Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Singlet Oxygen Photogeneration at Surface Modified Titanium Dioxide

View Author Information
Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
Cite this: J. Am. Chem. Soc. 2006, 128, 49, 15574–15575
Publication Date (Web):November 16, 2006
https://doi.org/10.1021/ja065970m
Copyright © 2006 American Chemical Society

    Article Views

    2916

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Substitution of surface −OH groups of TiO2 may influence competition between photoinduced energy and electron-transfer processes and lead to improved singlet oxygen generation. In contrast to neat TiO2, surface modified titanium dioxide can photocatalyze degradation of a very stable substance, cyanuric acid. Presented results are in contradiction to usually accepted hypothesis of the mechanism of cyanuric acid photodegradation in the presence of fluorinated TiO2 (F−TiO2) in which “bulk” hydroxyl radicals play a key role. It seems plausible that the difference of activity observed for TiO2 and F−TiO2 is not related to various types of generated hydroxyl radicals, but rather to competition between electron-transfer processes (formation of radicals) and energy-transfer processes (formation of singlet oxygen).

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Cited By

    This article is cited by 185 publications.

    1. Lixia Ma, Yaping Gao, Baoqiang Wei, Luo Huang, Nan Zhang, Qiang Weng, Lu Zhang, Shengzhong Frank Liu, Ruibin Jiang. Visible-Light Photocatalytic H2O2 Production Boosted by Frustrated Lewis Pairs in Defected Polymeric Carbon Nitride Nanosheets. ACS Catalysis 2024, 14 (4) , 2775-2786. https://doi.org/10.1021/acscatal.3c05360
    2. Xiao Xu, Yaya Cui, Ting Chen, Kai Jiang, Jian Wang, Yao Xiao, Xianglong Yang, Junjiang Zhu, Hao Chen, Xing Ding. Dual-Site Synergetic Photochemical Activation of Chlorinated Phenols Triggered by Surface Hydroxyls of Photocatalysts under Visible Light. ACS Catalysis 2023, 13 (7) , 4700-4710. https://doi.org/10.1021/acscatal.3c00189
    3. Juhyeon Park, Hong Tang, Peng Zhang. Differentiation of Superoxide Radical Anion and Singlet Oxygen and Their Concurrent Quantifications by Nuclear Magnetic Resonance. Analytical Chemistry 2023, 95 (12) , 5293-5299. https://doi.org/10.1021/acs.analchem.2c05312
    4. Xiaogang Liu, Wenjie Chen, Wei Wang. F– Serve as Surface Trapping Sites to Promote the Charge Separation and Transfer of TiO2. ACS Omega 2021, 6 (51) , 35799-35809. https://doi.org/10.1021/acsomega.1c05891
    5. Gagandeep Kaur Dhiraj Sud . Metal−Organic Frameworks for Light-Driven Photocatalysis of Synthetic Dyes. , 217-247. https://doi.org/10.1021/bk-2021-1395.ch009
    6. Sushant Bajpai, Saurabh Kr Tiwary, Muskan Sonker, Ayush Joshi, Vishwas Gupta, Yogendra Kumar, Nehil Shreyash, Susham Biswas. Recent Advances in Nanoparticle-Based Cancer Treatment: A Review. ACS Applied Nano Materials 2021, 4 (7) , 6441-6470. https://doi.org/10.1021/acsanm.1c00779
    7. Nidhal Fessi, Mohamed Faouzi Nsib, Yves Chevalier, Chantal Guillard, Frédéric Dappozze, Ammar Houas, Leonardo Palmisano, Francesco Parrino. Pickering Emulsions of Fluorinated TiO2: A New Route for Intensification of Photocatalytic Degradation of Nitrobenzene. Langmuir 2020, 36 (45) , 13545-13554. https://doi.org/10.1021/acs.langmuir.0c02285
    8. Miyeon Kim, Jung Suk Oh, Byung Hoon Kim, A. Yeong Kim, Kyoung Chul Park, Junyoung Mun, Gajendra Gupta, Chang Yeon Lee. Enhanced Photocatalytic Performance of Nanosized Mixed-Ligand Metal–Organic Frameworks through Sequential Energy and Electron Transfer Process. Inorganic Chemistry 2020, 59 (17) , 12947-12953. https://doi.org/10.1021/acs.inorgchem.0c02079
    9. Guangfei Yu, Yuxian Wang, Hongbin Cao, He Zhao, Yongbing Xie. Reactive Oxygen Species and Catalytic Active Sites in Heterogeneous Catalytic Ozonation for Water Purification. Environmental Science & Technology 2020, 54 (10) , 5931-5946. https://doi.org/10.1021/acs.est.0c00575
    10. Yoshio Nosaka, Atsuko Y. Nosaka. Comment on “Singlet Oxygen 1O2 in Photocatalysis on TiO2. Where Does It Come from?”. The Journal of Physical Chemistry C 2019, 123 (45) , 27993-27995. https://doi.org/10.1021/acs.jpcc.9b08464
    11. Alexander V. Demyanenko, Alexandr S. Bogomolov, Nikolay V. Dozmorov, Alexandra I. Svyatova, Alexandra P. Pyryaeva, Veniamin G. Goldort, Sergei A. Kochubei, Alexey V. Baklanov. Singlet Oxygen 1O2 in Photocatalysis on TiO2. Where Does It Come from?. The Journal of Physical Chemistry C 2019, 123 (4) , 2175-2181. https://doi.org/10.1021/acs.jpcc.8b09381
    12. Tong Li, Gong Zhang, Huachun Lan, Huijuan Liu, Jiuhui Qu. Enhanced Photoreduction of Chromium(VI) Intercalated Ion Exchange in BiOBr0.75I0.25 Layers Structure by Bulk Charge Transfer. ACS Sustainable Chemistry & Engineering 2019, 7 (2) , 2429-2436. https://doi.org/10.1021/acssuschemeng.8b05297
    13. F. Parrino, M. Bellardita, E. I. García-López, G. Marcì, V. Loddo, L. Palmisano. Heterogeneous Photocatalysis for Selective Formation of High-Value-Added Molecules: Some Chemical and Engineering Aspects. ACS Catalysis 2018, 8 (12) , 11191-11225. https://doi.org/10.1021/acscatal.8b03093
    14. Wenpei Fan, Bryant Yung, Peng Huang, and Xiaoyuan Chen . Nanotechnology for Multimodal Synergistic Cancer Therapy. Chemical Reviews 2017, 117 (22) , 13566-13638. https://doi.org/10.1021/acs.chemrev.7b00258
    15. Yoshio Nosaka and Atsuko Y. Nosaka . Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chemical Reviews 2017, 117 (17) , 11302-11336. https://doi.org/10.1021/acs.chemrev.7b00161
    16. Marta Buchalska, Michał Pacia, Marcin Kobielusz, Marcin Surówka, Elżbieta Świętek, Ewelina Wlaźlak, Konrad Szaciłowski, and Wojciech Macyk . Photocatalytic Activity of TiO2 Modified with Hexafluorometallates—Fine Tuning of Redox Properties by Redox-Innocent Anions. The Journal of Physical Chemistry C 2014, 118 (43) , 24915-24924. https://doi.org/10.1021/jp505449n
    17. Tijana Rajh, Nada M. Dimitrijevic, Marc Bissonnette, Tamara Koritarov, and Vani Konda . Titanium Dioxide in the Service of the Biomedical Revolution. Chemical Reviews 2014, 114 (19) , 10177-10216. https://doi.org/10.1021/cr500029g
    18. Catherine Santaella, Bruno Allainmat, France Simonet, Corinne Chanéac, Jérome Labille, Mélanie Auffan, Jérome Rose, and Wafa Achouak . Aged TiO2-Based Nanocomposite Used in Sunscreens Produces Singlet Oxygen under Long-Wave UV and Sensitizes Escherichia coli to Cadmium. Environmental Science & Technology 2014, 48 (9) , 5245-5253. https://doi.org/10.1021/es500216t
    19. S. Girish Kumar and L. Gomathi Devi . Review on Modified TiO2 Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics. The Journal of Physical Chemistry A 2011, 115 (46) , 13211-13241. https://doi.org/10.1021/jp204364a
    20. Fei Ji, Chaolin Li and Jiahuan Zhang. Hydrothermal Synthesis of Li9Fe3(P2O7)3(PO4)2 Nanoparticles and Their Photocatalytic Properties under Visible-Light Illumination. ACS Applied Materials & Interfaces 2010, 2 (6) , 1674-1678. https://doi.org/10.1021/am100189m
    21. Anat Lipovsky, Zeev Tzitrinovich, Harry Friedmann, Guy Applerot, Aharon Gedanken and Rachel Lubart . EPR Study of Visible Light-Induced ROS Generation by Nanoparticles of ZnO. The Journal of Physical Chemistry C 2009, 113 (36) , 15997-16001. https://doi.org/10.1021/jp904864g
    22. Takashi Tachikawa and Tetsuro Majima. Single-Molecule Fluorescence Imaging of TiO2 Photocatalytic Reactions. Langmuir 2009, 25 (14) , 7791-7802. https://doi.org/10.1021/la900790f
    23. Qiong Sun and Yiming Xu. Sensitization of TiO2 with Aluminum Phthalocyanine: Factors Influencing the Efficiency for Chlorophenol Degradation in Water under Visible Light. The Journal of Physical Chemistry C 2009, 113 (28) , 12387-12394. https://doi.org/10.1021/jp9016882
    24. Chalita Ratanatawanate, Yuan Tao and Kenneth J. Balkus, Jr.. Photocatalytic Activity of PbS Quantum Dot/TiO2 Nanotube Composites. The Journal of Physical Chemistry C 2009, 113 (24) , 10755-10760. https://doi.org/10.1021/jp903050h
    25. Nada M. Dimitrijevic, Elena Rozhkova and Tijana Rajh. Dynamics of Localized Charges in Dopamine-Modified TiO2 and their Effect on the Formation of Reactive Oxygen Species. Journal of the American Chemical Society 2009, 131 (8) , 2893-2899. https://doi.org/10.1021/ja807654k
    26. Ippei Yanagisawa, Toshiyuki Oyama, Nick Serpone and Hisao Hidaka . Successful Scission of a Recalcitrant Triazinic Ring. The Photoassisted Total Breakup of Cyanuric Acid in Ozonized TiO2 Aqueous Dispersions in the Presence of an Electron Acceptor (H2O2). The Journal of Physical Chemistry C 2008, 112 (46) , 18125-18133. https://doi.org/10.1021/jp8037285
    27. Qi Wang, Chuncheng Chen, Dan Zhao, Wanhong Ma and Jincai Zhao. Change of Adsorption Modes of Dyes on Fluorinated TiO2 and Its Effect on Photocatalytic Degradation of Dyes under Visible Irradiation. Langmuir 2008, 24 (14) , 7338-7345. https://doi.org/10.1021/la800313s
    28. Kazuya Naito,, Takashi Tachikawa,, Mamoru Fujitsuka, and, Tetsuro Majima. Real-Time Single-Molecule Imaging of the Spatial and Temporal Distribution of Reactive Oxygen Species with Fluorescent Probes:  Applications to TiO2 Photocatalysts. The Journal of Physical Chemistry C 2008, 112 (4) , 1048-1059. https://doi.org/10.1021/jp076335l
    29. Elisa García-López,, Giuseppe Marcí,, Nick Serpone, and, Hisao Hidaka. Photoassisted Oxidation of the Recalcitrant Cyanuric Acid Substrate in Aqueous ZnO Suspensions. The Journal of Physical Chemistry C 2007, 111 (49) , 18025-18032. https://doi.org/10.1021/jp075359p
    30. Yiming Xu,, Kangle Lv,, Zhigang Xiong,, Wenhua Leng,, Weiping Du,, Ding Liu, and, Xiaojin Xue. Rate Enhancement and Rate Inhibition of Phenol Degradation over Irradiated Anatase and Rutile TiO2 on the Addition of NaF:  New Insight into the Mechanism. The Journal of Physical Chemistry C 2007, 111 (51) , 19024-19032. https://doi.org/10.1021/jp076364w
    31. Yoshinori Murakami,, Kenji Endo,, Ikki Ohta,, Atsuko Y. Nosaka, and, Yoshio Nosaka. Can OH Radicals Diffuse from the UV-Irradiated Photocatalytic TiO2 Surfaces? Laser-Induced-Fluorescence Study. The Journal of Physical Chemistry C 2007, 111 (30) , 11339-11346. https://doi.org/10.1021/jp0722049
    32. Takashi Tachikawa,, Mamoru Fujitsuka, and, Tetsuro Majima. Mechanistic Insight into the TiO2 Photocatalytic Reactions:  Design of New Photocatalysts. The Journal of Physical Chemistry C 2007, 111 (14) , 5259-5275. https://doi.org/10.1021/jp069005u
    33. Zhishun Wei, Xin Yue, Limeng Wu, Damian Kowalski, Zhenhao Li, Jiajie Sun, Sha Chen, Guoqiang Yi, Yan Xiong, Ying Chang, Ewa Kowalska. Platinum-modified bismuth molybdate flake balls as visible-light-responsive photocatalyst. Ceramics International 2024, 50 (13) , 24103-24118. https://doi.org/10.1016/j.ceramint.2024.04.142
    34. Reece M. D. Bristow, Peter J. S. Foot, James D. McGettrick, Joseph C. Bear, Ayomi S. Perera. Sustainable synthesis of titanium based photocatalysts via surfactant templating: from kerosene to sunflower oil. Materials Advances 2024, 5 (9) , 3649-3661. https://doi.org/10.1039/D3MA00957B
    35. Xiaoya Li, Shirong Sun, Qian Zhang, Weidong Wu, Yingchun Liu, Liheng Chen, Xueqing Qiu. Porphyrin-conjugated lignin p-n heterojunction as an effective and biocompatible photosensitizer for antibacterial applications. European Polymer Journal 2024, 210 , 112970. https://doi.org/10.1016/j.eurpolymj.2024.112970
    36. Anindita Bhuyan, Md. Ahmaruzzaman. Ultrasonic-assisted synthesis of highly efficient and robust metal oxide QDs immobilized-MOF-5/Ni-Co-LDH photocatalyst for sunlight-mediated degradation of multiple toxic dyes. Journal of Alloys and Compounds 2024, 972 , 172781. https://doi.org/10.1016/j.jallcom.2023.172781
    37. Zhigang Wang, Xiaohui Yang, Tian Liang, Bing Yan. 3D composite carbon Foam-Loaded MnO2 and FeOOH enabling the “oxidation-adsorption” effect toward efficient removal of arsenic from groundwater. Chemical Engineering Journal 2024, 479 , 147620. https://doi.org/10.1016/j.cej.2023.147620
    38. Daniela Meroni, Carolina Cionti, Lucia Silvestrini, Noga Gal, Marco Cazzaniga, Michele Ceotto, Giacomo Buccella, Leonardo Lo Presti, Giuseppe Cappelletti. Oxygen vacancies in the Spotlight: On the engineering of intrinsic defects in highly defective TiO2 photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry 2023, 444 , 114916. https://doi.org/10.1016/j.jphotochem.2023.114916
    39. Jia Han, Lei Wang, Wenjin Cao, Qinqin Yuan, Xiaoguo Zhou, Shilin Liu, Xue-Bin Wang. Photogeneration of singlet oxygen catalyzed by hexafluoroisopropanol for selective degradation of dyes. iScience 2023, 26 (8) , 107306. https://doi.org/10.1016/j.isci.2023.107306
    40. Komal Jaiswal, Madhusmita Mahanta, Mrinmoy De. Nanomaterials in photocatalysed organic transformations: development, prospects and challenges. Chemical Communications 2023, 59 (40) , 5987-6003. https://doi.org/10.1039/D3CC00993A
    41. Jiaxin Liu, Fengying Zhang, Haoran Wu, Yuman Jiang, Peng Yang, Wei Zhang, Heng Guo, Yuehan Cao, Guidong Yang, Ying Zhou. Efficient carrier transfer induced by Au nanoparticles for photoelectrochemical nitrogen reduction. Sustainable Energy & Fuels 2023, 7 (3) , 883-889. https://doi.org/10.1039/D2SE01201D
    42. Tanmoy Dutta, Abdul Ashik Khan, Nabajyoti Baildya, Palas Mondal, Narendra Nath Ghosh. Preparation of ZnO/Chitosan Nanocomposite and Its Applications to Durable Antibacterial, UV-Blocking, and Textile Properties. 2023, 169-187. https://doi.org/10.1007/978-3-031-13343-5_6
    43. Mei‐Yan Gao, Hui Bai, Xiaofeng Cui, Shuyan Liu, Shan Ling, Tingting Kong, Bing Bai, Canyu Hu, Yitao Dai, Yingguo Zhao, Lei Zhang, Jian Zhang, Yujie Xiong. Precisely Tailoring Heterometallic Polyoxotitanium Clusters for the Efficient and Selective Photocatalytic Oxidation of Hydrocarbons. Angewandte Chemie International Edition 2022, 61 (52) https://doi.org/10.1002/anie.202215540
    44. Mei‐Yan Gao, Hui Bai, Xiaofeng Cui, Shuyan Liu, Shan Ling, Tingting Kong, Bing Bai, Canyu Hu, Yitao Dai, Yingguo Zhao, Lei Zhang, Jian Zhang, Yujie Xiong. Precisely Tailoring Heterometallic Polyoxotitanium Clusters for the Efficient and Selective Photocatalytic Oxidation of Hydrocarbons. Angewandte Chemie 2022, 134 (52) https://doi.org/10.1002/ange.202215540
    45. Ying Zhao, Shi-Bin Wang, Ai-Zheng Chen, Ranjith Kumar Kankala. Nanoarchitectured assembly and surface of two-dimensional (2D) transition metal dichalcogenides (TMDCs) for cancer therapy. Coordination Chemistry Reviews 2022, 472 , 214765. https://doi.org/10.1016/j.ccr.2022.214765
    46. Alaa Eddine Attar, Hanane Chaker, Mustapha Djennas, Sophie Fourmentin. Chemometric study in plasmonic photocatalytic efficiency of gold nanoparticles loaded mesoporous TiO2 for mineralization of ibuprofen pharmaceutical pollutant: Box Behnken Design conception. Inorganic Chemistry Communications 2022, 146 , 110210. https://doi.org/10.1016/j.inoche.2022.110210
    47. Jie Xu, Yu-Qin Ma, Yun-Hui Li, Dan-Dan Wang, Jian-Wei Zhu. Controlled preparation of H-TiO 2 /MoS 2 photocatalysts and research on their photocatalytic performance. 2022, 69-72. https://doi.org/10.1109/CME55444.2022.10063270
    48. Larissa L. Khomutinnikova, Sergey K. Evstropiev, Dmitry P. Danilovich, Igor K. Meshkovskii, Dmitry V. Bulyga. Structural Engineering of Photocatalytic ZnO-SnO2-Fe2O3 Composites. Journal of Composites Science 2022, 6 (11) , 331. https://doi.org/10.3390/jcs6110331
    49. Chongshang Guan, Tian Hou, Wuyang Nie, Qian Zhang, Libing Duan, Xiaoru Zhao. Facet synergy dominant Z-scheme transition in BiOCl with enhanced 1O2 generation. Chemosphere 2022, 307 , 135663. https://doi.org/10.1016/j.chemosphere.2022.135663
    50. Abhrajit Debroy, Mohini Yadav, Radhika Dhawan, Shubhankhi Dey, Nancy George. DNA dyes: toxicity, remediation strategies and alternatives. Folia Microbiologica 2022, 67 (4) , 555-571. https://doi.org/10.1007/s12223-022-00963-8
    51. Qinyi Cheng, Xingcun He, Xiaolu Guo, Sijing He, Qinfeng Rong. Enhanced visible-light harvesting of triazine-based covalent organic frameworks by incorporating FeⅢ-tannic acid complexes for high-efficiency photocatalysis. Microporous and Mesoporous Materials 2022, 341 , 112107. https://doi.org/10.1016/j.micromeso.2022.112107
    52. Chao Li, Chenjie Song, Hui Li, Liqun Ye, Yixue Xu, Yingping Huang, Gongzhe Nie, Rumeng Zhang, Wei Liu, Niu Huang, Po Keung Wong, Tianyi Ma. Ultradurable fluorinated V2AlC for peroxymonosulfate activation in organic pollutant degradation processes. Chinese Journal of Catalysis 2022, 43 (7) , 1927-1936. https://doi.org/10.1016/S1872-2067(21)64050-0
    53. Zhengnan Tu, Yumeng Qi, Ruijuan Qu, Xiaosheng Tang, Zunyao Wang, Zongli Huo. Photochemical transformation of hexachlorobenzene (HCB) in solid-water system: Kinetics, mechanism and toxicity evaluation. Chemosphere 2022, 295 , 133907. https://doi.org/10.1016/j.chemosphere.2022.133907
    54. Yifan Ren, Dongli Guo, Zhiyuan Zhao, Pinghua Chen, Fang Li, Jie Yao, Hualin Jiang, Yanbiao Liu. Singlet oxygen mediated photocatalytic Antimonite decontamination in water using nanoconfined TiO2. Chemical Engineering Journal 2022, 435 , 134832. https://doi.org/10.1016/j.cej.2022.134832
    55. Feng Jiang, Jiansha Gao, Di Lang. Photocatalytic Selective Degradation of Catechol and Resorcinol on the TiO2 with Exposed {001} Facets: Roles of Two Types of Hydroxyl Radicals. Catalysts 2022, 12 (4) , 378. https://doi.org/10.3390/catal12040378
    56. Dandan Wang, Bo Yu, Hongji Li, Qianyu Liu, Dongshu Sun, Jia Wang, Guangbo Che, Chunbo Liu. Two-dimensional ultrathin MoS 2 modified hydrogenated TiO 2 nanoparticles for superior photocatalytic degradation under simulated sunlight. Journal of Physics D: Applied Physics 2022, 55 (12) , 125103. https://doi.org/10.1088/1361-6463/ac4453
    57. Francesco Parrino, Massimiliano D’Arienzo, Silvia Mostoni, Sandra Dirè, Riccardo Ceccato, Marianna Bellardita, Leonardo Palmisano. Electron and Energy Transfer Mechanisms: The Double Nature of TiO2 Heterogeneous Photocatalysis. Topics in Current Chemistry 2022, 380 (1) https://doi.org/10.1007/s41061-021-00358-2
    58. Ya-Ni Wu, Shu-Lan Cai, Lu Lu, Lu Zhang, Fan Cheng, Mohd. Muddassir, Hiroshi Sakiyama. Photocatalytic performance and mechanism of Rhodamine B with two new Zn(II)-based coordination polymers under UV-light. Journal of Molecular Structure 2022, 1249 , 131681. https://doi.org/10.1016/j.molstruc.2021.131681
    59. Máté Náfrádi, Tünde Alapi, Luca Farkas, Gábor Bencsik, Gábor Kozma, Klára Hernádi. Wavelength Dependence of the Transformation Mechanism of Sulfonamides Using Different LED Light Sources and TiO2 and ZnO Photocatalysts. Materials 2022, 15 (1) , 49. https://doi.org/10.3390/ma15010049
    60. Byung-Geon Park. Photocatalytic Activity of TiO2-Doped Fe, Ag, and Ni with N under Visible Light Irradiation. Gels 2022, 8 (1) , 14. https://doi.org/10.3390/gels8010014
    61. Hira Fatima, Muhammad Rizwan Azhar, Mehdi Khiadani, Yijun Zhong, Wei Wang, Chao Su, Zongping Shao. Prussian blue-conjugated ZnO nanoparticles for near-infrared light-responsive photocatalysis. Materials Today Energy 2022, 23 , 100895. https://doi.org/10.1016/j.mtener.2021.100895
    62. Vo Thi Thu Nhu, Nguyen Duy Dat, Le-Minh Tam, Nguyen Hoang Phuong. Green synthesis of zinc oxide nanoparticles toward highly efficient photocatalysis and antibacterial application. Beilstein Journal of Nanotechnology 2022, 13 , 1108-1119. https://doi.org/10.3762/bjnano.13.94
    63. Agnieszka Kyzioł, Łukasz Orzeł, Ilona Gurgul, Olga Mazuryk, Przemysław Łabuz, Grażyna Stochel. Mechanistic insight into photoactivation of small inorganic molecules from the biomedical applications perspectives. 2022, 233-284. https://doi.org/10.1016/bs.adioch.2022.06.004
    64. Zheng Yang Jin, Hira Fatima, Yue Zhang, Zongping Shao, Xiang Jian Chen. Recent Advances in Bio‐Compatible Oxygen Singlet Generation and Its Tumor Treatment. Advanced Therapeutics 2022, 5 (1) https://doi.org/10.1002/adtp.202100176
    65. Saranya Juntrapirom, Doldet Tantraviwat, Supanan Anuchai, Oraphan Thongsook, Duangdao Channei, Burapat Inceesungvorn. Boosting photocatalytic coupling of amines to imines over BiOBr: Synergistic effects derived from hollow microsphere morphology. Journal of Environmental Chemical Engineering 2021, 9 (6) , 106732. https://doi.org/10.1016/j.jece.2021.106732
    66. Jiayu Zeng, Ziming Li, Hui Jiang, Xuemei Wang. Progress on photocatalytic semiconductor hybrids for bacterial inactivation. Materials Horizons 2021, 8 (11) , 2964-3008. https://doi.org/10.1039/D1MH00773D
    67. Lan Yuan, Ming‐Yu Qi, Zi‐Rong Tang, Yi‐Jun Xu. Coupling Strategy for CO 2 Valorization Integrated with Organic Synthesis by Heterogeneous Photocatalysis. Angewandte Chemie International Edition 2021, 60 (39) , 21150-21172. https://doi.org/10.1002/anie.202101667
    68. Lan Yuan, Ming‐Yu Qi, Zi‐Rong Tang, Yi‐Jun Xu. Coupling Strategy for CO 2 Valorization Integrated with Organic Synthesis by Heterogeneous Photocatalysis. Angewandte Chemie 2021, 133 (39) , 21320-21342. https://doi.org/10.1002/ange.202101667
    69. Sayiter Yildiz, Asaad Olabi. Application of Photocatalysis Methods to Enhance Sludge Disintegration. Waste and Biomass Valorization 2021, 12 (8) , 4419-4431. https://doi.org/10.1007/s12649-020-01334-5
    70. Francesco Parrino, Massimiliano D'Arienzo, Emanuela Callone, Riccardo Conta, Barbara Di Credico, Simone Mascotto, Andreas Meyer, Roberto Scotti, Sandra Dirè. TiO2 containing hybrid nanocomposites with active–passive oxygen scavenging capability. Chemical Engineering Journal 2021, 417 , 129135. https://doi.org/10.1016/j.cej.2021.129135
    71. Nahyun Kwon, Heejeong Kim, Xingshu Li, Juyoung Yoon. Supramolecular agents for combination of photodynamic therapy and other treatments. Chemical Science 2021, 12 (21) , 7248-7268. https://doi.org/10.1039/D1SC01125A
    72. Paula Bimová, Zuzana Barbieriková, Anna Grenčíková, Rastislav Šípoš, Andrea Butor Škulcová, Anna Krivjanská, Tomáš Mackuľak. Environmental risk of nanomaterials and nanoparticles and EPR technique as an effective tool to study them—a review. Environmental Science and Pollution Research 2021, 28 (18) , 22203-22220. https://doi.org/10.1007/s11356-021-13270-5
    73. Xiangji Li, Guoqing Zhang, Xiaofeng Wang, Weiping Liu, Kaifeng Yu, Ce Liang. Enhanced photocatalytic performance of nitrogen-modified titanium dioxide. Inorganic and Nano-Metal Chemistry 2021, 51 (4) , 514-522. https://doi.org/10.1080/24701556.2020.1799396
    74. Akash P. Bhat, Ananda J. Jadhav, Chandrakant R. Holkar, Dipak V. Pinjari. Doped-TiO2 and doped-mixed metal oxide-based nanocomposite for photocatalysis. 2021, 155-180. https://doi.org/10.1016/B978-0-12-821496-1.00018-0
    75. L.P. Delgado, M.Z. Figueroa-Torres, M.C. Ceballos-Chuc, R. García-Rodríguez, J.J. Alvarado-Gil, G. Oskam, G. Rodriguez-Gattorno. “Tailoring the TiO2 phases through microwave-assisted hydrothermal synthesis: Comparative assessment of bactericidal activity”. Materials Science and Engineering: C 2020, 117 , 111290. https://doi.org/10.1016/j.msec.2020.111290
    76. Alessandro Gottuso, Angela Köckritz, Maria Luisa Saladino, Francesco Armetta, Claudio De Pasquale, Giorgio Nasillo, Francesco Parrino. Catalytic and photocatalytic epoxidation of limonene: Using mesoporous silica nanoparticles as functional support for a Janus-like approach. Journal of Catalysis 2020, 391 , 202-211. https://doi.org/10.1016/j.jcat.2020.08.025
    77. Stefania Porcu, Micaela Castellino, Ignazio Roppolo, Carlo Maria Carbonaro, Simonetta Palmas, Laura Mais, Maria Francesca Casula, Svetlana Neretina, Robert A. Hughes, Francesco Secci, Pier Carlo Ricci. Highly efficient visible light phenyl modified carbon nitride/TiO2 photocatalyst for environmental applications. Applied Surface Science 2020, 531 , 147394. https://doi.org/10.1016/j.apsusc.2020.147394
    78. Goutham Rangarajan, Ning Yan, Ramin Farnood. High‐performance photocatalysts for the selective oxidation of alcohols to carbonyl compounds. The Canadian Journal of Chemical Engineering 2020, 98 (11) , 2259-2293. https://doi.org/10.1002/cjce.23835
    79. Xiaofang Li, Xiaofeng Wu, Shengwei Liu, Yuhan Li, Jiajie Fan, Kangle Lv. Effects of fluorine on photocatalysis. Chinese Journal of Catalysis 2020, 41 (10) , 1451-1467. https://doi.org/10.1016/S1872-2067(20)63594-X
    80. Nur Syuhada Ibrahim, Wai Loon Leaw, Daud Mohamad, Siti Hajar Alias, Hadi Nur. A critical review of metal-doped TiO2 and its structure–physical properties–photocatalytic activity relationship in hydrogen production. International Journal of Hydrogen Energy 2020, 45 (53) , 28553-28565. https://doi.org/10.1016/j.ijhydene.2020.07.233
    81. M. Shahnawaz Khan, Mohd Khalid, M. Shahid. What triggers dye adsorption by metal organic frameworks? The current perspectives. Materials Advances 2020, 1 (6) , 1575-1601. https://doi.org/10.1039/D0MA00291G
    82. Xue Liu, Guo Li, Mingjuan Xie, Song Guo, Weili Zhao, Feiyang Li, Shujuan Liu, Qiang Zhao. Rational design of type I photosensitizers based on Ru( ii ) complexes for effective photodynamic therapy under hypoxia. Dalton Transactions 2020, 49 (32) , 11192-11200. https://doi.org/10.1039/D0DT01684E
    83. Miao Shi, Lijun Luo, Jianhui Dai, Lihong Xia, Junhong Long, Wenrong Yang, Hongbin Wang, Li Shu. The comparative study of two kinds of β-Bi2O3/TiO2 binary composite and their removal of 17ɑ-ethynylestradiol. Environmental Science and Pollution Research 2020, 27 (20) , 24692-24701. https://doi.org/10.1007/s11356-019-06348-8
    84. B.G. Anitha, L. Gomathi Devi. Photocatalytic activity of fluorine doped SrTiO3 under the irradiation of UV/solar light: Extended visible light absorption by the bulk lattice F− ions and suppression of photogenerated charge carrier recombination by the surface F− ions. Chemical Physics Letters 2020, 742 , 137138. https://doi.org/10.1016/j.cplett.2020.137138
    85. Amarja P. Naik, Hemant Mittal, Vijay S. Wadi, Laxmi Sane, Abhijeet Raj, Saeed M. Alhassan, Ali Al Alili, Sheshanath V. Bhosale, Pranay P. Morajkar. Super porous TiO2 photocatalyst: Tailoring the agglomerate porosity into robust structural mesoporosity with enhanced surface area for efficient remediation of azo dye polluted waste water. Journal of Environmental Management 2020, 258 , 110029. https://doi.org/10.1016/j.jenvman.2019.110029
    86. Soumen Manna, Ennio Zangrando, Subal Chandra Manna. Schiff base and azido coordinated di-/poly-nuclear cadmium(II) complexes: Crystal structure, photocatalytic degradation of methylene blue and thermal analysis. Polyhedron 2020, 177 , 114296. https://doi.org/10.1016/j.poly.2019.114296
    87. GABRIEL G. DE TOLEDO, VICTOR H. TOLEDO, ALEXANDRE J.C. LANFREDI, MARCIA ESCOTE, ANA CHAMPI, MARIA CRISTINA C. DA SILVA, ISELI L. NANTES-CARDOSO. Promising Nanostructured Materials against Enveloped Virus. Anais da Academia Brasileira de Ciências 2020, 92 (4) https://doi.org/10.1590/0001-3765202020200718
    88. István Csarnovics, Julia Burunkova, Danara Sviazhina, Evgeniy Oskolkov, George Alkhalil, Elena Orishak, Ludmila Nilova, István Szabó, Péter Rutka, Krisztián Bene, Attila Bácsi, Sándor Kökényesi. <p>Development and Study of Biocompatible Polyurethane-Based Polymer-Metallic Nanocomposites</p>. Nanotechnology, Science and Applications 2020, Volume 13 , 11-22. https://doi.org/10.2147/NSA.S245071
    89. Dandan Zhu, Qixing Zhou. Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: A review. Environmental Nanotechnology, Monitoring & Management 2019, 12 , 100255. https://doi.org/10.1016/j.enmm.2019.100255
    90. Han Zhao, Xiang Liu, Yuming Dong, Yongmei Xia, Haijun Wang. A special synthesis of BiOCl photocatalyst for efficient pollutants removal: New insight into the band structure regulation and molecular oxygen activation. Applied Catalysis B: Environmental 2019, 256 , 117872. https://doi.org/10.1016/j.apcatb.2019.117872
    91. Joanna Kuncewicz, Janusz M. Dąbrowski, Agnieszka Kyzioł, Małgorzata Brindell, Przemysław Łabuz, Olga Mazuryk, Wojciech Macyk, Grażyna Stochel. Perspectives of molecular and nanostructured systems with d- and f-block metals in photogeneration of reactive oxygen species for medical strategies. Coordination Chemistry Reviews 2019, 398 , 113012. https://doi.org/10.1016/j.ccr.2019.07.009
    92. Paola Riente, Timothy Noël. Application of metal oxide semiconductors in light-driven organic transformations. Catalysis Science & Technology 2019, 9 (19) , 5186-5232. https://doi.org/10.1039/C9CY01170F
    93. Sami Ul Haq, Shaukat Ali Khattak, Tariq Jan, Rajwali Khan, Zulfiqar, Irfan Ullah, Tahirzeb Khan, Said Karim Shah, Gulzar Khan, Riaz Ahmad. Influence of Li-Co co-doping on structural and optical properties as well as on antibacterial activity of ZnO. Materials Research Express 2019, 6 (11) , 115037. https://doi.org/10.1088/2053-1591/ab4497
    94. Xingye Zeng, Xinyan Xiao, Jiayi Chen, Hanlu Wang. Electron-hole interactions in choline-phosphotungstic acid boosting molecular oxygen activation for fuel desulfurization. Applied Catalysis B: Environmental 2019, 248 , 573-586. https://doi.org/10.1016/j.apcatb.2018.09.038
    95. Lucivaldo R. Menezes, David M. Lopes, Julia D. Bronzato, Guilherme Sombrio, Denise Criado, Alejandro Zuniga, Alexandre J.C. Lanfredi, Jose A. Souza, Iseli L. Nantes-Cardoso. Photo-induced Electron Transfer from Hematite and Zinc Oxide Nanostructures to Cytochrome C: Systems Applicable to Spintronics. 2019, 1-9. https://doi.org/10.1109/INEC.2019.8853858
    96. Xiao Chu, Liang Mao, Omar Johnson, Kang Li, Jonathan Phan, Qingshui Yin, Lihua Li, Junying Zhang, Wei Chen, Yu Zhang. Exploration of TiO2 nanoparticle mediated microdynamic therapy on cancer treatment. Nanomedicine: Nanotechnology, Biology and Medicine 2019, 18 , 272-281. https://doi.org/10.1016/j.nano.2019.02.016
    97. Suding Yan, Yue Shi, Yufang Tao, Hui Zhang. Enhanced persulfate-mediated photocatalytic oxidation of bisphenol A using bioelectricity and a g-C3N4/Fe2O3 heterojunction. Chemical Engineering Journal 2019, 359 , 933-943. https://doi.org/10.1016/j.cej.2018.11.093
    98. Francesco Parrino, Claudio De Pasquale, Leonardo Palmisano. Influence of Surface-Related Phenomena on Mechanism, Selectivity, and Conversion of TiO 2 -Induced Photocatalytic Reactions. ChemSusChem 2019, 12 (3) , 589-602. https://doi.org/10.1002/cssc.201801898
    99. Yong Li, Xiaosong Li, Feifan Zhou, Austin Doughty, Ashley R. Hoover, Robert E. Nordquist, Wei R. Chen. Nanotechnology-based photoimmunological therapies for cancer. Cancer Letters 2019, 442 , 429-438. https://doi.org/10.1016/j.canlet.2018.10.044
    100. Teruyuki Miyake, Yuichiro Hashimoto, Seihou Jinnai, Ryusei Oketani, Suguru Higashida. Effect of Substituents on TiO2 Photocatalytic Oxidation of trans -Stilbenes. Bulletin of the Chemical Society of Japan 2019, 92 (1) , 55-60. https://doi.org/10.1246/bcsj.20180223
    Load all citations