, Giuseppe Ermondi. Steering New Drug Discovery Campaigns: Permeability, Solubility, and Physicochemical Properties in the bRo5 Chemical Space. ACS Medicinal Chemistry Letters 2021, 12 (1) , 13-23. https://doi.org/10.1021/acsmedchemlett.0c00581
    40. Atilio Reyes Romero, Angel Jonathan Ruiz-Moreno, Matthew R. Groves, Marco Velasco-Velázquez, Alexander Dömling. Benchmark of Generic Shapes for Macrocycles. Journal of Chemical Information and Modeling 2020, 60 (12) , 6298-6313. https://doi.org/10.1021/acs.jcim.0c01038
    41. Olivier B. C. Monty, Nicholas Simmons, Srinivas Chamakuri, Martin M. Matzuk, Damian W. Young. Solution-Phase Fmoc-Based Peptide Synthesis for DNA-Encoded Chemical Libraries: Reaction Conditions, Protecting Group Strategies, and Pitfalls. ACS Combinatorial Science 2020, 22 (12) , 833-843. https://doi.org/10.1021/acscombsci.0c00144
    42. Rasha Jwad, Daniel Weissberger, Luke Hunter. Strategies for Fine-Tuning the Conformations of Cyclic Peptides. Chemical Reviews 2020, 120 (17) , 9743-9789. https://doi.org/10.1021/acs.chemrev.0c00013
    43. Daniel Y. Yoo, Stephanie A. Barros, Gordon C. Brown, Christian Rabot, Dafna Bar-Sagi, Paramjit S. Arora. Macropinocytosis as a Key Determinant of Peptidomimetic Uptake in Cancer Cells. Journal of the American Chemical Society 2020, 142 (34) , 14461-14471. https://doi.org/10.1021/jacs.0c02109
    44. K. H. Brian Lam, J. C. Yves Le Blanc, J. Larry Campbell. Separating Isomers, Conformers, and Analogues of Cyclosporin using Differential Mobility Spectroscopy, Mass Spectrometry, and Hydrogen–Deuterium Exchange. Analytical Chemistry 2020, 92 (16) , 11053-11061. https://doi.org/10.1021/acs.analchem.0c00191
    45. Janet L. Paulsen, Haoyu S. Yu, Dan Sindhikara, Lingle Wang, Todd Appleby, Armando G. Villaseñor, Uli Schmitz, Devleena Shivakumar. Evaluation of Free Energy Calculations for the Prioritization of Macrocycle Synthesis. Journal of Chemical Information and Modeling 2020, 60 (7) , 3489-3498. https://doi.org/10.1021/acs.jcim.0c00132
    46. Antoine Le Roux, Émilie Blaise, Pierre-Luc Boudreault, Christian Comeau, Annie Doucet, Marilena Giarrusso, Marie-Pierre Collin, Thomas Neubauer, Florian Kölling, Andreas H. Göller, Lea Seep, Dieudonné T. Tshitenge, Matthias Wittwer, Maximilian Kullmann, Alexander Hillisch, Joachim Mittendorf, Eric Marsault. Structure–Permeability Relationship of Semipeptidic Macrocycles—Understanding and Optimizing Passive Permeability and Efflux Ratio. Journal of Medicinal Chemistry 2020, 63 (13) , 6774-6783. https://doi.org/10.1021/acs.jmedchem.0c00013
    47. Michael J. Ferracane, Ariana C. Brice-Tutt, Jeremy S. Coleman, Grant G. Simpson, Lisa L. Wilson, Shainnel O. Eans, Heather M. Stacy, Thomas F. Murray, Jay P. McLaughlin, Jane V. Aldrich. Design, Synthesis, and Characterization of the Macrocyclic Tetrapeptide cyclo[Pro-Sar-Phe-d-Phe]: A Mixed Opioid Receptor Agonist–Antagonist Following Oral Administration. ACS Chemical Neuroscience 2020, 11 (9) , 1324-1336. https://doi.org/10.1021/acschemneuro.0c00086
    48. Heba Salim, Jian Song, Ashweta Sahni, Dehua Pei. Development of a Cell-Permeable Cyclic Peptidyl Inhibitor against the Keap1–Nrf2 Interaction. The Journal of Organic Chemistry 2020, 85 (3) , 1416-1424. https://doi.org/10.1021/acs.joc.9b02367
    49. Brian A. Lanman, Jennifer R. Allen, John G. Allen, Albert K. Amegadzie, Kate S. Ashton, Shon K. Booker, Jian Jeffrey Chen, Ning Chen, Michael J. Frohn, Guy Goodman, David J. Kopecky, Longbin Liu, Patricia Lopez, Jonathan D. Low, Vu Ma, Ana E. Minatti, Thomas T. Nguyen, Nobuko Nishimura, Alexander J. Pickrell, Anthony B. Reed, Youngsook Shin, Aaron C. Siegmund, Nuria A. Tamayo, Christopher M. Tegley, Mary C. Walton, Hui-Ling Wang, Ryan P. Wurz, May Xue, Kevin C. Yang, Pragathi Achanta, Michael D. Bartberger, Jude Canon, L. Steven Hollis, John D. McCarter, Christopher Mohr, Karen Rex, Anne Y. Saiki, Tisha San Miguel, Laurie P. Volak, Kevin H. Wang, Douglas A. Whittington, Stephan G. Zech, J. Russell Lipford, Victor J. Cee. Discovery of a Covalent Inhibitor of KRASG12C (AMG 510) for the Treatment of Solid Tumors. Journal of Medicinal Chemistry 2020, 63 (1) , 52-65. https://doi.org/10.1021/acs.jmedchem.9b01180
    50. Xin Yang, Yifei Wang, Ryan Byrne, Gisbert Schneider, Shengyong Yang. Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery. Chemical Reviews 2019, 119 (18) , 10520-10594. https://doi.org/10.1021/acs.chemrev.8b00728
    51. Solomon D. Appavoo, Sungjoon Huh, Diego B. Diaz, Andrei K. Yudin. Conformational Control of Macrocycles by Remote Structural Modification. Chemical Reviews 2019, 119 (17) , 9724-9752. https://doi.org/10.1021/acs.chemrev.8b00742
    52. Ivan V. Smolyar, Andrei K. Yudin, Valentine G. Nenajdenko. Heteroaryl Rings in Peptide Macrocycles. Chemical Reviews 2019, 119 (17) , 10032-10240. https://doi.org/10.1021/acs.chemrev.8b00789
    53. Patrick G. Dougherty, Ashweta Sahni, Dehua Pei. Understanding Cell Penetration of Cyclic Peptides. Chemical Reviews 2019, 119 (17) , 10241-10287. https://doi.org/10.1021/acs.chemrev.9b00008
    54. Maxwell D. Cummings, Sivakumar Sekharan. Structure-Based Macrocycle Design in Small-Molecule Drug Discovery and Simple Metrics To Identify Opportunities for Macrocyclization of Small-Molecule Ligands. Journal of Medicinal Chemistry 2019, 62 (15) , 6843-6853. https://doi.org/10.1021/acs.jmedchem.8b01985
    55. Andrei L. Lomize, Irina D. Pogozheva. Physics-Based Method for Modeling Passive Membrane Permeability and Translocation Pathways of Bioactive Molecules. Journal of Chemical Information and Modeling 2019, 59 (7) , 3198-3213. https://doi.org/10.1021/acs.jcim.9b00224
    56. Satoshi Ono, Matthew R. Naylor, Chad E. Townsend, Chieko Okumura, Okimasa Okada, R. Scott Lokey. Conformation and Permeability: Cyclic Hexapeptide Diastereomers. Journal of Chemical Information and Modeling 2019, 59 (6) , 2952-2963. https://doi.org/10.1021/acs.jcim.9b00217
    57. Brett A. Hopkins, Hyelee Lee, Sookhee Ha, Lisa Nogle, Berengere Sauvagnat, Spencer McMinn, Graham F. Smith, Nunzio Sciammetta. Development of a Platform To Enable Efficient Permeability Evaluation of Novel Organo-Peptide Macrocycles. ACS Medicinal Chemistry Letters 2019, 10 (6) , 874-879. https://doi.org/10.1021/acsmedchemlett.9b00036
    58. Kathleen A. Farley, Ye Che, Armando Navarro-Vázquez, Chris Limberakis, Dennis Anderson, Jiangli Yan, Michael Shapiro, Veerabahu Shanmugasundaram, Roberto R. Gil. Cyclic Peptide Design Guided by Residual Dipolar Couplings, J-Couplings, and Intramolecular Hydrogen Bond Analysis. The Journal of Organic Chemistry 2019, 84 (8) , 4803-4813. https://doi.org/10.1021/acs.joc.8b02811
    59. Dimitrios Toroz, Tarun Khanna, Ian Robert Gould. Modeling the Effect of BSEP Inhibitors in Lipid Bilayers by Means of All-Atom Molecular Dynamics Simulation. ACS Omega 2019, 4 (2) , 3341-3350. https://doi.org/10.1021/acsomega.8b02271
    60. Jagna Witek, Shuzhe Wang, Benjamin Schroeder, Robin Lingwood, Andreas Dounas, Hans-Jörg Roth, Marianne Fouché, Markus Blatter, Oliver Lemke, Bettina Keller, Sereina Riniker. Rationalization of the Membrane Permeability Differences in a Series of Analogue Cyclic Decapeptides. Journal of Chemical Information and Modeling 2019, 59 (1) , 294-308. https://doi.org/10.1021/acs.jcim.8b00485
    61. Christine A. Arbour, Kayla J. Belavek, Rooha Tariq, Subha Mukherjee, Janine K. Tom, Albert Isidro-Llobet, Michael E. Kopach, Jennifer L. Stockdill. Bringing Macrolactamization Full Circle: Self-Cleaving Head-to-Tail Macrocyclization of Unprotected Peptides via Mild N-Acyl Urea Activation. The Journal of Organic Chemistry 2019, 84 (2) , 1035-1041. https://doi.org/10.1021/acs.joc.8b02418
    62. Richard L. Mackman, Victoria A. Steadman, David K. Dean, Petr Jansa, Karine G. Poullennec, Todd Appleby, Carol Austin, Caroline A. Blakemore, Ruby Cai, Carina Cannizzaro, Gregory Chin, Jean-Yves C. Chiva, Neil A. Dunbar, Hans Fliri, Adrian J. Highton, Hon Hui, Mingzhe Ji, Haolun Jin, Kapil Karki, Andrew J. Keats, Linos Lazarides, Yu-Jen Lee, Albert Liclican, Michael Mish, Bernard Murray, Simon B. Pettit, Peter Pyun, Michael Sangi, Rex Santos, Jonathan Sanvoisin, Uli Schmitz, Adam Schrier, Dustin Siegel, David Sperandio, George Stepan, Yang Tian, Gregory M. Watt, Hai Yang, Brian E. Schultz. Discovery of a Potent and Orally Bioavailable Cyclophilin Inhibitor Derived from the Sanglifehrin Macrocycle. Journal of Medicinal Chemistry 2018, 61 (21) , 9473-9499. https://doi.org/10.1021/acs.jmedchem.8b00802
    63. Bradley C. Doak, Jan Kihlberg. Cyclophilin Succumbs to a Macrocyclic Chameleon. Journal of Medicinal Chemistry 2018, 61 (21) , 9469-9472. https://doi.org/10.1021/acs.jmedchem.8b01555
    64. Mohit Tyagi, Vasanthanathan Poongavanam, Marika Lindhagen, Anna Pettersen, Peter Sjö, Stefan Schiesser, Jan Kihlberg. Toward the Design of Molecular Chameleons: Flexible Shielding of an Amide Bond Enhances Macrocycle Cell Permeability. Organic Letters 2018, 20 (18) , 5737-5742. https://doi.org/10.1021/acs.orglett.8b02447
    65. Matteo Rossi Sebastiano, Bradley C. Doak, Maria Backlund, Vasanthanathan Poongavanam, Björn Over, Giuseppe Ermondi, Giulia Caron, Pär Matsson, Jan Kihlberg. Impact of Dynamically Exposed Polarity on Permeability and Solubility of Chameleonic Drugs Beyond the Rule of 5. Journal of Medicinal Chemistry 2018, 61 (9) , 4189-4202. https://doi.org/10.1021/acs.jmedchem.8b00347
    66. Mahboubeh Kheirabadi, Gardner S. Creech, Jennifer X. Qiao, David S. Nirschl, David K. Leahy, Kenneth M. Boy, Percy H. Carter, Martin D. Eastgate. Leveraging a “Catch–Release” Logic Gate Process for the Synthesis and Nonchromatographic Purification of Thioether- or Amine-Bridged Macrocyclic Peptides. The Journal of Organic Chemistry 2018, 83 (8) , 4323-4335. https://doi.org/10.1021/acs.joc.7b03124
    67. Min-Kyung Shin, Yu-Jung Hyun, Ji Hoon Lee, Hyun-Suk Lim. Comparison of Cell Permeability of Cyclic Peptoids and Linear Peptoids. ACS Combinatorial Science 2018, 20 (4) , 237-242. https://doi.org/10.1021/acscombsci.7b00194
    68. Conan K. Wang, Joakim E. Swedberg, Peta J. Harvey, Quentin Kaas, and David J. Craik . Conformational Flexibility Is a Determinant of Permeability for Cyclosporin. The Journal of Physical Chemistry B 2018, 122 (8) , 2261-2276. https://doi.org/10.1021/acs.jpcb.7b12419
    69. Antoine Henninot, James C. Collins, and John M. Nuss . The Current State of Peptide Drug Discovery: Back to the Future?. Journal of Medicinal Chemistry 2018, 61 (4) , 1382-1414. https://doi.org/10.1021/acs.jmedchem.7b00318
    70. Laura K. Buckton and Shelli R. McAlpine . Improving the Cell Permeability of Polar Cyclic Peptides by Replacing Residues with Alkylated Amino Acids, Asparagines, and d-Amino Acids. Organic Letters 2018, 20 (3) , 506-509. https://doi.org/10.1021/acs.orglett.7b03363
    71. Pedro Soares, Morgan S. Gadd, Julianty Frost, Carles Galdeano, Lucy Ellis, Ola Epemolu, Sonia Rocha, Kevin D. Read, and Alessio Ciulli . Group-Based Optimization of Potent and Cell-Active Inhibitors of the von Hippel–Lindau (VHL) E3 Ubiquitin Ligase: Structure–Activity Relationships Leading to the Chemical Probe (2S,4R)-1-((S)-2-(1-Cyanocyclopropanecarboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (VH298). Journal of Medicinal Chemistry 2018, 61 (2) , 599-618. https://doi.org/10.1021/acs.jmedchem.7b00675
    72. Yangxiong Li, Nathan P. Lavey, Jesse A. Coker, Jessica E. Knobbe, Dat C. Truong, Hongtao Yu, Yu-Shan Lin, Susan L. Nimmo, and Adam S. Duerfeldt . Consequences of Depsipeptide Substitution on the ClpP Activation Activity of Antibacterial Acyldepsipeptides. ACS Medicinal Chemistry Letters 2017, 8 (11) , 1171-1176. https://doi.org/10.1021/acsmedchemlett.7b00320
    73. Yuichi Masuda, Ren Tanaka, A. Ganesan, and Takayuki Doi . Systematic Analysis of the Relationship among 3D Structure, Bioactivity, and Membrane Permeability of PF1171F, a Cyclic Hexapeptide with Paralyzing Effects on Silkworms. The Journal of Organic Chemistry 2017, 82 (21) , 11447-11463. https://doi.org/10.1021/acs.joc.7b01975
    74. Luxiu Lin, Fengying Zheng, Haifeng Zhou, and Shunxing Li . Biomimetic Gastrointestinal Tract Functions for Metal Absorption Assessment in Edible Plants: Comparison to In Vivo Absorption. Journal of Agricultural and Food Chemistry 2017, 65 (30) , 6282-6287. https://doi.org/10.1021/acs.jafc.7b02054
    75. Daniel S. Nielsen, Nicholas E. Shepherd, Weijun Xu, Andrew J. Lucke, Martin J. Stoermer, and David P. Fairlie . Orally Absorbed Cyclic Peptides. Chemical Reviews 2017, 117 (12) , 8094-8128. https://doi.org/10.1021/acs.chemrev.6b00838
    76. David E. Hacker, Jan Hoinka, Emil S. Iqbal, Teresa M. Przytycka, and Matthew C. T. Hartman . Highly Constrained Bicyclic Scaffolds for the Discovery of Protease-Stable Peptides via mRNA Display. ACS Chemical Biology 2017, 12 (3) , 795-804. https://doi.org/10.1021/acschembio.6b01006
    77. Flaviane Francisco Hilário, Mohamed Dit Mady Traoré, Vincent Zwick, Laurence Berry, Claudia A. Simões-Pires, Muriel Cuendet, Nicolas Fantozzi, Rossimiriam Pereira de Freitas, Marjorie Maynadier, Sharon Wein, Henri Vial, and Yung-Sing Wong . Synthesis of an Uncharged Tetra-cyclopeptide Acting as a Transmembrane Carrier: Enhanced Cellular and Nuclear Uptake. Organic Letters 2017, 19 (3) , 612-615. https://doi.org/10.1021/acs.orglett.6b03776
    78. Qin Wang, Simone Sciabola, Gabriela Barreiro, Xinjun Hou, Guoyun Bai, Michael J. Shapiro, Frank Koehn, Anabella Villalobos, and Matthew P. Jacobson . Dihedral Angle-Based Sampling of Natural Product Polyketide Conformations: Application to Permeability Prediction. Journal of Chemical Information and Modeling 2016, 56 (11) , 2194-2206. https://doi.org/10.1021/acs.jcim.6b00237
    79. Akihiro Furukawa, Chad E. Townsend, Joshua Schwochert, Cameron R. Pye, Maria A. Bednarek, and R. Scott Lokey . Passive Membrane Permeability in Cyclic Peptomer Scaffolds Is Robust to Extensive Variation in Side Chain Functionality and Backbone Geometry. Journal of Medicinal Chemistry 2016, 59 (20) , 9503-9512. https://doi.org/10.1021/acs.jmedchem.6b01246
    80. Jagna Witek, Bettina G. Keller, Markus Blatter, Axel Meissner, Trixie Wagner, and Sereina Riniker . Kinetic Models of Cyclosporin A in Polar and Apolar Environments Reveal Multiple Congruent Conformational States. Journal of Chemical Information and Modeling 2016, 56 (8) , 1547-1562. https://doi.org/10.1021/acs.jcim.6b00251
    81. Joshua Schwochert, Yongtong Lao, Cameron R. Pye, Matthew R. Naylor, Prashant V. Desai, Isabel C. Gonzalez Valcarcel, Jaclyn A. Barrett, Geri Sawada, Maria-Jesus Blanco, and R. Scott Lokey . Stereochemistry Balances Cell Permeability and Solubility in the Naturally Derived Phepropeptin Cyclic Peptides. ACS Medicinal Chemistry Letters 2016, 7 (8) , 757-761. https://doi.org/10.1021/acsmedchemlett.6b00100
    82. Jennifer L. Hickey, Serge Zaretsky, Megan A. St. Denis, Sai Kumar Chakka, M. Monzur Morshed, Conor C. G. Scully, Andrew L. Roughton, and Andrei K. Yudin . Passive Membrane Permeability of Macrocycles Can Be Controlled by Exocyclic Amide Bonds. Journal of Medicinal Chemistry 2016, 59 (11) , 5368-5376. https://doi.org/10.1021/acs.jmedchem.6b00222
    83. Siegfried S. F. Leung, Daniel Sindhikara, and Matthew P. Jacobson . Simple Predictive Models of Passive Membrane Permeability Incorporating Size-Dependent Membrane-Water Partition. Journal of Chemical Information and Modeling 2016, 56 (5) , 924-929. https://doi.org/10.1021/acs.jcim.6b00005
    84. Hao Geng, Fan Jiang, and Yun-Dong Wu . Accurate Structure Prediction and Conformational Analysis of Cyclic Peptides with Residue-Specific Force Fields. The Journal of Physical Chemistry Letters 2016, 7 (10) , 1805-1810. https://doi.org/10.1021/acs.jpclett.6b00452
    85. Sean M. McHugh, Julia R. Rogers, Hongtao Yu, and Yu-Shan Lin . Insights into How Cyclic Peptides Switch Conformations. Journal of Chemical Theory and Computation 2016, 12 (5) , 2480-2488. https://doi.org/10.1021/acs.jctc.6b00193
    86. Scott E. Allen, Nikolay V. Dokholyan, and Albert A. Bowers . Dynamic Docking of Conformationally Constrained Macrocycles: Methods and Applications. ACS Chemical Biology 2016, 11 (1) , 10-24. https://doi.org/10.1021/acschembio.5b00663
    87. Yi-Hui Peng, Shau-Hua Ueng, Chen-Tso Tseng, Ming-Shiu Hung, Jen-Shin Song, Jian-Sung Wu, Fang-Yu Liao, Yu-Shiou Fan, Mine-Hsine Wu, Wen-Chi Hsiao, Ching-Cheng Hsueh, Shu-Yu Lin, Chia-Yi Cheng, Chih-Hsiang Tu, Lung-Chun Lee, Ming-Fu Cheng, Kak-Shan Shia, Chuan Shih, and Su-Ying Wu . Important Hydrogen Bond Networks in Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitor Design Revealed by Crystal Structures of Imidazoleisoindole Derivatives with IDO1. Journal of Medicinal Chemistry 2016, 59 (1) , 282-293. https://doi.org/10.1021/acs.jmedchem.5b01390
    88. Andrew T. Bockus, Joshua A. Schwochert, Cameron R. Pye, Chad E. Townsend, Vong Sok, Maria A. Bednarek, and R. Scott Lokey . Going Out on a Limb: Delineating The Effects of β-Branching, N-Methylation, and Side Chain Size on the Passive Permeability, Solubility, and Flexibility of Sanguinamide A Analogues. Journal of Medicinal Chemistry 2015, 58 (18) , 7409-7418. https://doi.org/10.1021/acs.jmedchem.5b00919
    89. Joshua Schwochert, Rushia Turner, Melissa Thang, Ray F Berkeley, Alexandra R Ponkey, Kelsie M. Rodriguez, Siegfried S F Leung, Bhagyashree Khunte, Gilles Goetz, Chris Limberakis, Amit S. Kalgutkar, Heather Eng, Michael J. Shapiro, Alan M. Mathiowetz, David A. Price, Spiros Liras, Matthew P. Jacobson, and R. Scott Lokey . Peptide to Peptoid Substitutions Increase Cell Permeability in Cyclic Hexapeptides. Organic Letters 2015, 17 (12) , 2928-2931. https://doi.org/10.1021/acs.orglett.5b01162
    90. Andrew T. Bockus, Katrina W. Lexa, Cameron R. Pye, Amit S. Kalgutkar, Jarret W. Gardner, Kathryn C. R. Hund, William M. Hewitt, Joshua A. Schwochert, Emerson Glassey, David A. Price, Alan M. Mathiowetz, Spiros Liras, Matthew P. Jacobson, and R. Scott Lokey . Probing the Physicochemical Boundaries of Cell Permeability and Oral Bioavailability in Lipophilic Macrocycles Inspired by Natural Products. Journal of Medicinal Chemistry 2015, 58 (11) , 4581-4589. https://doi.org/10.1021/acs.jmedchem.5b00128
    91. Shinae Park and Yong-Uk Kwon . Facile Solid-Phase Parallel Synthesis of Linear and Cyclic Peptoids for Comparative Studies of Biological Activity. ACS Combinatorial Science 2015, 17 (3) , 196-201. https://doi.org/10.1021/co5001647
    92. William M. Hewitt, Siegfried S. F. Leung, Cameron R. Pye, Alexandra R. Ponkey, Maria Bednarek, Matthew P. Jacobson, and R. Scott Lokey . Cell-Permeable Cyclic Peptides from Synthetic Libraries Inspired by Natural Products. Journal of the American Chemical Society 2015, 137 (2) , 715-721. https://doi.org/10.1021/ja508766b
    93. K. Shawn Watts, Pranav Dalal, Andrew J. Tebben, Daniel L. Cheney, and John C. Shelley . Macrocycle Conformational Sampling with MacroModel. Journal of Chemical Information and Modeling 2014, 54 (10) , 2680-2696. https://doi.org/10.1021/ci5001696
    94. Gilles H. Goetz, Laurence Philippe, and Michael J. Shapiro . EPSA: A Novel Supercritical Fluid Chromatography Technique Enabling the Design of Permeable Cyclic Peptides. ACS Medicinal Chemistry Letters 2014, 5 (10) , 1167-1172. https://doi.org/10.1021/ml500239m
    95. Wenlong Lian, Bisheng Jiang, Ziqing Qian, and Dehua Pei . Cell-Permeable Bicyclic Peptide Inhibitors against Intracellular Proteins. Journal of the American Chemical Society 2014, 136 (28) , 9830-9833. https://doi.org/10.1021/ja503710n
    96. Gilles H. Goetz, William Farrell, Marina Shalaeva, Simone Sciabola, Dennis Anderson, Jiangli Yan, Laurence Philippe, and Michael J. Shapiro . High Throughput Method for the Indirect Detection of Intramolecular Hydrogen Bonding. Journal of Medicinal Chemistry 2014, 57 (7) , 2920-2929. https://doi.org/10.1021/jm401859b
    97. Mark T. Oakley and Roy L. Johnston . Energy Landscapes and Global Optimization of Self-Assembling Cyclic Peptides. Journal of Chemical Theory and Computation 2014, 10 (4) , 1810-1816. https://doi.org/10.1021/ct500004k
    98. Xavier Elduque, Enrique Pedroso, and Anna Grandas . Orthogonal Protection of Peptides and Peptoids for Cyclization by the Thiol–Ene Reaction and Conjugation. The Journal of Organic Chemistry 2014, 79 (7) , 2843-2853. https://doi.org/10.1021/jo500427c
    99. Björn Over, Patrick McCarren, Per Artursson, Michael Foley, Fabrizio Giordanetto, Gunnar Grönberg, Constanze Hilgendorf, Maurice D. Lee, IV, Pär Matsson, Giovanni Muncipinto, Mélanie Pellisson, Matthew W. D. Perry, Richard Svensson, Jeremy R. Duvall, and Jan Kihlberg . Impact of Stereospecific Intramolecular Hydrogen Bonding on Cell Permeability and Physicochemical Properties. Journal of Medicinal Chemistry 2014, 57 (6) , 2746-2754. https://doi.org/10.1021/jm500059t
    100. Daniel W. Carney, Karl R. Schmitz, Jonathan V. Truong, Robert T. Sauer, and Jason K. Sello . Restriction of the Conformational Dynamics of the Cyclic Acyldepsipeptide Antibiotics Improves Their Antibacterial Activity. Journal of the American Chemical Society 2014, 136 (5) , 1922-1929. https://doi.org/10.1021/ja410385c
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2006, 128, 43, 14073–14080
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja063076p
    Published October 6, 2006
    Copyright © 2006 American Chemical Society

    Article Views

    6802

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.