ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Inverse Solvent Effects in Carbocation Carbanion Combination Reactions:  The Unique Behavior of Trifluoromethylsulfonyl Stabilized Carbanions

View Author Information
Contribution from the Department Chemie und Biochemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 (Haus F), 81377 München, Germany
Cite this: J. Am. Chem. Soc. 2007, 129, 31, 9753–9761
Publication Date (Web):July 18, 2007
https://doi.org/10.1021/ja072135b
Copyright © 2007 American Chemical Society

    Article Views

    1439

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (205 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Second-order rate constants for the reactions of the trifluoromethylsulfonyl substituted benzyl anions 1ae (CF3SO2CH-−C6H4−X) with the benzhydrylium ions 2fj and structurally related quinone methides 2ae have been determined by UV−vis spectroscopy. The reactions proceed approximately 10−40 times faster in methanol than in DMSO leading to the unique situation that these carbocation carbanion combinations are faster in protic than in dipolar aprotic media. The pKa values of some benzyl trifluoromethylsulfones were determined in methanol (1c-H, 17.1; 1d-H, 16.0; 1e-H, 15.0) and found to be 5 units larger than the corresponding values in DMSO. Rate and equilibrium measurements thus agree that the trifluoromethylsulfonyl substituted benzyl anions 1ae are more effectively solvated by ion−dipole interactions in DMSO than by hydrogen bonding in methanol. Brønsted correlations show that in DMSO the trifluoromethylsulfonyl substituted carbanions 1 are less nucleophilic than most other types of carbanions of similar basicity, indicating that in DMSO the intrinsic barriers for the reactions of the localized carbanions 1 are higher than those of delocalized carbanions, including nitroalkyl anions. The situation is reversed in methanol, where the reactions of the localized carbanions 1 possess lower intrinsic barriers than those of delocalized carbanions as commonly found for proton-transfer processes. As a consequence, the relative magnitudes of intrinsic barriers are strongly dependent on the solvent.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Details of the product characterization, kinetic experiments, and determination of equilibrium constants (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 58 publications.

    1. Francesca Franco, Sara Meninno, Jacob Overgaard, Sergio Rossi, Maurizio Benaglia, Alessandra Lattanzi. Catalytic Enantioselective Entry to Triflones Featuring a Quaternary Stereocenter. Organic Letters 2022, 24 (24) , 4371-4376. https://doi.org/10.1021/acs.orglett.2c01589
    2. Manuel Orlandi, Margarita Escudero-Casao, Giulia Licini. Nucleophilicity Prediction via Multivariate Linear Regression Analysis. The Journal of Organic Chemistry 2021, 86 (4) , 3555-3564. https://doi.org/10.1021/acs.joc.0c02952
    3. Zhen Li, Robert J. Mayer, Armin R. Ofial, Herbert Mayr. From Carbodiimides to Carbon Dioxide: Quantification of the Electrophilic Reactivities of Heteroallenes. Journal of the American Chemical Society 2020, 142 (18) , 8383-8402. https://doi.org/10.1021/jacs.0c01960
    4. Michael Bielecki, Graeme W. Howe, Ronald Kluger. Competing Protonation and Halide Elimination as a Probe of the Character of Thiamin-Derived Reactive Intermediates. Biochemistry 2019, 58 (34) , 3566-3571. https://doi.org/10.1021/acs.biochem.9b00298
    5. Daria S. Timofeeva, Armin R. Ofial, Herbert Mayr. Kinetics of Electrophilic Fluorinations of Enamines and Carbanions: Comparison of the Fluorinating Power of N–F Reagents. Journal of the American Chemical Society 2018, 140 (36) , 11474-11486. https://doi.org/10.1021/jacs.8b07147
    6. Alexander Schade, Ivan Tchernook, Mirko Bauer, Alexander Oehlke, Martin Breugst, Joachim Friedrich, and Stefan Spange . Kinetics of Electrophilic Alkylations of Barbiturate and Thiobarbiturate Anions. The Journal of Organic Chemistry 2017, 82 (16) , 8476-8488. https://doi.org/10.1021/acs.joc.7b01223
    7. Xiu-Hua Xu, Kohei Matsuzaki, and Norio Shibata . Synthetic Methods for Compounds Having CF3–S Units on Carbon by Trifluoromethylation, Trifluoromethylthiolation, Triflylation, and Related Reactions. Chemical Reviews 2015, 115 (2) , 731-764. https://doi.org/10.1021/cr500193b
    8. Dominik S. Allgäuer, Peter Mayer, and Herbert Mayr . Nucleophilicity Parameters of Pyridinium Ylides and Their Use in Mechanistic Analyses. Journal of the American Chemical Society 2013, 135 (40) , 15216-15224. https://doi.org/10.1021/ja407885h
    9. Ivo Zenz and Herbert Mayr . Electrophilicities of trans-β-Nitrostyrenes. The Journal of Organic Chemistry 2011, 76 (22) , 9370-9378. https://doi.org/10.1021/jo201678u
    10. Roland Appel, Nicolai Hartmann, and Herbert Mayr. Scope and Limitations of Cyclopropanations with Sulfur Ylides. Journal of the American Chemical Society 2010, 132 (50) , 17894-17900. https://doi.org/10.1021/ja1084749
    11. Roland Appel, Robert Loos and Herbert Mayr . Nucleophilicity Parameters for Phosphoryl-Stabilized Carbanions and Phosphorus Ylides: Implications for Wittig and Related Olefination Reactions. Journal of the American Chemical Society 2009, 131 (2) , 704-714. https://doi.org/10.1021/ja8056216
    12. Oliver Kaumanns, Roland Appel, Tadeusz Lemek, Florian Seeliger and Herbert Mayr . Nucleophilicities of the Anions of Arylacetonitriles and Arylpropionitriles in Dimethyl Sulfoxide. The Journal of Organic Chemistry 2009, 74 (1) , 75-81. https://doi.org/10.1021/jo802241x
    13. Feriel Necibi, Saida Ben Salah, Jean‐Cyrille Hierso, Paul Fleurat‐Lessard, Sahbi Ayachi, Taoufik Boubaker. Nucleophilicity Parameters for Nitroalkyl Anions in Methanol and Structure‐Reactivity Analysis. ChemistrySelect 2023, 8 (8) https://doi.org/10.1002/slct.202203590
    14. Carolina G. S. Lima, Fernanda P. Pauli, Dora C. S. Costa, Acácio S. de Souza, Luana S. M. Forezi, Vitor F. Ferreira, Fernando de Carvalho da Silva. para ‐Quinone Methides as Acceptors in 1,6‐Nucleophilic Conjugate Addition Reactions for the Synthesis of Structurally Diverse Molecules. European Journal of Organic Chemistry 2020, 2020 (18) , 2650-2692. https://doi.org/10.1002/ejoc.201901796
    15. Susanna H. Wood, Stephen Etridge, Alan R. Kennedy, Jonathan M. Percy, David J. Nelson. The Electrophilic Fluorination of Enol Esters Using SelectFluor: A Polar Two‐Electron Process. Chemistry – A European Journal 2019, 25 (21) , 5574-5585. https://doi.org/10.1002/chem.201900029
    16. Daria S. Timofeeva, Armin R. Ofial, Herbert Mayr. Nucleophilic reactivities of Schiff base derivatives of amino acids. Tetrahedron 2019, 75 (4) , 459-463. https://doi.org/10.1016/j.tet.2018.11.075
    17. María Inés Flores‐Conde, Fabiola N. de la Cruz, Julio López, J. Óscar C. Jiménez‐Halla, Eduardo Peña‐Cabrera, Marcos Flores‐Álamo, Francisco Delgado, Miguel A. Vázquez. Unexpected reactivity of pyridinium salts toward alkynyl Fischer complexes to produce oxo ‐heterocycles. Applied Organometallic Chemistry 2018, 32 (3) https://doi.org/10.1002/aoc.4202
    18. Jun Yang, Juanjuan Hu, Yangen Huang, Xiuhua Xu, Fengling Qing. Direct Triflylation of Benzylic C—H Bonds with Pyridine as a Directing Group. Chinese Journal of Chemistry 2017, 35 (6) , 867-870. https://doi.org/10.1002/cjoc.201600826
    19. Ángel Puente, Armin R. Ofial, Herbert Mayr. Nucleophilic Reactivities of Bis-Acceptor-Substituted Benzyl Anions. European Journal of Organic Chemistry 2017, 2017 (8) , 1196-1202. https://doi.org/10.1002/ejoc.201601513
    20. Sami Lakhdar. Quantitative Treatments of Nucleophilicity and Carbon Lewis Basicity. 2016, 85-118. https://doi.org/10.1002/9783527675142.ch4
    21. Zachary D. Parsons, Kasi Viswanatharaju Ruddraraju, Nicholas Santo, Kent S. Gates. Sulfone-stabilized carbanions for the reversible covalent capture of a posttranslationally-generated cysteine oxoform found in protein tyrosine phosphatase 1B (PTP1B). Bioorganic & Medicinal Chemistry 2016, 24 (12) , 2631-2640. https://doi.org/10.1016/j.bmc.2016.03.054
    22. Ángel Puente, Shanshan He, Francisco Corral-Bautista, Armin R. Ofial, Herbert Mayr. Nucleophilic Reactivities of 2-Substituted Malonates. European Journal of Organic Chemistry 2016, 2016 (10) , 1841-1848. https://doi.org/10.1002/ejoc.201600107
    23. Mark Greenhalgh. Iron-Catalysed Hydromagnesiation of Styrene Derivatives. 2016, 115-174. https://doi.org/10.1007/978-3-319-33663-3_4
    24. Francisco Corral‐Bautista, Lydia Klier, Paul Knochel, Herbert Mayr. Von Carbanionen zu metallorganischen Verbindungen: Quantifizierung des Metallionen‐Effekts auf die nucleophile Reaktivität. Angewandte Chemie 2015, 127 (42) , 12676-12680. https://doi.org/10.1002/ange.201501385
    25. Francisco Corral-Bautista, Lydia Klier, Paul Knochel, Herbert Mayr. From Carbanions to Organometallic Compounds: Quantification of Metal Ion Effects on Nucleophilic Reactivities. Angewandte Chemie International Edition 2015, 54 (42) , 12497-12500. https://doi.org/10.1002/anie.201501385
    26. Iwona Binkowska. Disulfonyl carbon acids – synthesis, spectroscopic and structural studies – a review. Comptes Rendus Chimie 2015, 18 (8) , 898-908. https://doi.org/10.1016/j.crci.2014.12.008
    27. Francisco Corral-Bautista, Roland Appel, Johanna S. Frickel, Herbert Mayr. Quantification of Ion-Pairing Effects on the Nucleophilic Reactivities of Benzoyl- and Phenyl-Substituted Carbanions in Dimethylsulfoxide. Chemistry - A European Journal 2015, 21 (2) , 875-884. https://doi.org/10.1002/chem.201404500
    28. Aurora López, Alejandro Parra, Carlos Jarava-Barrera, Mariola Tortosa. Copper-catalyzed silylation of p-quinone methides: new entry to dibenzylic silanes. Chemical Communications 2015, 51 (100) , 17684-17687. https://doi.org/10.1039/C5CC06653K
    29. Iwona Binkowska. Spectroscopic characterization of 1:1 complexes of some carbon acids activated by two sulfonyl groups with 1,5,7-triazabicyclo[4.4.0]dec-5-ene in acetonitrile. International Journal of Mass Spectrometry 2014, 373 , 56-65. https://doi.org/10.1016/j.ijms.2014.09.003
    30. Nizar El Guesmi, Taoufik Boubaker, Régis Goumont, François Terrier. Regioselectivity and High Electrophilicity in the σ Complexation of Aromatic Triflones. European Journal of Organic Chemistry 2014, 2014 (30) , 6774-6786. https://doi.org/10.1002/ejoc.201402607
    31. Xi Chen, Yue Tan, Guillaume Berionni, Armin R. Ofial, Herbert Mayr. Di- and Triarylmethylium Ions as Probes for the Ambident Reactivities of Carbanions Derived from 5-Benzylated Meldrum’s Acid. Chemistry - A European Journal 2014, 20 (35) , 11069-11077. https://doi.org/10.1002/chem.201403161
    32. BASIM H. ASGHAR. Reactions of Substituted Phenylnitromethane Carbanions with Aromatic Nitro Compounds in Methanol: Carbanion Reactivity, Kinetic, and Equilibrium Studies. International Journal of Chemical Kinetics 2014, 46 (8) , 477-488. https://doi.org/10.1002/kin.20864
    33. T. William Bentley. A comprehensive N + scale of nucleophilicity in an equation including a Swain‐Scott response/selectivity parameter. Journal of Physical Organic Chemistry 2013, 26 (12) , 977-982. https://doi.org/10.1002/poc.3067
    34. Ramsés Ramírez, Cirilo García-Martínez, Francisco Méndez. Understanding the Nucleophilic Character and Stability of the Carbanions and Alkoxides of 1-(9-Anthryl)ethanol and Derivatives. Molecules 2013, 18 (9) , 10254-10265. https://doi.org/10.3390/molecules180910254
    35. Francisco Corral-Bautista, Herbert Mayr. Quantification of the Nucleophilic Reactivities of Ethyl Arylacetate Anions. European Journal of Organic Chemistry 2013, 2013 (20) , 4255-4261. https://doi.org/10.1002/ejoc.201300265
    36. . The Superelectrophilic Dimension in S N Ar and Related α‐Complexation Processes. 2013, 163-203. https://doi.org/10.1002/9783527656141.ch3
    37. Gunther Hellmann, Achim Hack, Eric Thiemermann, Olaf Luche, Gerhard Raabe, Hans-Joachim Gais. Chiral Fluorinated α-Sulfonyl Carbanions: Enantioselective Synthesis and Electrophilic Capture, Racemization Dynamics, and Structure. Chemistry - A European Journal 2013, 19 (12) , 3869-3897. https://doi.org/10.1002/chem.201204014
    38. Lian-Gang Zhuo, Wei Liao, Zhi-Xiang Yu. A Frontier Molecular Orbital Theory Approach to Understanding the Mayr Equation and to Quantifying Nucleophilicity and Electrophilicity by Using HOMO and LUMO Energies. Asian Journal of Organic Chemistry 2012, 1 (4) , 336-345. https://doi.org/10.1002/ajoc.201200103
    39. Basim H. Asghar. Kinetic studies of reactions of 4-nitrobenzofuroxan with carbanions derived from benzyltriflones in methanol. International Journal of Chemical Kinetics 2012, 44 (8) , 546-554. https://doi.org/10.1002/kin.20621
    40. Sergey Kurbatov, Sami Lakhdar, Regis Goumont, François Terrier. Super-electrophilic 10π Heteroaromatics. New Mechanistic and Synthetic Applications. Organic Preparations and Procedures International 2012, 44 (4) , 289-339. https://doi.org/10.1080/00304948.2012.697701
    41. T. William Bentley. Nucleophilicity parameters for strong nucleophiles in dimethyl sulfoxide. A direct alternative to the s(E + N) equation. Journal of Physical Organic Chemistry 2011, 24 (4) , 282-291. https://doi.org/10.1002/poc.1747
    42. Roland Appel, Herbert Mayr. Nucleophilic Reactivities of Sulfur Ylides and Related Carbanions: Comparison with Structurally Related Organophosphorus Compounds. Chemistry - A European Journal 2010, 16 (29) , 8610-8614. https://doi.org/10.1002/chem.201001455
    43. Roland Scholz, Gunther Hellmann, Susanne Rohs, Gerhard Raabe, Jan Runsink, Diana Özdemir, Olaf Luche, Thomas Heß, Alexander W. Giesen, Juliana Atodiresei, Hans J. Lindner, Hans‐Joachim Gais. Experimental and Theoretical Investigation of the Enantiomerization of Lithium α‐ tert ‐Butylsulfonyl Carbanion Salts and the Determination of Their Structures in Solution and in the Crystal. European Journal of Organic Chemistry 2010, 2010 (24) , 4559-4587. https://doi.org/10.1002/ejoc.201000409
    44. Basim H. Asghar. 1H NMR and kinetics studies of the reaction of 4-methyl, 4-bromo and 3-trifluoromethyl benzyltriflones with aromatic nitro-compounds. Journal of Saudi Chemical Society 2010, 14 (3) , 261-267. https://doi.org/10.1016/j.jscs.2010.02.013
    45. Chen Wang, Yao Fu, Qing-Xiang Guo, Lei Liu. First-Principles Prediction of Nucleophilicity Parameters for π Nucleophiles: Implications for Mechanistic Origin of Mayr’s Equation. Chemistry - A European Journal 2010, 16 (8) , 2586-2598. https://doi.org/10.1002/chem.200902484
    46. Oksana M. Kamoshenkova, Vladimir N. Boiko. Reactions of 1,3,5-tris(fluorosulfonyl)benzene with some nucleophilic reagents. Journal of Fluorine Chemistry 2010, 131 (2) , 248-253. https://doi.org/10.1016/j.jfluchem.2009.11.019
    47. Nizar El Guesmi, Taoufik Boubaker, Regis Goumont, François Terrier. The Ambident Reactivity of 2,4,6-Tris(trifluoromethanesulfonyl)anisole in Methanol: Using the SO 2 CF 3 Group as a Tool to Reach the Superelectrophilic Dimension in σ-Complexation Processes. Chemistry - A European Journal 2009, 15 (44) , 12018-12029. https://doi.org/10.1002/chem.200901123
    48. Dorothea Richter, Nathalie Hampel, Thomas Singer, Armin R. Ofial, Herbert Mayr. Synthesis and Characterization of Novel Quinone Methides: Reference Electrophiles for the Construction of Nucleophilicity Scales. European Journal of Organic Chemistry 2009, 2009 (19) , 3203-3211. https://doi.org/10.1002/ejoc.200900299
    49. Jean-Luc Mieusset, Angelika Schrems, Michael Abraham, Vladimir B. Arion, Udo H. Brinker. Stepwise insertion of carbenes into C–H bonds: the case of foiled carbenes. Tetrahedron 2009, 65 (4) , 765-770. https://doi.org/10.1016/j.tet.2008.11.063
    50. Oliver Kaumanns, Roland Lucius, Herbert Mayr. Determination of the Electrophilicity Parameters of Diethyl Benzylidenemalonates in Dimethyl Sulfoxide: Reference Electrophiles for Characterizing Strong Nucleophiles. Chemistry - A European Journal 2008, 14 (31) , 9675-9682. https://doi.org/10.1002/chem.200801277
    51. Herbert Mayr, Armin R. Ofial. Do general nucleophilicity scales exist?. Journal of Physical Organic Chemistry 2008, 21 (7-8) , 584-595. https://doi.org/10.1002/poc.1325
    52. Basim H.M. Asghar, Michael R Crampton, Chukwuemeka Isanbor. Carbanion reactivity — σ-adduct formation and elimination in the reactions of the carbanion from bis(phenylsulfonyl)methane with 4-nitrobenzofurazan derivatives. Canadian Journal of Chemistry 2008, 86 (3) , 225-229. https://doi.org/10.1139/v08-010
    53. AnnMarie C. O’Donoghue, Chukwuemeka Isanbor. Reaction mechanisms : Part (iii) Polar reactions. Annual Reports Section "B" (Organic Chemistry) 2008, 104 , 284. https://doi.org/10.1039/b719310f
    54. Florian Seeliger, Herbert Mayr. Nucleophilic reactivities of benzenesulfonyl-substituted carbanions. Organic & Biomolecular Chemistry 2008, 6 (17) , 3052. https://doi.org/10.1039/b805604h
    55. Nizar El Guesmi, Taoufik Boubaker, Régis Goumont, François Terrier. Electrophilicity of aromatic triflones in σ-complexation processes. Organic & Biomolecular Chemistry 2008, 6 (21) , 4041. https://doi.org/10.1039/b810273b
    56. R. A. McClelland. Carbocations. 2007, 181-200. https://doi.org/10.1002/9780470975800.ch7
    57. M. L. Birsa. Carbanions and Electrophilic Aliphatic Substitution. 2007, 239-263. https://doi.org/10.1002/9780470975800.ch9
    58. Stefan T. A. Berger, Florian H. Seeliger, Florian Hofbauer, Herbert Mayr. Electrophilicity parameters for 2-benzylidene-indan-1,3-diones—a systematic extension of the benzhydrylium based electrophilicity scale. Organic & Biomolecular Chemistry 2007, 5 (18) , 3020. https://doi.org/10.1039/b708025e

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect