ACS Publications. Most Trusted. Most Cited. Most Read
Singlet Fission for Dye-Sensitized Solar Cells:  Can a Suitable Sensitizer Be Found?
My Activity

Figure 1Loading Img
    Article

    Singlet Fission for Dye-Sensitized Solar Cells:  Can a Suitable Sensitizer Be Found?
    Click to copy article linkArticle link copied!

    View Author Information
    Contribution from the Department of Chemistry and Materials Research Center, Northwestern University, Evanston, Illinois 60208, National Renewable Energy Laboratory, Golden, Colorado 80401, and Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309-0215
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2006, 128, 51, 16546–16553
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja063980h
    Published December 8, 2006
    Copyright © 2006 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We discuss possible improvements in the efficiency of dye-sensitized photovoltaic cells using dyes capable of singlet fission into two triplets, thus producing two electron−hole pairs from a single photon. It is pointed out that, in addition to derivatives of large alternant hydrocarbons, those of biradicals are also likely candidates for a favorable ordering of excited-state energy levels, E(T2), E(S1) > 2E(T1). A large number of potentially favorable structures has been examined by the semiempirical Pariser−Parr−Pople method and some also by the time-dependent density functional theory method. Several likely candidates have been identified for experimental examination.

    Copyright © 2006 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Northwestern University.

     National Renewable Energy Laboratory.

    §

     University of Colorado.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    Click to copy section linkSection link copied!

    Energies and optimized geometries of DFT-calculated structures. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 379 publications.

    1. R. K. Kathir, Pedro B. Coto, Michael Thoss. Spin Mixing in Intramolecular Singlet Fission: A First-Principles-Based Quantum Dynamical Study. The Journal of Physical Chemistry Letters 2024, 15 (46) , 11517-11524. https://doi.org/10.1021/acs.jpclett.4c02794
    2. Ramen Patra, Mousumi Das. Designing an Efficient Singlet Fission Material with B−N Substitution in Pyrene: A Model Exact Study. The Journal of Physical Chemistry A 2024, 128 (35) , 7375-7383. https://doi.org/10.1021/acs.jpca.4c03346
    3. Melissa K. Gish, Katherine Snell, Karl J. Thorley, John E. Anthony, Justin C. Johnson. Surface Loading Dictates Triplet Production via Singlet Fission in Anthradithiophene Sensitized TiO2 Films. The Journal of Physical Chemistry C 2024, 128 (33) , 13944-13951. https://doi.org/10.1021/acs.jpcc.4c04284
    4. Phillip M. Greißel, Zachary W. Schroeder, Dominik Thiel, Michael J. Ferguson, Timothy Clark, Dirk M. Guldi, Rik R. Tykwinski. Controlling Interchromophore Coupling in Diamantane-Linked Pentacene Dimers To Create a “Binary” Pair. Journal of the American Chemical Society 2024, 146 (15) , 10875-10888. https://doi.org/10.1021/jacs.4c01507
    5. Ekadashi Pradhan, Tao Zeng. The Lack of Triplet Fusion for an Intramolecular Singlet Fission Chromophore: The Expected, the Unexpected, and a Reconciliation. The Journal of Physical Chemistry Letters 2024, 15 (1) , 43-50. https://doi.org/10.1021/acs.jpclett.3c03238
    6. Anuradha Mohitkar, Renuka H, Sanket Goel, Subbalakshmi Jayanty. Efficient Standalone Flexible Small Molecule Organic Solar Cell Devices: Structure-Performance Relation Among Tetracyanoquinodimethane Derivatives. ACS Omega 2023, 8 (43) , 40836-40847. https://doi.org/10.1021/acsomega.3c05939
    7. Anjay Manian, Francesco Campaioli, Rohan J. Hudson, Jared H. Cole, Timothy W. Schmidt, Igor Lyskov, Trevor A. Smith, Salvy P. Russo. Charge Transfer-Mediated Multi-exciton Mechanisms in Weakly Coupled Perylene Dimers. Chemistry of Materials 2023, 35 (17) , 6889-6908. https://doi.org/10.1021/acs.chemmater.3c01156
    8. Fangkun Wang, Yuxiang Bu. A Ground-State Dual-Descriptor Strategy for Screening Efficient Singlet Fission Systems. The Journal of Physical Chemistry Letters 2023, 14 (32) , 7198-7207. https://doi.org/10.1021/acs.jpclett.3c01554
    9. Vinayak Bhat, Connor P. Callaway, Chad Risko. Computational Approaches for Organic Semiconductors: From Chemical and Physical Understanding to Predicting New Materials. Chemical Reviews 2023, 123 (12) , 7498-7547. https://doi.org/10.1021/acs.chemrev.2c00704
    10. Ekadashi Pradhan, Tao Zeng. Triplet Separation after the Fastest Intramolecular Singlet Fission in the Smallest Chromophore. Journal of Chemical Theory and Computation 2023, 19 (7) , 2092-2101. https://doi.org/10.1021/acs.jctc.3c00096
    11. Takayoshi Tonami, Hajime Miyamoto, Masayoshi Nakano, Ryohei Kishi, Yasutaka Kitagawa. Theoretical Study on Thermal Structural Fluctuation Effects of Intermolecular Configurations on Singlet Fission in Pentacene Crystal Models. The Journal of Physical Chemistry A 2023, 127 (8) , 1883-1893. https://doi.org/10.1021/acs.jpca.2c08864
    12. Ekadashi Pradhan, Tao Zeng. Design of the Smallest Intramolecular Singlet Fission Chromophore with the Fastest Singlet Fission. The Journal of Physical Chemistry Letters 2022, 13 (48) , 11076-11085. https://doi.org/10.1021/acs.jpclett.2c03131
    13. Shantao Sun, Felisa S. Conrad-Burton, Yufeng Liu, Fay Ng, Michael Steigerwald, Xiaoyang Zhu, Colin Nuckolls. Inducing Singlet Fission in Perylene Thin Films by Molecular Contortion. The Journal of Physical Chemistry A 2022, 126 (42) , 7559-7565. https://doi.org/10.1021/acs.jpca.2c02522
    14. Yan Zhang, Chen-Hui Qi, Nami Yamano, Peng Wang, Long-Jiang Yu, Zheng-Yu Wang-Otomo, Jian-Ping Zhang. Carotenoid Single-Molecular Singlet Fission and the Photoprotection of a Bacteriochlorophyll b-Type Core Light-Harvesting Antenna. The Journal of Physical Chemistry Letters 2022, 13 (16) , 3534-3541. https://doi.org/10.1021/acs.jpclett.2c00519
    15. Aaditya Manjanath, Chou-Hsun Yang, Karl Kue, Chun-I Wang, Gil C. Claudio, Chao-Ping Hsu. Enhancing Singlet Fission Coupling with Nonbonding Orbitals. Journal of Chemical Theory and Computation 2022, 18 (2) , 1017-1029. https://doi.org/10.1021/acs.jctc.1c00868
    16. Marcos Casanova-Páez, Lars Goerigk. Time-Dependent Long-Range-Corrected Double-Hybrid Density Functionals with Spin-Component and Spin-Opposite Scaling: A Comprehensive Analysis of Singlet–Singlet and Singlet–Triplet Excitation Energies. Journal of Chemical Theory and Computation 2021, 17 (8) , 5165-5186. https://doi.org/10.1021/acs.jctc.1c00535
    17. Masaya Kanoh, Yasunori Matsui, Kiyomasa Honda, Yuto Kokita, Takuya Ogaki, Eisuke Ohta, Hiroshi Ikeda. Elongation of Triplet Lifetime Caused by Intramolecular Energy Hopping in Diphenylanthracene Dyads Oriented to Undergo Efficient Triplet–Triplet Annihilation Upconversion. The Journal of Physical Chemistry B 2021, 125 (18) , 4831-4837. https://doi.org/10.1021/acs.jpcb.1c01982
    18. J. Terence Blaskovits, Maria Fumanal, Sergi Vela, Raimon Fabregat, Clémence Corminboeuf. Identifying the Trade-off between Intramolecular Singlet Fission Requirements in Donor–Acceptor Copolymers. Chemistry of Materials 2021, 33 (7) , 2567-2575. https://doi.org/10.1021/acs.chemmater.1c00057
    19. Piermaria Pinter, Dominik Munz. Controlling Möbius-Type Helicity and the Excited-State Properties of Cumulenes with Carbenes. The Journal of Physical Chemistry A 2020, 124 (49) , 10100-10110. https://doi.org/10.1021/acs.jpca.0c07940
    20. Soo Wan Park, Joong Hwan Yang, Hyongjong Choi, Young Min Rhee, Dongwook Kim. Effect of Perturbative Vibronic Correction for Weak Fluorescence in Thermally Activated Delayed Fluorescence Systems. The Journal of Physical Chemistry A 2020, 124 (49) , 10384-10392. https://doi.org/10.1021/acs.jpca.0c09439
    21. Xingyu Liu, Rithwik Tom, Siyu Gao, Noa Marom. Assessing Zethrene Derivatives as Singlet Fission Candidates Based on Multiple Descriptors. The Journal of Physical Chemistry C 2020, 124 (48) , 26134-26143. https://doi.org/10.1021/acs.jpcc.0c08160
    22. Ryan D. Ribson, Gyeongshin Choi, Ryan G. Hadt, Theodor Agapie. Controlling Singlet Fission with Coordination Chemistry-Induced Assembly of Dipyridyl Pyrrole Bipentacenes. ACS Central Science 2020, 6 (11) , 2088-2096. https://doi.org/10.1021/acscentsci.0c01044
    23. Kajari Bera, Siu Yi Kwang, Renee R. Frontiera. Advances in Singlet Fission Chromophore Design Enabled by Vibrational Spectroscopies. The Journal of Physical Chemistry C 2020, 124 (46) , 25163-25174. https://doi.org/10.1021/acs.jpcc.0c06725
    24. Ekadashi Pradhan, Seunghoon Lee, Cheol Ho Choi, Tao Zeng. Diboron- and Diaza-Doped Anthracenes and Phenanthrenes: Their Electronic Structures for Being Singlet Fission Chromophores. The Journal of Physical Chemistry A 2020, 124 (40) , 8159-8172. https://doi.org/10.1021/acs.jpca.0c06915
    25. Nikolaus Wollscheid, Benjamin Günther, Vaishnavi J. Rao, Felix J. Berger, J. Luis Pérez Lustres, Marcus Motzkus, Jana Zaumseil, Lutz H. Gade, Sebastian Höfener, Tiago Buckup. Ultrafast Singlet Fission and Intersystem Crossing in Halogenated Tetraazaperopyrenes. The Journal of Physical Chemistry A 2020, 124 (39) , 7857-7868. https://doi.org/10.1021/acs.jpca.0c04852
    26. Elin Sundin, Rasmus Ringström, Fredrik Johansson, Betül Küçüköz, Andreas Ekebergh, Victor Gray, Bo Albinsson, Jerker Mårtensson, Maria Abrahamsson. Singlet Fission and Electron Injection from the Triplet Excited State in Diphenylisobenzofuran–Semiconductor Assemblies: Effects of Solvent Polarity and Driving Force. The Journal of Physical Chemistry C 2020, 124 (38) , 20794-20805. https://doi.org/10.1021/acs.jpcc.0c06626
    27. Kenji Okada, Masayoshi Nakano, Hajime Miyamoto, Hironobu Nakazawa, Yuta Uetake, Hidehiro Sakurai. Theoretical Study on Singlet Fission Dynamics in Sumanene-Fused Acene Dimers. The Journal of Physical Chemistry C 2020, 124 (36) , 19499-19507. https://doi.org/10.1021/acs.jpcc.0c06215
    28. Takanori Nagami, Hajime Miyamoto, Wataru Yoshida, Kenji Okada, Takayoshi Tonami, Masayoshi Nakano. Theoretical Molecular Design of Phenanthrenes for Singlet Fission by Diazadibora-Substitution. The Journal of Physical Chemistry A 2020, 124 (34) , 6778-6789. https://doi.org/10.1021/acs.jpca.0c05359
    29. Anna-Katharina Hansmann, Robert Berger. Variation of the Fine-Structure Constant in Model Systems for Singlet Fission. The Journal of Physical Chemistry A 2020, 124 (33) , 6682-6687. https://doi.org/10.1021/acs.jpca.0c04685
    30. J. Terence Blaskovits, Maria Fumanal, Sergi Vela, Clémence Corminboeuf. Designing Singlet Fission Candidates from Donor–Acceptor Copolymers. Chemistry of Materials 2020, 32 (15) , 6515-6524. https://doi.org/10.1021/acs.chemmater.0c01784
    31. Qing Li, Yu-He Kan, Hong-Liang Xu, Zhong-Min Su. Hydrogen Migration-Triggered Diradicaloid Singlet-Fission Switch. Journal of the American Chemical Society 2020, 142 (27) , 11791-11803. https://doi.org/10.1021/jacs.0c02778
    32. Li Shen, Jitao Lu, Heyuan Liu, Qingguo Meng, Xiyou Li. Evaluation of Fused Aromatic-Substituted Diketopyrrolopyrrole Derivatives for Singlet Fission Sensitizers. The Journal of Physical Chemistry A 2020, 124 (26) , 5331-5340. https://doi.org/10.1021/acs.jpca.0c02248
    33. Takanori Nagami, Kenji Okada, Hajime Miyamoto, Wataru Yoshida, Takayoshi Tonami, Masayoshi Nakano. Molecular Design Principle for Efficient Singlet Fission Based on Diradical Characters and Exchange Integrals: Multiple Heteroatom Substitution Effect on Anthracenes. The Journal of Physical Chemistry C 2020, 124 (22) , 11800-11809. https://doi.org/10.1021/acs.jpcc.0c02369
    34. Yongseok Hong, Juno Kim, Woojae Kim, Christina Kaufmann, Hyungjun Kim, Frank Würthner, Dongho Kim. Efficient Multiexciton State Generation in Charge-Transfer-Coupled Perylene Bisimide Dimers via Structural Control. Journal of the American Chemical Society 2020, 142 (17) , 7845-7857. https://doi.org/10.1021/jacs.0c00870
    35. Ouissam El Bakouri, Joshua R. Smith, Henrik Ottosson. Strategies for Design of Potential Singlet Fission Chromophores Utilizing a Combination of Ground-State and Excited-State Aromaticity Rules. Journal of the American Chemical Society 2020, 142 (12) , 5602-5617. https://doi.org/10.1021/jacs.9b12435
    36. Jin Wen, Michał Turowski, Paul I. Dron, Jakub Chalupský, Robin Grotjahn, Toni M. Maier, Steven M. Fatur, Zdeněk Havlas, Justin C. Johnson, Martin Kaupp, Josef Michl. Electronic States of 2,3-Diamino-1,4-naphthoquinone and Its N-Alkylated Derivatives. The Journal of Physical Chemistry C 2020, 124 (1) , 60-69. https://doi.org/10.1021/acs.jpcc.9b08955
    37. Thijs Stuyver, Bo Chen, Tao Zeng, Paul Geerlings, Frank De Proft, Roald Hoffmann. Do Diradicals Behave Like Radicals?. Chemical Reviews 2019, 119 (21) , 11291-11351. https://doi.org/10.1021/acs.chemrev.9b00260
    38. J. Wayne Mullinax, Elvis Maradzike, Lauren N. Koulias, Mohammad Mostafanejad, Evgeny Epifanovsky, Gergely Gidofalvi, A. Eugene DePrince, III. Heterogeneous CPU + GPU Algorithm for Variational Two-Electron Reduced-Density Matrix-Driven Complete Active-Space Self-Consistent Field Theory. Journal of Chemical Theory and Computation 2019, 15 (11) , 6164-6178. https://doi.org/10.1021/acs.jctc.9b00768
    39. Alexandr Zaykov, Petr Felkel, Eric A. Buchanan, Milena Jovanovic, Remco W. A. Havenith, R. K. Kathir, Ria Broer, Zdeněk Havlas, Josef Michl. Singlet Fission Rate: Optimized Packing of a Molecular Pair. Ethylene as a Model. Journal of the American Chemical Society 2019, 141 (44) , 17729-17743. https://doi.org/10.1021/jacs.9b08173
    40. Kealan J. Fallon, Peter Budden, Enrico Salvadori, Alex M. Ganose, Christopher N. Savory, Lissa Eyre, Simon Dowland, Qianxiang Ai, Stephen Goodlett, Chad Risko, David O. Scanlon, Christopher W. M. Kay, Akshay Rao, Richard H. Friend, Andrew J. Musser, Hugo Bronstein. Exploiting Excited-State Aromaticity To Design Highly Stable Singlet Fission Materials. Journal of the American Chemical Society 2019, 141 (35) , 13867-13876. https://doi.org/10.1021/jacs.9b06346
    41. Kalishankar Bhattacharyya, Ayan Datta. Computationally Driven Design Principles for Singlet Fission in Organic Chromophores. The Journal of Physical Chemistry C 2019, 123 (32) , 19257-19268. https://doi.org/10.1021/acs.jpcc.8b11039
    42. Kenji Okada, Takayoshi Tonami, Takanori Nagami, Masayoshi Nakano. Breakdown of the Perturbative Approach to Molecular Packing Dependence of Singlet Fission Rates in Pentacene Dimer Models: A Systematic Comparison with the Quantum Master Equation Approach. The Journal of Physical Chemistry C 2019, 123 (25) , 15403-15411. https://doi.org/10.1021/acs.jpcc.9b01713
    43. Yongze Yu, Szu-Chia Chien, Jiaonan Sun, Elline C. Hettiaratchy, Roberto C. Myers, Li-Chiang Lin, Yiying Wu. Excimer-Mediated Intermolecular Charge Transfer in Self-Assembled Donor–Acceptor Dyes on Metal Oxides. Journal of the American Chemical Society 2019, 141 (22) , 8727-8731. https://doi.org/10.1021/jacs.9b03729
    44. Hung-Hsuan Lin, Karl Y. Kue, Gil C. Claudio, Chao-Ping Hsu. First Principle Prediction of Intramolecular Singlet Fission and Triplet Triplet Annihilation Rates. Journal of Chemical Theory and Computation 2019, 15 (4) , 2246-2253. https://doi.org/10.1021/acs.jctc.8b01185
    45. Timothy J. H. Hele, Eric G. Fuemmeler, Samuel N. Sanders, Elango Kumarasamy, Matthew Y. Sfeir, Luis M. Campos, Nandini Ananth. Anticipating Acene-Based Chromophore Spectra with Molecular Orbital Arguments. The Journal of Physical Chemistry A 2019, 123 (13) , 2527-2536. https://doi.org/10.1021/acs.jpca.8b12222
    46. Shuming Bai, Mario Barbatti. Mechanism of Spin-Exchange Internal Conversion: Practical Proxies for Diabatic and Nonadiabatic Couplings. Journal of Chemical Theory and Computation 2019, 15 (3) , 1503-1513. https://doi.org/10.1021/acs.jctc.8b00923
    47. Melissa K. Gish, Natalie A. Pace, Garry Rumbles, Justin C. Johnson. Emerging Design Principles for Enhanced Solar Energy Utilization with Singlet Fission. The Journal of Physical Chemistry C 2019, 123 (7) , 3923-3934. https://doi.org/10.1021/acs.jpcc.8b10876
    48. K. C. Krishnapriya, Andrew J. Musser, Satish Patil. Molecular Design Strategies for Efficient Intramolecular Singlet Exciton Fission. ACS Energy Letters 2019, 4 (1) , 192-202. https://doi.org/10.1021/acsenergylett.8b01833
    49. Mohammad Mostafanejad, A. Eugene DePrince, III. Combining Pair-Density Functional Theory and Variational Two-Electron Reduced-Density Matrix Methods. Journal of Chemical Theory and Computation 2019, 15 (1) , 290-302. https://doi.org/10.1021/acs.jctc.8b00988
    50. Tanmay Banerjee, Sean P. Hill, M. Alejandra Hermosilla-Palacios, Brandon D. Piercy, Jess Haney, Bryan Casale, A. Eugene DePrince, III, Mark D. Losego, Valeria D. Kleiman, Kenneth Hanson. Diphenylisobenzofuran Bound to Nanocrystalline Metal Oxides: Excimer Formation, Singlet Fission, Electron Injection, and Low Energy Sensitization. The Journal of Physical Chemistry C 2018, 122 (50) , 28478-28490. https://doi.org/10.1021/acs.jpcc.8b08599
    51. Jeffrey B. Schriber, Kevin P. Hannon, Chenyang Li, Francesco A. Evangelista. A Combined Selected Configuration Interaction and Many-Body Treatment of Static and Dynamical Correlation in Oligoacenes. Journal of Chemical Theory and Computation 2018, 14 (12) , 6295-6305. https://doi.org/10.1021/acs.jctc.8b00877
    52. Marwa H. Farag, Anna I. Krylov. Singlet Fission in Perylenediimide Dimers. The Journal of Physical Chemistry C 2018, 122 (45) , 25753-25763. https://doi.org/10.1021/acs.jpcc.8b05309
    53. Tong Zhu, Libai Huang. Exciton Transport in Singlet Fission Materials: A New Hare and Tortoise Story. The Journal of Physical Chemistry Letters 2018, 9 (22) , 6502-6510. https://doi.org/10.1021/acs.jpclett.8b02181
    54. David Casanova. Theoretical Modeling of Singlet Fission. Chemical Reviews 2018, 118 (15) , 7164-7207. https://doi.org/10.1021/acs.chemrev.7b00601
    55. Tao Zeng, Soren K. Mellerup, Dengtao Yang, Xiang Wang, Suning Wang, Kevin Stamplecoskie. Identifying (BN)2-pyrenes as a New Class of Singlet Fission Chromophores: Significance of Azaborine Substitution. The Journal of Physical Chemistry Letters 2018, 9 (11) , 2919-2927. https://doi.org/10.1021/acs.jpclett.8b01226
    56. A. Saaidia, M. A. Saidani, E. Hleli, S. Alam, C. Ulbricht, S. Romdhane, A. Ben Fredj, C. Kästner, D. A. M. Egbe, U. S. Schubert, H. Bouchriha, and H. Hoppe . Temperature-Tuning of Optical Properties and Molecular Aggregation in AnE-PVstat Copolymer Solution. The Journal of Physical Chemistry C 2018, 122 (7) , 3965-3969. https://doi.org/10.1021/acs.jpcc.7b10709
    57. Aaron K. Le, Jon A. Bender, Dylan H. Arias, Daniel E. Cotton, Justin C. Johnson, and Sean T. Roberts . Singlet Fission Involves an Interplay between Energetic Driving Force and Electronic Coupling in Perylenediimide Films. Journal of the American Chemical Society 2018, 140 (2) , 814-826. https://doi.org/10.1021/jacs.7b11888
    58. Paul I. Dron, Josef Michl, and Justin C. Johnson . Singlet Fission and Excimer Formation in Disordered Solids of Alkyl-Substituted 1,3-Diphenylisobenzofurans. The Journal of Physical Chemistry A 2017, 121 (45) , 8596-8603. https://doi.org/10.1021/acs.jpca.7b07362
    59. Eric A. Buchanan and Josef Michl . Packing Guidelines for Optimizing Singlet Fission Matrix Elements in Noncovalent Dimers. Journal of the American Chemical Society 2017, 139 (44) , 15572-15575. https://doi.org/10.1021/jacs.7b07963
    60. Jie Yu, Li-Min Fu, Long-Jiang Yu, Ying Shi, Peng Wang, Zheng-Yu Wang-Otomo, and Jian-Ping Zhang . Carotenoid Singlet Fission Reactions in Bacterial Light Harvesting Complexes As Revealed by Triplet Excitation Profiles. Journal of the American Chemical Society 2017, 139 (44) , 15984-15993. https://doi.org/10.1021/jacs.7b09809
    61. Takanori Nagami, Soichi Ito, Takashi Kubo, and Masayoshi Nakano . Intermolecular Packing Effects on Singlet Fission in Oligorylene Dimers. ACS Omega 2017, 2 (8) , 5095-5103. https://doi.org/10.1021/acsomega.7b00655
    62. Junjing Gu, Wei Wu, David Danovich, Roald Hoffmann, Yuta Tsuji, and Sason Shaik . Valence Bond Theory Reveals Hidden Delocalized Diradical Character of Polyenes. Journal of the American Chemical Society 2017, 139 (27) , 9302-9316. https://doi.org/10.1021/jacs.7b04410
    63. Justin E. Elenewski, Ulyana S. Cubeta, Edward Ko, and Hanning Chen . Computer Simulation of Singlet Fission in Single Crystalline Pentacene by Functional Mode Vibronic Theory. The Journal of Physical Chemistry C 2017, 121 (21) , 11159-11165. https://doi.org/10.1021/acs.jpcc.7b03107
    64. Justin E. Elenewski, Ulyana S. Cubeta, Edward Ko, and Hanning Chen . Functional Mode Singlet Fission Theory. The Journal of Physical Chemistry C 2017, 121 (8) , 4130-4138. https://doi.org/10.1021/acs.jpcc.6b11722
    65. Sangsu Lee, Daesub Hwang, Seok Il Jung, and Dongho Kim . Electron Transfer from Triplet State of TIPS-Pentacene Generated by Singlet Fission Processes to CH3NH3PbI3 Perovskite. The Journal of Physical Chemistry Letters 2017, 8 (4) , 884-888. https://doi.org/10.1021/acs.jpclett.7b00072
    66. Kalishankar Bhattacharyya and Ayan Datta . Polymorphism Controlled Singlet Fission in TIPS-Anthracene: Role of Stacking Orientation. The Journal of Physical Chemistry C 2017, 121 (3) , 1412-1420. https://doi.org/10.1021/acs.jpcc.6b10075
    67. Jingjing Zhang, Nicholas R. Myllenbeck, and Trisha L. Andrew . Synthesis and Properties of Dithiocarbamate-Linked Acenes. Organic Letters 2017, 19 (1) , 210-213. https://doi.org/10.1021/acs.orglett.6b03492
    68. Tomoaki Yago, Kei Ishikawa, Ryuzi Katoh, and Masanobu Wakasa . Magnetic Field Effects on Triplet Pair Generated by Singlet Fission in an Organic Crystal: Application of Radical Pair Model to Triplet Pair. The Journal of Physical Chemistry C 2016, 120 (49) , 27858-27870. https://doi.org/10.1021/acs.jpcc.6b09570
    69. Tao Zeng . Through-Linker Intramolecular Singlet Fission: General Mechanism and Designing Small Chromophores. The Journal of Physical Chemistry Letters 2016, 7 (21) , 4405-4412. https://doi.org/10.1021/acs.jpclett.6b02131
    70. Matthew C. Beard, Jeffrey L. Blackburn, Justin C. Johnson, and Garry Rumbles . Status and Prognosis of Future-Generation Photoconversion to Photovoltaics and Solar Fuels. ACS Energy Letters 2016, 1 (2) , 344-347. https://doi.org/10.1021/acsenergylett.6b00204
    71. Joel N. Schrauben, Akin Akdag, Jin Wen, Zdenek Havlas, Joseph L. Ryerson, Millie B. Smith, Josef Michl, and Justin C. Johnson . Excitation Localization/Delocalization Isomerism in a Strongly Coupled Covalent Dimer of 1,3-Diphenylisobenzofuran. The Journal of Physical Chemistry A 2016, 120 (20) , 3473-3483. https://doi.org/10.1021/acs.jpca.6b00826
    72. Kalaivanan Nagarajan, Ajith R. Mallia, V. Sivaranjana Reddy, and Mahesh Hariharan . Access to Triplet Excited State in Core-Twisted Perylenediimide. The Journal of Physical Chemistry C 2016, 120 (16) , 8443-8450. https://doi.org/10.1021/acs.jpcc.6b00755
    73. Sougata Pal, Dhara J. Trivedi, Alexey V. Akimov, Bálint Aradi, Thomas Frauenheim, and Oleg V. Prezhdo . Nonadiabatic Molecular Dynamics for Thousand Atom Systems: A Tight-Binding Approach toward PYXAID. Journal of Chemical Theory and Computation 2016, 12 (4) , 1436-1448. https://doi.org/10.1021/acs.jctc.5b01231
    74. Patrick E. Hartnett, Eric A. Margulies, Catherine M. Mauck, Stephen A. Miller, Yilei Wu, Yi-Lin Wu, Tobin J. Marks, and Michael R. Wasielewski . Effects of Crystal Morphology on Singlet Exciton Fission in Diketopyrrolopyrrole Thin Films. The Journal of Physical Chemistry B 2016, 120 (7) , 1357-1366. https://doi.org/10.1021/acs.jpcb.5b10565
    75. Jie Zheng, Yu Xie, Shengshi Jiang, and Zhenggang Lan . Ultrafast Nonadiabatic Dynamics of Singlet Fission: Quantum Dynamics with the Multilayer Multiconfigurational Time-Dependent Hartree (ML-MCTDH) Method. The Journal of Physical Chemistry C 2016, 120 (3) , 1375-1389. https://doi.org/10.1021/acs.jpcc.5b09921
    76. Alan D. Chien, Andrew R. Molina, Neranga Abeyasinghe, Oleg P. Varnavski, Theodore Goodson, III, and Paul M. Zimmerman . Structure and Dynamics of the 1(TT) State in a Quinoidal Bithiophene: Characterizing a Promising Intramolecular Singlet Fission Candidate. The Journal of Physical Chemistry C 2015, 119 (51) , 28258-28268. https://doi.org/10.1021/acs.jpcc.5b07786
    77. Kalishankar Bhattacharyya, Saied Md Pratik, and Ayan Datta . Small Organic Molecules for Efficient Singlet Fission: Role of Silicon Substitution. The Journal of Physical Chemistry C 2015, 119 (46) , 25696-25702. https://doi.org/10.1021/acs.jpcc.5b06960
    78. Masanobu Wakasa, Mana Kaise, Tomoaki Yago, Ryuzi Katoh, Yusuke Wakikawa, and Tadaaki Ikoma . What Can Be Learned from Magnetic Field Effects on Singlet Fission: Role of Exchange Interaction in Excited Triplet Pairs. The Journal of Physical Chemistry C 2015, 119 (46) , 25840-25844. https://doi.org/10.1021/acs.jpcc.5b10176
    79. Jonathan Z. Low, Samuel N. Sanders, and Luis M. Campos . Correlating Structure and Function in Organic Electronics: From Single Molecule Transport to Singlet Fission. Chemistry of Materials 2015, 27 (16) , 5453-5463. https://doi.org/10.1021/cm502366x
    80. Murad J. Y. Tayebjee, Dane R. McCamey, and Timothy W. Schmidt . Beyond Shockley–Queisser: Molecular Approaches to High-Efficiency Photovoltaics. The Journal of Physical Chemistry Letters 2015, 6 (12) , 2367-2378. https://doi.org/10.1021/acs.jpclett.5b00716
    81. Jiaxing Lin, D. Balamurugan, Peng Zhang, Spiros S. Skourtis, and David N. Beratan . Two-Electron Transfer Pathways. The Journal of Physical Chemistry B 2015, 119 (24) , 7589-7597. https://doi.org/10.1021/jp511429z
    82. David Casanova . Bright Fission: Singlet Fission into a Pair of Emitting States. Journal of Chemical Theory and Computation 2015, 11 (6) , 2642-2650. https://doi.org/10.1021/acs.jctc.5b00144
    83. Dongwook Kim . Effects of Intermolecular Interactions on the Singlet–Triplet Energy Difference: A Theoretical Study of the Formation of Excimers in Acene Molecules. The Journal of Physical Chemistry C 2015, 119 (22) , 12690-12697. https://doi.org/10.1021/acs.jpcc.5b02021
    84. Ryan D. Pensack, Andrew J. Tilley, Sean R. Parkin, Tia S. Lee, Marcia M. Payne, Dong Gao, Ashlee A. Jahnke, Daniel G. Oblinsky, Peng-Fei Li, John E. Anthony, Dwight S. Seferos, and Gregory D. Scholes . Exciton Delocalization Drives Rapid Singlet Fission in Nanoparticles of Acene Derivatives. Journal of the American Chemical Society 2015, 137 (21) , 6790-6803. https://doi.org/10.1021/ja512668r
    85. Chou-Hsun Yang and Chao-Ping Hsu . First-Principle Characterization for Singlet Fission Couplings. The Journal of Physical Chemistry Letters 2015, 6 (10) , 1925-1929. https://doi.org/10.1021/acs.jpclett.5b00437
    86. Samuel W. Eaton, Stephen A. Miller, Eric A. Margulies, Leah E. Shoer, Richard D. Schaller, and Michael R. Wasielewski . Singlet Exciton Fission in Thin Films of tert-Butyl-Substituted Terrylenes. The Journal of Physical Chemistry A 2015, 119 (18) , 4151-4161. https://doi.org/10.1021/acs.jpca.5b02719
    87. Oleg Varnavski, Neranga Abeyasinghe, Juan Aragó, Juan J. Serrano-Pérez, Enrique Ortí, Juan T. López Navarrete, Kazuo Takimiya, David Casanova, Juan Casado, and Theodore Goodson, III . High Yield Ultrafast Intramolecular Singlet Exciton Fission in a Quinoidal Bithiophene. The Journal of Physical Chemistry Letters 2015, 6 (8) , 1375-1384. https://doi.org/10.1021/acs.jpclett.5b00198
    88. Steven E. Strong and Joel D. Eaves . Tetracene Aggregation on Polar and Nonpolar Surfaces: Implications for Singlet Fission. The Journal of Physical Chemistry Letters 2015, 6 (7) , 1209-1215. https://doi.org/10.1021/acs.jpclett.5b00141
    89. Nicolas Renaud and Ferdinand C. Grozema . Intermolecular Vibrational Modes Speed Up Singlet Fission in Perylenediimide Crystals. The Journal of Physical Chemistry Letters 2015, 6 (3) , 360-365. https://doi.org/10.1021/jz5023575
    90. Joel N. Schrauben, Yixin Zhao, Candy Mercado, Paul I. Dron, Joseph L. Ryerson, Josef Michl, Kai Zhu, and Justin C. Johnson . Photocurrent Enhanced by Singlet Fission in a Dye-Sensitized Solar Cell. ACS Applied Materials & Interfaces 2015, 7 (4) , 2286-2293. https://doi.org/10.1021/am506329v
    91. M. Tuan Trinh, Yu Zhong, Qishui Chen, Theanne Schiros, Steffen Jockusch, Matthew Y. Sfeir, Michael Steigerwald, Colin Nuckolls, and Xiaoyang Zhu . Intra- to Intermolecular Singlet Fission. The Journal of Physical Chemistry C 2015, 119 (3) , 1312-1319. https://doi.org/10.1021/jp512650g
    92. Jin Wen, Zdenĕk Havlas, and Josef Michl . Captodatively Stabilized Biradicaloids as Chromophores for Singlet Fission. Journal of the American Chemical Society 2015, 137 (1) , 165-172. https://doi.org/10.1021/ja5070476
    93. Pedro B. Coto, Sahar Sharifzadeh, Jeffrey B. Neaton, and Michael Thoss . Low-Lying Electronic Excited States of Pentacene Oligomers: A Comparative Electronic Structure Study in the Context of Singlet Fission. Journal of Chemical Theory and Computation 2015, 11 (1) , 147-156. https://doi.org/10.1021/ct500510k
    94. Soichi Ito and Masayoshi Nakano . Theoretical Molecular Design of Heteroacenes for Singlet Fission: Tuning the Diradical Character by Modifying π-Conjugation Length and Aromaticity. The Journal of Physical Chemistry C 2015, 119 (1) , 148-157. https://doi.org/10.1021/jp5103737
    95. Akin Akdag, Abdul Wahab, Pavel Beran, Lubomír Rulíšek, Paul I. Dron, Jiří Ludvík, and Josef Michl . Covalent Dimers of 1,3-Diphenylisobenzofuran for Singlet Fission: Synthesis and Electrochemistry. The Journal of Organic Chemistry 2015, 80 (1) , 80-89. https://doi.org/10.1021/jo502004r
    96. Bo Zhang, Chunfeng Zhang, Rui Wang, Zhanao Tan, Yunlong Liu, Wei Guo, Xiaoling Zhai, Yi Cao, Xiaoyong Wang, and Min Xiao . Nonlinear Density Dependence of Singlet Fission Rate in Tetracene Films. The Journal of Physical Chemistry Letters 2014, 5 (20) , 3462-3467. https://doi.org/10.1021/jz501736y
    97. Tao Zeng, Nandini Ananth, and Roald Hoffmann . Seeking Small Molecules for Singlet Fission: A Heteroatom Substitution Strategy. Journal of the American Chemical Society 2014, 136 (36) , 12638-12647. https://doi.org/10.1021/ja505275m
    98. Yuhan Chen, Li Shen, and Xiyou Li . Effects of Heteroatoms of Tetracene and Pentacene Derivatives on Their Stability and Singlet Fission. The Journal of Physical Chemistry A 2014, 118 (30) , 5700-5708. https://doi.org/10.1021/jp503114b
    99. Fatemeh Mirjani, Nicolas Renaud, Natalie Gorczak, and Ferdinand C. Grozema . Theoretical Investigation of Singlet Fission in Molecular Dimers: The Role of Charge Transfer States and Quantum Interference. The Journal of Physical Chemistry C 2014, 118 (26) , 14192-14199. https://doi.org/10.1021/jp503398a
    100. Geoffrey B. Piland, Jonathan J. Burdett, Robert J. Dillon, and Christopher J. Bardeen . Singlet Fission: From Coherences to Kinetics. The Journal of Physical Chemistry Letters 2014, 5 (13) , 2312-2319. https://doi.org/10.1021/jz500676c
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2006, 128, 51, 16546–16553
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja063980h
    Published December 8, 2006
    Copyright © 2006 American Chemical Society

    Article Views

    7034

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.