Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Lewis Acid Catalysis Alters the Shapes and Products of Bis-Pericyclic Diels−Alder Transition States

View Author Information
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, and Department of Chemistry, Boǧaziçi University, Bebek, Istanbul 34342, Turkey
Cite this: J. Am. Chem. Soc. 2007, 129, 15, 4528–4529
Publication Date (Web):March 27, 2007
https://doi.org/10.1021/ja070686w
Copyright © 2007 American Chemical Society

    Article Views

    1937

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The reactions of cyclopentadiene with α-keto-β,γ-unsaturated phosphonates or with nitroalkenes proceed through an unsymmetrical bis-pericyclic transition state to give both Diels−Alder and hetero-Diels−Alder cycloadducts. The change in periselectivity of the Lewis acid catalyzed reactions can be qualitatively rationalized by the change in the potential energy surface (PES) landscapes, which ultimately affects the branching ratio of these bis-pericyclic reactions.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Boǧaziçi University.

     University of California, Los Angeles.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Cartesian coordinates and absolute energies of transition states, PES scan results, LUMO coefficients of dienophiles, and complete ref 20 are provided (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 74 publications.

    1. Juno Nam, YounJoon Jung. Enhanced Sampling for Free Energy Profiles with Post-Transition-State Bifurcations. Journal of Chemical Theory and Computation 2023, 19 (10) , 2735-2743. https://doi.org/10.1021/acs.jctc.2c01271
    2. Wook Shin, Xinchun Ran, Zhongyue J. Yang. Accelerated Entropic Path Sampling with a Bidirectional Generative Adversarial Network. The Journal of Physical Chemistry B 2023, 127 (19) , 4254-4260. https://doi.org/10.1021/acs.jpcb.3c01202
    3. Takuma Ito, Satoshi Maeda, Yu Harabuchi. Kinetic Analysis of a Reaction Path Network Including Ambimodal Transition States: A Case Study of an Intramolecular Diels–Alder Reaction. Journal of Chemical Theory and Computation 2022, 18 (3) , 1663-1671. https://doi.org/10.1021/acs.jctc.1c01297
    4. Xin Wang, Chun Zhang, Yaoyukun Jiang, Wen Wang, Yuan Zhou, Yu Chen, Bo Zhang, Ren Xiang Tan, Hui Ming Ge, Zhongyue J. Yang, Yong Liang. Influence of Water and Enzyme on the Post-Transition State Bifurcation of NgnD-Catalyzed Ambimodal [6+4]/[4+2] Cycloaddition. Journal of the American Chemical Society 2021, 143 (49) , 21003-21009. https://doi.org/10.1021/jacs.1c10760
    5. Santiago Vargas, Matthew R. Hennefarth, Zhihao Liu, Anastassia N. Alexandrova. Machine Learning to Predict Diels–Alder Reaction Barriers from the Reactant State Electron Density. Journal of Chemical Theory and Computation 2021, 17 (10) , 6203-6213. https://doi.org/10.1021/acs.jctc.1c00623
    6. Malkaye Kpante, Lawrence M. Wolf. Pathway Bifurcations in the Activation of Allylic Halides by Palladium and Their Influence on the Dynamics of η1 and η3 Allyl Intermediates. The Journal of Organic Chemistry 2021, 86 (14) , 9637-9650. https://doi.org/10.1021/acs.joc.1c00891
    7. Bo Li, Yuli Li, Yanfeng Dang, K. N. Houk. Post-Transition State Bifurcation in Iron-Catalyzed Arene Aminations. ACS Catalysis 2021, 11 (12) , 6816-6824. https://doi.org/10.1021/acscatal.1c01291
    8. Hong Zhang, Alexander J. E. Novak, Cooper S. Jamieson, Xiao-Song Xue, Shuming Chen, Dirk Trauner, K. N. Houk. Computational Exploration of the Mechanism of Critical Steps in the Biomimetic Synthesis of Preuisolactone A, and Discovery of New Ambimodal (5 + 2)/(4 + 2) Cycloadditions. Journal of the American Chemical Society 2021, 143 (17) , 6601-6608. https://doi.org/10.1021/jacs.1c01856
    9. Chun Zhang, Xin Wang, Yu Chen, Zhili He, Peiyuan Yu, Yong Liang. Dynamical Trajectory Study of the Transannular [6+4] and Ambimodal Cycloaddition in the Biosynthesis of Heronamides. The Journal of Organic Chemistry 2020, 85 (14) , 9440-9445. https://doi.org/10.1021/acs.joc.0c01187
    10. Hsiao-Han Chuang, Dean J. Tantillo, Chao-Ping Hsu. Construction of Two-Dimensional Potential Energy Surfaces of Reactions with Post-Transition-State Bifurcations. Journal of Chemical Theory and Computation 2020, 16 (7) , 4050-4060. https://doi.org/10.1021/acs.jctc.0c00172
    11. Sanha Lee, Jonathan M. Goodman. Rapid Route-Finding for Bifurcating Organic Reactions. Journal of the American Chemical Society 2020, 142 (20) , 9210-9219. https://doi.org/10.1021/jacs.9b13449
    12. Jed M. Burns, Eric D. Boittier. Pathway Bifurcation in the (4 + 3)/(5 + 2)-Cycloaddition of Butadiene and Oxidopyrylium Ylides: The Significance of Molecular Orbital Isosymmetry. The Journal of Organic Chemistry 2019, 84 (10) , 5997-6005. https://doi.org/10.1021/acs.joc.8b03236
    13. Shuming Chen, Peiyuan Yu, K. N. Houk. Ambimodal Dipolar/Diels–Alder Cycloaddition Transition States Involving Proton Transfers. Journal of the American Chemical Society 2018, 140 (51) , 18124-18131. https://doi.org/10.1021/jacs.8b11080
    14. Xiao-Song Xue, Brian J. Levandowski, Cyndi Qixin He, K. N. Houk. Origins of Selectivities in the Stork Diels–Alder Cycloaddition for the Synthesis of (±)-4-Methylenegermine. Organic Letters 2018, 20 (19) , 6108-6111. https://doi.org/10.1021/acs.orglett.8b02548
    15. Zhongyue Yang, Xiaofei Dong, Yanmin Yu, Peiyuan Yu, Yingzi Li, Cooper Jamieson, and K. N. Houk . Relationships between Product Ratios in Ambimodal Pericyclic Reactions and Bond Lengths in Transition Structures. Journal of the American Chemical Society 2018, 140 (8) , 3061-3067. https://doi.org/10.1021/jacs.7b13562
    16. Stephanie R. Hare, Ryan P. Pemberton, and Dean J. Tantillo . Navigating Past a Fork in the Road: Carbocation−π Interactions Can Manipulate Dynamic Behavior of Reactions Facing Post-Transition-State Bifurcations. Journal of the American Chemical Society 2017, 139 (22) , 7485-7493. https://doi.org/10.1021/jacs.7b01042
    17. Ana Martín-Sómer, Manuel Yáñez, William L. Hase, Marie-Pierre Gaigeot, and Riccardo Spezia . Post-Transition State Dynamics in Gas Phase Reactivity: Importance of Bifurcations and Rotational Activation. Journal of Chemical Theory and Computation 2016, 12 (3) , 974-982. https://doi.org/10.1021/acs.jctc.5b01135
    18. Lei Zhang, Yi Wang, Zhu-Jun Yao, Shaozhong Wang, and Zhi-Xiang Yu . Kinetic or Dynamic Control on a Bifurcating Potential Energy Surface? An Experimental and DFT Study of Gold-Catalyzed Ring Expansion and Spirocyclization of 2-Propargyl-β-tetrahydrocarbolines. Journal of the American Chemical Society 2015, 137 (41) , 13290-13300. https://doi.org/10.1021/jacs.5b05971
    19. Larry M. Wolf and Walter Thiel . Origin of Inversion versus Retention in the Oxidative Addition of 3-Chloro-cyclopentene to Pd(0)Ln. The Journal of Organic Chemistry 2014, 79 (24) , 12136-12147. https://doi.org/10.1021/jo5020068
    20. Snezhana M. Bakalova and A. Gil Santos . Diels–Alder Reactions of Chiral Isoimidium Salts: A Computational Study. The Journal of Organic Chemistry 2014, 79 (17) , 8202-8211. https://doi.org/10.1021/jo501407z
    21. Mats Linder and Tore Brinck . Stepwise Diels–Alder: More than Just an Oddity? A Computational Mechanistic Study. The Journal of Organic Chemistry 2012, 77 (15) , 6563-6573. https://doi.org/10.1021/jo301176t
    22. Mats Linder, Adam Johannes Johansson, and Tore Brinck . Mechanistic Insights into the Stepwise Diels–Alder Reaction of 4,6-Dinitrobenzofuroxan. Organic Letters 2012, 14 (1) , 118-121. https://doi.org/10.1021/ol202913w
    23. Jørn H. Hansen, Timothy M. Gregg, Stephanie R. Ovalles, Yajing Lian, Jochen Autschbach, and Huw M. L. Davies . On the Mechanism and Selectivity of the Combined C−H Activation/Cope Rearrangement. Journal of the American Chemical Society 2011, 133 (13) , 5076-5085. https://doi.org/10.1021/ja111408v
    24. Robert S. Paton, Joel L. Mackey, Woo Han Kim, Jun Hee Lee, Samuel J. Danishefsky and K. N. Houk . Origins of Stereoselectivity in the trans Diels−Alder Paradigm. Journal of the American Chemical Society 2010, 132 (27) , 9335-9340. https://doi.org/10.1021/ja1009162
    25. Amy E. Hayden, Jason DeChancie, Alexander H. George, Mingji Dai, Maolin Yu, Samuel J. Danishefsky and K. N. Houk . Origins of the Regioselectivities in the Diels−Alder Reactions of Vinylindenes with 1,4-Quinone Monoketal and Acrolein Dienophiles. The Journal of Organic Chemistry 2009, 74 (17) , 6770-6776. https://doi.org/10.1021/jo901473h
    26. Paul R. Rablen, Adam A. Paiz, B W. Thuronyi, Maitland Jones, Jr.. Computational Investigation of the Mechanism of Addition of Singlet Carbenes to Bicyclobutanes. The Journal of Organic Chemistry 2009, 74 (11) , 4252-4261. https://doi.org/10.1021/jo900485z
    27. Jacqueline B. Thomas, Jack R. Waas, Michael Harmata and Daniel A. Singleton. Control Elements in Dynamically Determined Selectivity on a Bifurcating Surface. Journal of the American Chemical Society 2008, 130 (44) , 14544-14555. https://doi.org/10.1021/ja802577v
    28. Nihan Çelebi-Ölçüm, Daniel H. Ess, Viktorya Aviyente and K. N. Houk. Effect of Lewis Acid Catalysts on Diels−Alder and Hetero-Diels−Alder Cycloadditions Sharing a Common Transition State. The Journal of Organic Chemistry 2008, 73 (19) , 7472-7480. https://doi.org/10.1021/jo801076t
    29. Daniel H. Ess, Amy E. Hayden, Frank-Gerrit Klärner and K. N. Houk . Transition States for the Dimerization of 1,3-Cyclohexadiene: A DFT, CASPT2, and CBS-QB3 Quantum Mechanical Investigation. The Journal of Organic Chemistry 2008, 73 (19) , 7586-7592. https://doi.org/10.1021/jo8011804
    30. Norito Takenaka,, Robindro Singh Sarangthem, and, Sreehari Kumar Seerla. 2-Aminopyridinium Ions Activate Nitroalkenes through Hydrogen Bonding. Organic Letters 2007, 9 (15) , 2819-2822. https://doi.org/10.1021/ol071032v
    31. Wenhao Gu, John Z.H. Zhang. Substituent effects on the selectivity of ambimodal [6+4]/[4+2] cycloaddition. Physical Chemistry Chemical Physics 2024, 26 (12) , 9636-9644. https://doi.org/10.1039/D3CP06320H
    32. Tatsuhiro Murakami, Yuya Kikuma, Shunichi Ibuki, Naoki Matsumoto, Kanon Ogino, Yu Hashimoto, Toshiyuki Takayanagi. Machine learning‐assisted study of correlation between post‐transition‐state bifurcation and initial phase information at the ambimodal transition state. Journal of Physical Organic Chemistry 2023, 36 (11) https://doi.org/10.1002/poc.4561
    33. David J. P. Kornfilt, Brian T. Chamberlain, Isabelle Chataigner, Riccardo Spezia, Florence F. Wagner. Hexafluoroisopropanol-Induced Facial Selectivity in a Hindered Diels–Alder Reaction. Synthesis 2023, 55 (13) , 2047-2052. https://doi.org/10.1055/a-2016-4548
    34. Jacob S. Bestwick, David J. Jones, Helen E. Jones, Panagiotis G. Kalomenopoulos, Rafal Szabla, Andrew L. Lawrence. Total Synthesis and Prediction of Ulodione Natural Products Guided by DFT Calculations**. Angewandte Chemie International Edition 2022, 61 (32) https://doi.org/10.1002/anie.202207004
    35. Jacob S. Bestwick, David J. Jones, Helen E. Jones, Panagiotis G. Kalomenopoulos, Rafal Szabla, Andrew L. Lawrence. Total Synthesis and Prediction of Ulodione Natural Products Guided by DFT Calculations**. Angewandte Chemie 2022, 134 (32) https://doi.org/10.1002/ange.202207004
    36. Meng-meng Xu, Quan Cai. A periselective cross-Diels–Alder reaction. Trends in Chemistry 2022, 4 (3) , 250-251. https://doi.org/10.1016/j.trechm.2021.12.003
    37. Priyam Bharadwaz, Mauricio Maldonado-Domínguez, Martin Srnec. Bifurcating reactions: distribution of products from energy distribution in a shared reactive mode. Chemical Science 2021, 12 (38) , 12682-12694. https://doi.org/10.1039/D1SC02826J
    38. Meng-Meng Xu, Limin Yang, Kui Tan, Xiangyang Chen, Qi-Tao Lu, K. N. Houk, Quan Cai. An enantioselective ambimodal cross-Diels–Alder reaction and applications in synthesis. Nature Catalysis 2021, 4 (10) , 892-900. https://doi.org/10.1038/s41929-021-00687-x
    39. Tsukasa Sawato, Masahiko Yamaguchi. Synthetic Chemical Systems Involving Self‐Catalytic Reactions of Helicene Oligomer Foldamers. ChemPlusChem 2020, 85 (9) , 2017-2038. https://doi.org/10.1002/cplu.202000489
    40. Fang Liu, Yu Chen, K. N. Houk. Huisgen's 1,3‐Dipolar Cycloadditions to Fulvenes Proceed via Ambimodal [6+4]/[4+2] Transition States. Angewandte Chemie 2020, 132 (30) , 12512-12516. https://doi.org/10.1002/ange.202005265
    41. Fang Liu, Yu Chen, K. N. Houk. Huisgen's 1,3‐Dipolar Cycloadditions to Fulvenes Proceed via Ambimodal [6+4]/[4+2] Transition States. Angewandte Chemie International Edition 2020, 59 (30) , 12412-12416. https://doi.org/10.1002/anie.202005265
    42. Takuma Ito, Yu Harabuchi, Satoshi Maeda. AFIR explorations of transition states of extended unsaturated systems: automatic location of ambimodal transition states. Physical Chemistry Chemical Physics 2020, 22 (25) , 13942-13950. https://doi.org/10.1039/D0CP02379E
    43. Akanksha Ashok Sangolkar, Ravinder Pawar. Prediction of the [4 + 2]- and [5 + 4]-cycloaddition reactions in zig-zag carbon nanotubes via an ambimodal transition state: density functional theory calculations. RSC Advances 2020, 10 (19) , 11111-11120. https://doi.org/10.1039/C9RA10252C
    44. Grzegorz Mlostoń, Katarzyna Urbaniak, Marcin Jasiński, Ernst‐Ulrich Würthwein, Heinz Heimgartner, Reinhold Zimmer, Hans‐Ulrich Reissig. The [4+2]‐Cycloaddition of α‐Nitrosoalkenes with Thiochalcones as a Prototype of Periselective Hetero‐Diels–Alder Reactions—Experimental and Computational Studies. Chemistry – A European Journal 2020, 26 (1) , 237-248. https://doi.org/10.1002/chem.201903385
    45. Agnieszka Kącka-Zych. Understanding the Molecular Mechanism of the Rearrangement of Internal Nitronic Ester into Nitronorbornene in Light of the MEDT Study. Molecules 2019, 24 (3) , 462. https://doi.org/10.3390/molecules24030462
    46. Ramiro F. Quijano-Quiñones, Carolina S. Castro-Segura, Gonzalo J. Mena-Rejón, Mariana Quesadas-Rojas, David Cáceres-Castillo. Biosynthesis of Grandione: An Example of Tandem Hetero Diels-Alder/Retro-Claisen Rearrangement Reaction?. Molecules 2018, 23 (10) , 2505. https://doi.org/10.3390/molecules23102505
    47. Jing‐Xuan Zhang, Fu Kit Sheong, Zhenyang Lin. Unravelling Chemical Interactions with Principal Interacting Orbital Analysis. Chemistry – A European Journal 2018, 24 (38) , 9639-9650. https://doi.org/10.1002/chem.201801220
    48. Radomir Jasiński. β-Trifluoromethylated nitroethenes in Diels-Alder reaction with cyclopentadiene: A DFT computational study. Journal of Fluorine Chemistry 2018, 206 , 1-7. https://doi.org/10.1016/j.jfluchem.2017.12.008
    49. Jed M. Burns. Computational evidence for a reaction pathway bifurcation in Sasaki-type (4 + 3)-cycloadditions. Organic & Biomolecular Chemistry 2018, 16 (11) , 1828-1836. https://doi.org/10.1039/C8OB00075A
    50. Irene De Silvestro, Samuel L. Drew, Gary S. Nichol, Fernanda Duarte, Andrew L. Lawrence. Total Synthesis of a Dimeric Thymol Derivative Isolated from Arnica sachalinensis. Angewandte Chemie 2017, 129 (24) , 6917-6921. https://doi.org/10.1002/ange.201701481
    51. Irene De Silvestro, Samuel L. Drew, Gary S. Nichol, Fernanda Duarte, Andrew L. Lawrence. Total Synthesis of a Dimeric Thymol Derivative Isolated from Arnica sachalinensis. Angewandte Chemie International Edition 2017, 56 (24) , 6813-6817. https://doi.org/10.1002/anie.201701481
    52. Christian Chapuis, David Skuy, Jean‐Yves de Saint Laumer, Robert Brauchli. endo / exo Stereoselectivity in Diels  Alder Reactions of α , β ‐Dialkylated Conjugated Enals to Cyclic 1,3‐Dienes: Intermediates in the Synthesis of (−)‐ β ‐Santalol and Its Analogs. Chemistry & Biodiversity 2014, 11 (10) , 1470-1516. https://doi.org/10.1002/cbdv.201400060
    53. . Pericyclic Reactions. 2014, 197-295. https://doi.org/10.1002/9781118671191.ch4
    54. Samuel Lalthazuala Rokhum, Ghanashyam Bez. One-pot solid phase synthesis of (E)-nitroalkenes. Tetrahedron Letters 2013, 54 (40) , 5500-5504. https://doi.org/10.1016/j.tetlet.2013.07.146
    55. Jian Lv, Long Zhang, Sanzhong Luo, Jin‐Pei Cheng. Switchable Diastereoselectivity in Enantioselective [4+2] Cycloadditions with Simple Olefins by Asymmetric Binary Acid Catalysis. Angewandte Chemie 2013, 125 (37) , 9968-9972. https://doi.org/10.1002/ange.201304561
    56. Jian Lv, Long Zhang, Sanzhong Luo, Jin‐Pei Cheng. Switchable Diastereoselectivity in Enantioselective [4+2] Cycloadditions with Simple Olefins by Asymmetric Binary Acid Catalysis. Angewandte Chemie International Edition 2013, 52 (37) , 9786-9790. https://doi.org/10.1002/anie.201304561
    57. Snezhana M. Bakalova, A. Gil Santos. Can Diels–Alder Reactions Lead to trans ‐Fused Products? A Computational Study of the Competitive [4+2] and [2+4] Cycloaddition of Dienes to α‐Aryl‐Substituted Cyclohexenones. European Journal of Organic Chemistry 2013, 2013 (23) , 5171-5179. https://doi.org/10.1002/ejoc.201201754
    58. Zhili Peng, Maurice Narcis, Norito Takenaka. Enantio- and Periselective Nitroalkene Diels-Alder Reactions Catalyzed by Helical-Chiral Hydrogen Bond Donor Catalysts. Molecules 2013, 18 (8) , 9982-9998. https://doi.org/10.3390/molecules18089982
    59. Ghislain Deslongchamps, Pierre Deslongchamps. Bent bonds and the antiperiplanar hypothesis as a simple model to predict Diels–Alder reactivity: retrospective or perspective?. Tetrahedron 2013, 69 (30) , 6022-6033. https://doi.org/10.1016/j.tet.2013.05.008
    60. Zhili Peng, Norito Takenaka. Applications of Helical‐Chiral Pyridines as Organocatalysts in Asymmetric Synthesis. The Chemical Record 2013, 13 (1) , 28-42. https://doi.org/10.1002/tcr.201200010
    61. Jian Lv, Sanzhong Luo. Asymmetric binary acid catalysis: chiral phosphoric acid as dual ligand and acid. Chem. Commun. 2013, 49 (9) , 847-858. https://doi.org/10.1039/C2CC34288J
    62. Peter A Wade, Alma Pipic, Matthias Zeller, Panagiota Tsetsakos. Sequential Diels–Alder/[3,3]-sigmatropic rearrangement reactions of β-nitrostyrene with 3-methyl-1,3-pentadiene. Beilstein Journal of Organic Chemistry 2013, 9 , 2137-2146. https://doi.org/10.3762/bjoc.9.251
    63. Zhi‐Xiang Yu, Yong Liang, K. N. Houk, Yun‐Dong Wu, Xin‐Hao Zhang. Chem Is Try Computationally and Experimentally: How Will Computational Organic Chemistry Impact Organic Theories, Mechanisms, and Synthesis in the Twenty‐First Century?. 2012, 561-601. https://doi.org/10.1002/9783527664801.ch15
    64. Jian Lv, Long Zhang, Shenshen Hu, Jin‐Pei Cheng, Sanzhong Luo. Asymmetric Binary‐Acid Catalysis with InBr 3 in the Inverse‐Electron‐Demanding Hetero‐Diels–Alder Reaction of Mono‐ and Bis‐Substituted Cyclopentadienes: Remote Fluoro‐Effect on Stereocontrol. Chemistry – A European Journal 2012, 18 (3) , 799-803. https://doi.org/10.1002/chem.201103340
    65. Maurice J. Narcis, Daniel J. Sprague, Burjor Captain, Norito Takenaka. Enantio- and periselective nitroalkene Diels–Alder reaction. Organic & Biomolecular Chemistry 2012, 10 (46) , 9134. https://doi.org/10.1039/c2ob26674a
    66. Julia Rehbein, Barry K. Carpenter. Do we fully understand what controls chemical selectivity?. Physical Chemistry Chemical Physics 2011, 13 (47) , 20906. https://doi.org/10.1039/c1cp22565k
    67. Yin Zhu, Xiaohong Chen, Mingsheng Xie, Shunxi Dong, Zhen Qiao, Lili Lin, Xiaohua Liu, Xiaoming Feng. Asymmetric Diels–Alder and Inverse‐Electron‐Demand Hetero‐Diels–Alder Reactions of β,γ‐Unsaturated α‐Ketoesters with Cyclopentadiene Catalyzed by N , N ′‐Dioxide Copper(II) Complex. Chemistry – A European Journal 2010, 16 (39) , 11963-11968. https://doi.org/10.1002/chem.201001365
    68. Hanying Xu, Peter A. Wade, Karl Sohlberg. Formation and sigmatropic rearrangement of PhCOC(NO2)CH2 cycloadducts of 1,3-cyclohexadiene: a theoretical study. Tetrahedron 2010, 66 (4) , 845-851. https://doi.org/10.1016/j.tet.2009.11.075
    69. Daniel H. Ess, Steven E. Wheeler, Robert G. Iafe, Lai Xu, Nihan Çelebi‐Ölçüm, Kendall N. Houk. Bifurkationen auf den Potentialenergiehyperflächen organischer Reaktionen. Angewandte Chemie 2008, 120 (40) , 7704-7713. https://doi.org/10.1002/ange.200800918
    70. Daniel H. Ess, Steven E. Wheeler, Robert G. Iafe, Lai Xu, Nihan Çelebi‐Ölçüm, Kendall N. Houk. Bifurcations on Potential Energy Surfaces of Organic Reactions. Angewandte Chemie International Edition 2008, 47 (40) , 7592-7601. https://doi.org/10.1002/anie.200800918
    71. Luis R. Domingo, M. José Aurell, María N. Kneeteman, Pedro M. Mancini. Mechanistic details of the domino reaction of nitronaphthalenes with the electron-rich dienes. A DFT study. Journal of Molecular Structure: THEOCHEM 2008, 853 (1-3) , 68-76. https://doi.org/10.1016/j.theochem.2007.12.004
    72. Jeehiun K. Lee, Dean J. Tantillo. Reaction mechanisms : Part (ii) Pericyclic reactions. Annual Reports Section "B" (Organic Chemistry) 2008, 104 , 260. https://doi.org/10.1039/b717028a
    73. Steven M. Bachrach. Computational organic chemistry. Annual Reports Section "B" (Organic Chemistry) 2008, 104 , 394. https://doi.org/10.1039/b719311b
    74. Giovanni Desimoni, Giuseppe Faita, Marco Toscanini, Massimo Boiocchi. Peri‐ and Enantioselectivity of Thermal, Scandium‐, and [Pybox/Scandium]‐Catalyzed Diels–Alder and Hetero‐Diels–Alder Reactions of Methyl ( E )‐2‐Oxo‐4‐aryl‐butenoates with Cyclopentadiene. Chemistry – A European Journal 2007, 13 (34) , 9478-9485. https://doi.org/10.1002/chem.200700995