ACS Publications. Most Trusted. Most Cited. Most Read
Regioselectivity and Diasteroselectivity in Pt(II)-Mediated “Green” Catalytic Epoxidation of Terminal Alkenes with Hydrogen Peroxide:  Mechanistic Insight into a Peculiar Substrate Selectivity
My Activity

Figure 1Loading Img
    Article

    Regioselectivity and Diasteroselectivity in Pt(II)-Mediated “Green” Catalytic Epoxidation of Terminal Alkenes with Hydrogen Peroxide:  Mechanistic Insight into a Peculiar Substrate Selectivity
    Click to copy article linkArticle link copied!

    View Author Information
    Contribution from the Dipartimento di Chimica, Università Ca' Foscari di Venezia, Dorsoduro 2137, I-30123 Venice, Italy, and Dipartimento di Processi Chimici dell'Ingegneria, Università di Padova, Via F. Marzolo 9, 35131 Padova, Italy
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2007, 129, 24, 7680–7689
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja071142x
    Published May 27, 2007
    Copyright © 2007 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Recently developed electron-poor Pt(II) catalyst 1 with the “green” oxidant 35% hydrogen peroxide displays high activity and complete substrate selectivity in the epoxidation of terminal alkenes because of stringent steric and electronic requirements. In the presence of isolated dienes bearing terminal and internal double bonds, epoxidation is completely regioselective toward the production of terminal epoxides. Insight into the mechanism is gained by means of a reaction progress kinetic analysis approach that underlines the peculiar role of 1 in activating both the alkene and H2O2 in the rate-determining step providing a rare example of nucleophilic oxidation of alkenes by H2O2.

    Copyright © 2007 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Università Ca' Foscari di Venezia.

     Università di Padova.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    Click to copy section linkSection link copied!

    31P NMR spectra for the coordination of different alkenes to 1 and temperature effect on pre-equilibrium position in the coordination of propene to 1. Comparison of catalyst's activity by means of NMR and GC determination. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 78 publications.

    1. Xuliang Deng, Yang Xu, Jincheng Liu, Dong Lin, Ze Zong, Juncong Yuan, Zhiyang Li, Guanghui Zhao, Yongjun Zhang, Yibin Liu, Xiaobo Chen, Xiang Feng, De Chen, Chaohe Yang, Honghong Shan. Regulating the Coordination Mode of Ti Atoms in the Beta Zeolite Framework to Enhance the 1-Hexene Epoxidation. Industrial & Engineering Chemistry Research 2024, 63 (9) , 3817-3826. https://doi.org/10.1021/acs.iecr.3c03543
    2. Matthias Feigel, Jonas M. Breitsameter, Bernhard Rieger, Olaf Hinrichsen. Bridging the Gap from Laboratory to Production: Kinetic Modeling-Guided Process Development for a Novel Epoxy Resin. Industrial & Engineering Chemistry Research 2024, 63 (3) , 1271-1285. https://doi.org/10.1021/acs.iecr.3c03339
    3. Olga V. Zalomaeva, Vasiliy Yu. Evtushok, Irina D. Ivanchikova, Tatyana S. Glazneva, Yuriy A. Chesalov, Kirill P. Larionov, Igor Y. Skobelev, Oxana A. Kholdeeva. Nucleophilic versus Electrophilic Activation of Hydrogen Peroxide over Zr-Based Metal–Organic Frameworks. Inorganic Chemistry 2020, 59 (15) , 10634-10649. https://doi.org/10.1021/acs.inorgchem.0c01084
    4. Andrew P. Palermo, Christian Schöttle, Shengjie Zhang, Nicolás A. Grosso-Giordano, Alexander Okrut, David A. Dixon, Heinz Frei, Bruce C. Gates, Alexander Katz. Spectroscopic Characterization of μ-η1:η1-Peroxo Ligands Formed by Reaction of Dioxygen with Electron-Rich Iridium Clusters. Inorganic Chemistry 2019, 58 (21) , 14338-14348. https://doi.org/10.1021/acs.inorgchem.9b01529
    5. Simon Sung, David Sale, D. Christopher Braddock, Alan Armstrong, Colin Brennan, and Robert P. Davies . Mechanistic Studies on the Copper-Catalyzed N-Arylation of Alkylamines Promoted by Organic Soluble Ionic Bases. ACS Catalysis 2016, 6 (6) , 3965-3974. https://doi.org/10.1021/acscatal.6b00504
    6. Paolo Sgarbossa, Alessandro Scarso, Giorgio Strukul, and Rino A. Michelin . Platinum(II) Complexes with Coordinated Electron-Withdrawing Fluoroalkyl and Fluoroaryl Ligands: Synthesis, Reactivity, and Catalytic Activity. Organometallics 2012, 31 (4) , 1257-1270. https://doi.org/10.1021/om200953z
    7. Alessandro Scarso, Marco Colladon, Paolo Sgarbossa, Claudio Santo, Rino A. Michelin and Giorgio Strukul . Highly Active and Selective Platinum(II)-Catalyzed Isomerization of Allylbenzenes: Efficient Access to (E)-Anethole and Other Fragrances via Unusual Agostic Intermediates. Organometallics 2010, 29 (6) , 1487-1497. https://doi.org/10.1021/om100033a
    8. Keigo Kamata, Ryo Ishimoto, Tomohisa Hirano, Shinjiro Kuzuya, Kazuhiro Uehara and Noritaka Mizuno . Epoxidation of Alkenes with Hydrogen Peroxide Catalyzed by Selenium-Containing Dinuclear Peroxotungstate and Kinetic, Spectroscopic, and Theoretical Investigation of the Mechanism. Inorganic Chemistry 2010, 49 (5) , 2471-2478. https://doi.org/10.1021/ic902381b
    9. Keigo Kamata, Tomohisa Hirano, Shinjiro Kuzuya and Noritaka Mizuno . Hydrogen-Bond-Assisted Epoxidation of Homoallylic and Allylic Alcohols with Hydrogen Peroxide Catalyzed by Selenium-Containing Dinuclear Peroxotungstate. Journal of the American Chemical Society 2009, 131 (20) , 6997-7004. https://doi.org/10.1021/ja901289r
    10. Christopher G. Oliveri, Pirmin A. Ulmann, Michael J. Wiester and Chad A. Mirkin. Heteroligated Supramolecular Coordination Complexes Formed via the Halide-Induced Ligand Rearrangement Reaction. Accounts of Chemical Research 2008, 41 (12) , 1618-1629. https://doi.org/10.1021/ar800025w
    11. Tracy J. Terry and, T. Daniel P. Stack. Covalent Heterogenization of a Discrete Mn(II) Bis-Phen Complex by a Metal-Template/Metal-Exchange Method:  An Epoxidation Catalyst with Enhanced Reactivity. Journal of the American Chemical Society 2008, 130 (14) , 4945-4953. https://doi.org/10.1021/ja0742030
    12. Jia Nie, Huanfeng Jiang, Chuanle Zhu. Chemoselective epoxidation of electron-deficient olefins with molecular oxygen via conjugated olefins epoxidation and BHT hydroxylation. Science China Chemistry 2024, 104 https://doi.org/10.1007/s11426-024-2128-7
    13. Alessandro Scarso, Paolo Sgarbossa, Roberta Bertani, Giorgio Strukul. Platinum Complexes for Selective Oxidations in Water. 2024, 515-535. https://doi.org/10.1002/9781119870647.ch24
    14. Jonas M. Breitsameter, Nikita Reinhardt, Matthias Feigel, Olaf Hinrichsen, Klaus Drechsler, Bernhard Rieger. Synthesis of a Sustainable and Bisphenol A‐Free Epoxy Resin Based on Sorbic Acid and Characterization of the Cured Thermoset. Macromolecular Materials and Engineering 2023, 308 (9) https://doi.org/10.1002/mame.202300068
    15. Hiroto Fujisaki, Masaya Okamura, Shiro Hikichi, Takahiko Kojima. Selective alkane hydroxylation and alkene epoxidation using H 2 O 2 and Fe( ii ) catalysts electrostatically attached to a fluorinated surface. Chemical Communications 2023, 59 (22) , 3265-3268. https://doi.org/10.1039/D2CC06998A
    16. Muhammad Abdur Rashid, Wanshuang Liu, Yi Wei, Qiuran Jiang. Review of intrinsically recyclable biobased epoxy thermosets enabled by dynamic chemical bonds. Polymer-Plastics Technology and Materials 2022, 61 (16) , 1740-1782. https://doi.org/10.1080/25740881.2022.2080559
    17. Paul Emmanuel López Muñoz, Tomasa Rodríguez Tzompantzi, Vladimir Carranza-Téllez, Sylvain Bernès, Rosa Luisa Meza-León. Regio-, chemo- and stereoselective epoxidation of the 7,3-lactone-xylofuranose and some related chiral lactones. Tetrahedron Letters 2022, 99 , 153811. https://doi.org/10.1016/j.tetlet.2022.153811
    18. Abhishek Maurya, Chanchal Haldar. Liquid‐phase oxidation of olefins with rare hydronium ion salt of dinuclear dioxido‐vanadium(V) complexes and comparative catalytic studies with analogous copper complexes. Applied Organometallic Chemistry 2021, 35 (6) https://doi.org/10.1002/aoc.6203
    19. Soheila Mir, Bahram Yadollahi, Reza Omidyan, Gholamhasan Azimi. DFT study of α-Keggin, lacunary Keggin, and iron II–VI substituted Keggin polyoxometalates: the effect of oxidation state and axial ligand on geometry, electronic structures and oxygen transfer. RSC Advances 2020, 10 (56) , 33718-33730. https://doi.org/10.1039/D0RA05189F
    20. Miguel Rivero-Crespo, Judit Oliver-Meseguer, Klaudia Kapłońska, Piotr Kuśtrowski, Emilio Pardo, José Pedro Cerón-Carrasco, Antonio Leyva-Pérez. Cyclic metal(oid) clusters control platinum-catalysed hydrosilylation reactions: from soluble to zeolite and MOF catalysts. Chemical Science 2020, 11 (31) , 8113-8124. https://doi.org/10.1039/D0SC02391D
    21. Yoshihiro Kon, Takuya Nakashima, Dachao Hong, Xinyi Ji, Ryota Osuga, Satoru Ito, Tadahiro Fujitani, Kazuhiko Sato, Toshiyuki Yokoi. Chemoselective Epoxidation of Allyloxybenzene by Hydrogen Peroxide Over MFI‐Type Titanosilicate. European Journal of Organic Chemistry 2020, 2020 (15) , 2260-2263. https://doi.org/10.1002/ejoc.202000249
    22. Xin Wang, Wenwen Guo, Lei Song, Yuan Hu. Intrinsically flame retardant bio-based epoxy thermosets: A review. Composites Part B: Engineering 2019, 179 , 107487. https://doi.org/10.1016/j.compositesb.2019.107487
    23. Alessandro Scarso, Giorgio Strukul. Transition Metal Catalysis in Micellar Media: Much More Than a Simple Green Chemistry Promise. 2019, 268-288. https://doi.org/10.1039/9781788016131-00268
    24. Yu‐Jie Wang, Wei‐Tang Li, Lei Jiao. A Convenient Method for the Direct Acquisition of Kinetic Rate Data for Catalytic Organic Reactions by Gas Uptake Measurements. Asian Journal of Organic Chemistry 2018, 7 (3) , 570-578. https://doi.org/10.1002/ajoc.201700406
    25. Richard C. Larock, Tanay Kesharwani. Formation of Ethers by Alkane, Arene, Alkene, and Alkyne Substitutions and Additions. 2018, 11-104. https://doi.org/10.1002/9781118662083.cot06-003
    26. Giorgio Strukul, Alessandro Scarso. Metal‐Catalyzed Baeyer–Villiger Oxidations. 2017, 1485-1508. https://doi.org/10.1002/9783527651733.ch29
    27. . Asymmetric Epoxidation. 2017, 379-538. https://doi.org/10.1002/9783527802029.ch3
    28. Xin Zhang, Hong Ke, Zhiming Wang, Weiwei Guo, Amin Zhang, Chusen Huang, Nengqin Jia. An ultrasensitive multi-walled carbon nanotube–platinum–luminol nanocomposite-based electrochemiluminescence immunosensor. The Analyst 2017, 142 (12) , 2253-2260. https://doi.org/10.1039/C7AN00417F
    29. Marina V. Kirillova, Polyana Tomé de Paiva, Wagner A. Carvalho, Dalmo Mandelli, Alexander M. Kirillov. Mixed-ligand aminoalcohol-dicarboxylate copper(II) coordination polymers as catalysts for the oxidative functionalization of cyclic alkanes and alkenes. Pure and Applied Chemistry 2017, 89 (1) , 61-73. https://doi.org/10.1515/pac-2016-1012
    30. Francesco Ballistreri, Chiara Gangemi, Andrea Pappalardo, Gaetano Tomaselli, Rosa Toscano, Giuseppe Trusso Sfrazzetto. (Salen)Mn(III) Catalyzed Asymmetric Epoxidation Reactions by Hydrogen Peroxide in Water: A Green Protocol. International Journal of Molecular Sciences 2016, 17 (7) , 1112. https://doi.org/10.3390/ijms17071112
    31. Ji-Hyang Noh, Rapelang Patala, Reinout Meijboom. Catalytic evaluation of dendrimer and reverse microemulsion template Pd and Pt nanoparticles for the selective oxidation of styrene using TBHP. Applied Catalysis A: General 2016, 514 , 253-266. https://doi.org/10.1016/j.apcata.2016.01.033
    32. John R. Coombs, James P. Morken. Katalytische enantioselektive Funktionalisierung von nichtaktivierten terminalen Alkenen. Angewandte Chemie 2016, 128 (8) , 2682-2696. https://doi.org/10.1002/ange.201507151
    33. John R. Coombs, James P. Morken. Catalytic Enantioselective Functionalization of Unactivated Terminal Alkenes. Angewandte Chemie International Edition 2016, 55 (8) , 2636-2649. https://doi.org/10.1002/anie.201507151
    34. Jordi Burés. A Simple Graphical Method to Determine the Order in Catalyst. Angewandte Chemie 2016, 128 (6) , 2068-2071. https://doi.org/10.1002/ange.201508983
    35. Jordi Burés. A Simple Graphical Method to Determine the Order in Catalyst. Angewandte Chemie International Edition 2016, 55 (6) , 2028-2031. https://doi.org/10.1002/anie.201508983
    36. Keigo Kamata. Design of Highly Functionalized Polyoxometalate-Based Catalysts. Bulletin of the Chemical Society of Japan 2015, 88 (8) , 1017-1028. https://doi.org/10.1246/bcsj.20150154
    37. Susumu Nojima, Keigo Kamata, Kosuke Suzuki, Kazuya Yamaguchi, Noritaka Mizuno. Selective Oxidation with Aqueous Hydrogen Peroxide by [PO 4 {WO(O 2 ) 2 } 4 ] 3− Supported on Zinc‐Modified Tin Dioxide. ChemCatChem 2015, 7 (7) , 1097-1104. https://doi.org/10.1002/cctc.201402975
    38. Sarah Karbalaei Khani, Thomas R. Cundari. A comparison of the Simmons-Smith reaction with carbenoids to nitrenoids and oxenoids. Computational and Theoretical Chemistry 2015, 1056 , 61-73. https://doi.org/10.1016/j.comptc.2015.01.005
    39. Eri Takahashi, Keigo Kamata, Yuji Kikukawa, Sota Sato, Kosuke Suzuki, Kazuya Yamaguchi, Noritaka Mizuno. Synthesis and oxidation catalysis of a Ti-substituted phosphotungstate, and identification of the active oxygen species. Catalysis Science & Technology 2015, 5 (10) , 4778-4789. https://doi.org/10.1039/C5CY01031D
    40. . Transition Metal-Catalyzed Asymmetric Epoxidations. 2014, 5-36. https://doi.org/10.1201/b17422-3
    41. Sandeep P. Netalkar, Anupama A. Nevrekar, Vidyanand K. Revankar. Design, Synthesis and Characterization of Bimetallic Palladium Complexes for Terminal Olefin Epoxidation. Catalysis Letters 2014, 144 (9) , 1573-1583. https://doi.org/10.1007/s10562-014-1315-4
    42. Giorgio La Sorella, Patrizia Canton, Giorgio Strukul, Alessandro Scarso. Surfactant‐Induced Substrate Selectivity in the Palladium‐Nanoparticle‐Mediated Chemoselective Hydrogenation of Unsaturated Aldehydes in Water. ChemCatChem 2014, 6 (6) , 1575-1578. https://doi.org/10.1002/cctc.201402034
    43. Debasis Banerjee, Rajenahally V. Jagadeesh, Kathrin Junge, Marga‐Martina Pohl, Jörg Radnik, Angelika Brückner, Matthias Beller. Convenient and Mild Epoxidation of Alkenes Using Heterogeneous Cobalt Oxide Catalysts. Angewandte Chemie 2014, 126 (17) , 4448-4452. https://doi.org/10.1002/ange.201310420
    44. Debasis Banerjee, Rajenahally V. Jagadeesh, Kathrin Junge, Marga‐Martina Pohl, Jörg Radnik, Angelika Brückner, Matthias Beller. Convenient and Mild Epoxidation of Alkenes Using Heterogeneous Cobalt Oxide Catalysts. Angewandte Chemie International Edition 2014, 53 (17) , 4359-4363. https://doi.org/10.1002/anie.201310420
    45. Giorgio La Sorella, Mattia Bazan, Alessandro Scarso, Giorgio Strukul. Competitive micellar induced substrate selectivity in the Pd mediated heck coupling between iodoaryl substrates and linear acrylic esters in water. Journal of Molecular Catalysis A: Chemical 2013, 379 , 192-196. https://doi.org/10.1016/j.molcata.2013.08.026
    46. A. Somasekar Rao, H. Rama Mohan, Jernej Iskra. Hydrogen Peroxide. 2013https://doi.org/10.1002/047084289X.rh040.pub2
    47. Olga Bortolini, Alberto Cavazzini, Pier Paolo Giovannini, Roberto Greco, Nicola Marchetti, Alessandro Massi, Luisa Pasti. A Combined Kinetic and Thermodynamic Approach for the Interpretation of Continuous‐Flow Heterogeneous Catalytic Processes. Chemistry – A European Journal 2013, 19 (24) , 7802-7808. https://doi.org/10.1002/chem.201300181
    48. Tse‐Lok Ho, Mary Fieser, Louis Fieser. Hydrogen peroxide – metal catalysts. 2013, 317-320. https://doi.org/10.1002/9780471264194.fos05663.pub5
    49. K.P. Bryliakov. Sustainable Asymmetric Oxidations. 2013, 625-664. https://doi.org/10.1016/B978-0-08-097774-4.00624-0
    50. Alessandra Cavarzan, Joost N. H. Reek, Francesco Trentin, Alessandro Scarso, Giorgio Strukul. Substrate selectivity in the alkyne hydration mediated by NHC–Au(i) controlled by encapsulation of the catalyst within a hydrogen bonded hexameric host. Catalysis Science & Technology 2013, 3 (11) , 2898. https://doi.org/10.1039/c3cy00300k
    51. K. Matsumoto, T. Katsuki. 5.3 Oxidation: Epoxidation (Allylic Alcohol, Homoallylic Alcohol, Simple C=C, Electron Deficient C=C). 2012, 69-117. https://doi.org/10.1016/B978-0-08-095167-6.00504-8
    52. Jie Pan, Min Zhang, Songlin Zhang. Efficient synthetic method for the preparation of allyl- and propargyl-epoxides by allylation and propargylation of α-haloketones with organozinc reagents. Org. Biomol. Chem. 2012, 10 (5) , 1060-1067. https://doi.org/10.1039/C1OB06071F
    53. Francesco Trentin, Alessandro Scarso, Giorgio Strukul. Micellar-driven substrate selectivity in Cr(salen)Cl catalytic Diels–Alder reaction in water. Tetrahedron Letters 2011, 52 (51) , 6978-6981. https://doi.org/10.1016/j.tetlet.2011.10.088
    54. Nan Lu, Shizhen Mi, Dezhan Chen, Guiqiu Zhang. Theoretical investigation on chiral cinchona alkaloid salts‐catalyzed asymmetric epoxidation of cyclic enones. International Journal of Quantum Chemistry 2011, 111 (12) , 2874-2881. https://doi.org/10.1002/qua.22567
    55. Noritaka Mizuno, Keigo Kamata. Catalytic oxidation of hydrocarbons with hydrogen peroxide by vanadium-based polyoxometalates. Coordination Chemistry Reviews 2011, 255 (19-20) , 2358-2370. https://doi.org/10.1016/j.ccr.2011.01.041
    56. Tse‐Lok Ho, Mary Fieser, Louis Fieser. Hydrogen peroxide – metal catalysts. 2011, 317-320. https://doi.org/10.1002/9780471264194.fos05663.pub4
    57. Keigo Kamata, Kosei Sugahara, Kazuhiro Yonehara, Ryo Ishimoto, Noritaka Mizuno. Efficient Epoxidation of Electron‐Deficient Alkenes with Hydrogen Peroxide Catalyzed by [γ‐PW 10 O 38 V 2 (μ‐OH) 2 ] 3−. Chemistry – A European Journal 2011, 17 (27) , 7549-7559. https://doi.org/10.1002/chem.201101001
    58. . Elementary Steps. 2011, 1-49. https://doi.org/10.1002/9783527635993.ch1
    59. Giorgio De Faveri, Gennadiy Ilyashenko, Michael Watkinson. Recent advances in catalytic asymmetric epoxidation using the environmentally benign oxidant hydrogen peroxide and its derivatives. Chem. Soc. Rev. 2011, 40 (3) , 1722-1760. https://doi.org/10.1039/C0CS00077A
    60. Kiumars Bahrami, Mohammad M. Khodaei, Peyman Fattahpour. SBA-15-Pr–SO3H as nanoreactor catalyzed oxidation of sulfides into sulfoxides. Catalysis Science & Technology 2011, 1 (3) , 389. https://doi.org/10.1039/c1cy00053e
    61. Tsutomu Katsuki. Asymmetric Oxidation with Hydrogen Peroxide, an Effective and Versatile Oxidant. 2010, 59-76. https://doi.org/10.1002/9783527633678.ch3
    62. Hans Adolfsson. Transition Metal‐Catalyzed Epoxidation of Alkenes. 2010, 37-84. https://doi.org/10.1002/9783527632039.ch2
    63. Alessandra Lattanzi. Asymmetric Epoxidations of α,β‐Unsaturated Carbonyl Compounds. 2010, 351-391. https://doi.org/10.1002/9783527630578.ch9
    64. Senmiao Xu, Zheng Wang, Yuxue Li, Xumu Zhang, Haiming Wang, Kuiling Ding. Mechanistic Investigation of Chiral Phosphoric Acid Catalyzed Asymmetric Baeyer–Villiger Reaction of 3‐Substituted Cyclobutanones with H 2 O 2 as the Oxidant. Chemistry – A European Journal 2010, 16 (10) , 3021-3035. https://doi.org/10.1002/chem.200902698
    65. Rino A. Michelin, Paolo Sgarbossa, Alessandro Scarso, Giorgio Strukul. The Baeyer–Villiger oxidation of ketones: A paradigm for the role of soft Lewis acidity in homogeneous catalysis. Coordination Chemistry Reviews 2010, 254 (5-6) , 646-660. https://doi.org/10.1016/j.ccr.2009.09.014
    66. Tse‐Lok Ho, Mary Fieser, Louis Fieser. Hydrogen peroxide–metal catalysts. 2010, 000-000. https://doi.org/10.1002/9780471264194.fos05663.pub3
    67. Kazuhiro Matsumoto, Tsutomu Katsuki. Asymmetric Oxidations and Related Reactions. 2010, 839-890. https://doi.org/10.1002/9780470584248.ch11
    68. Alessio Russo, Alessandra Lattanzi. Asymmetric epoxidation of 2-arylidene-1,3-diketones: facile access to synthetically useful epoxides. Organic & Biomolecular Chemistry 2010, 8 (11) , 2633. https://doi.org/10.1039/c002587a
    69. Kristin Schröder, Stephan Enthaler, Bianca Bitterlich, Thomas Schulz, Anke Spannenberg, Man Kin Tse, Kathrin Junge, Matthias Beller. Design of and Mechanistic Studies on a Biomimetic Iron–Imidazole Catalyst System for Epoxidation of Olefins with Hydrogen Peroxide. Chemistry – A European Journal 2009, 15 (22) , 5471-5481. https://doi.org/10.1002/chem.200802731
    70. Man Kin Tse, Bianca Bitterlich, Matthias Beller. Development of Novel Ruthenium and Iron Catalysts for Epoxidation with Hydrogen Peroxide. 2009, 313-337. https://doi.org/10.1002/9783527625468.ch17
    71. Bianca Bitterlich, Kristin Schröder, Man Kin Tse, Matthias Beller. An Improved Iron‐Catalyzed Epoxidation of Aromatic and Aliphatic Olefins with Hydrogen Peroxide as Oxidant. European Journal of Organic Chemistry 2008, 2008 (29) , 4867-4870. https://doi.org/10.1002/ejoc.200800712
    72. Francesco P. Ballistreri, Gaetano A. Tomaselli, Rosa M. Toscano. Selective and mild oxidation of thiols to sulfonic acids by hydrogen peroxide catalyzed by methyltrioxorhenium. Tetrahedron Letters 2008, 49 (20) , 3291-3293. https://doi.org/10.1016/j.tetlet.2008.03.068
    73. Linsheng Feng, Eugenijus Urnezius, Rudy L. Luck. Cyclooctene epoxidation with H2O2 and single crystal X-ray determined crystal structures of new molybdenum and tungsten catalysts bearing the hydrophilic ligand hydroxymethyldiphenylphosphine oxide. Journal of Organometallic Chemistry 2008, 693 (8-9) , 1564-1571. https://doi.org/10.1016/j.jorganchem.2007.11.018
    74. M. Pilar del Río, Miguel A. Ciriano, Cristina Tejel. From Olefins to Ketones via a 2‐Rhodaoxetane Complex. Angewandte Chemie 2008, 120 (13) , 2536-2539. https://doi.org/10.1002/ange.200705802
    75. M. Pilar del Río, Miguel A. Ciriano, Cristina Tejel. From Olefins to Ketones via a 2‐Rhodaoxetane Complex. Angewandte Chemie International Edition 2008, 47 (13) , 2502-2505. https://doi.org/10.1002/anie.200705802
    76. Barrie Marsh, David R. Carbery. Synthetic methods : Part (ii) Oxidation and reduction methods. Annual Reports Section "B" (Organic Chemistry) 2008, 104 , 35. https://doi.org/10.1039/b716595c
    77. R. N. Mehrotra. Oxidation and Reduction. 2007, 69-132. https://doi.org/10.1002/9780470975800.ch3
    78. Marco Colladon, Alessandro Scarso, Paolo Sgarbossa, Rino A. Michelin, Giorgio Strukul. Regioselectivity and Diastereoselectivity in Pt(II)‐Mediated “Green” Catalytic Epoxidation of Terminal Alkenes with Hydrogen Peroxide: Mechanistic Insight into a Peculiar Substrate Selectivity.. ChemInform 2007, 38 (42) https://doi.org/10.1002/chin.200742094

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2007, 129, 24, 7680–7689
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja071142x
    Published May 27, 2007
    Copyright © 2007 American Chemical Society

    Article Views

    3255

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.