Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Allylic Amines via Iridium-Catalyzed C−C Bond Forming Hydrogenation:  Imine Vinylation in the Absence of Stoichiometric Byproducts or Metallic Reagents

View Author Information
Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712
Cite this: J. Am. Chem. Soc. 2007, 129, 27, 8432–8433
Publication Date (Web):June 16, 2007
https://doi.org/10.1021/ja073018j
Copyright © 2007 American Chemical Society

    Article Views

    2451

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Exposure of aromatic, heteroaromatic, and aliphatic N-arylsulfonyl aldimines 1a12a in toluene solution at 60 °C to 2-butyne and hydrogen at ambient pressure in the presence of a cationic iridium(I) catalyst modified by BIPHEP enables formation of reductive coupling products, allylic amines 1b12b, in good isolated yields as single geometrical isomers (>95:5, E:Z). The nonsymmetric alkynes 4-methyl-2-pentyne couple to imines 6a, 12a, and 13a under standard conditions with complete levels of regioselection. Hydrogenative coupling of 2-hexyne to imines 6a, 12a, and 13a delivers allylic amines 15b, 16b, and 18b in 10:1 regioisomeric ratios in each case. As revealed by 2H NMR analysis, reductive coupling of 2-butyne to imine 2a under an atmosphere of elemental deuterium provides deuterio-2b, which incorporates deuterium at the vinylic position (83% 2H) and at the allylic methyl groups (5% 2H). An equal distribution of deuterium at the allylic methyl groups suggests H−D exchange at the propargylic positions of 2-butyne in advance of C−C coupling.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Experimental procedures and spectral data (1H NMR, 13C NMR, IR, HRMS) for all new compounds, including 2H NMR spectra of deuterio-2b. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 81 publications.

    1. Bofei Wang, Avijit Hazra, Gojko Lalic. Regio- and Diastereoselective Synthesis of E-Allylic Amines through Hydroalkylation of Terminal Alkynes. ACS Catalysis 2024, 14 (8) , 6021-6027. https://doi.org/10.1021/acscatal.4c00853
    2. Eliezer Ortiz, Jonathan Shezaf, Yu-Hsiang Chang, Michael J. Krische. Enantioselective Metal-Catalyzed Reductive Coupling of Alkynes with Carbonyl Compounds and Imines: Convergent Construction of Allylic Alcohols and Amines. ACS Catalysis 2022, 12 (14) , 8164-8174. https://doi.org/10.1021/acscatal.2c02444
    3. Qing He, Lei Zhu, Zhen-Hong Yang, Bo Zhu, Qin Ouyang, Wei Du, Ying-Chun Chen. Palladium-Catalyzed Modular and Enantioselective cis-Difunctionalization of 1,3-Enynes with Imines and Boronic Reagents. Journal of the American Chemical Society 2021, 143 (43) , 17989-17994. https://doi.org/10.1021/jacs.1c09877
    4. Wei-Min Feng, Tian-Yu Li, Li-Jun Xiao, Qi-Lin Zhou. Nickel-Catalyzed Intramolecular Hydroalkenylation of Imines. Organic Letters 2021, 23 (20) , 7900-7904. https://doi.org/10.1021/acs.orglett.1c02908
    5. Dean D. Roberts, Mark G. McLaughlin. Regioselective Synthesis of Multifunctional Allylic Amines; Access to Ambiphilic Aziridine Scaffolds. Organic Letters 2021, 23 (11) , 4463-4467. https://doi.org/10.1021/acs.orglett.1c01398
    6. Catherine Gazolla Santana, Michael J. Krische. From Hydrogenation to Transfer Hydrogenation to Hydrogen Auto-Transfer in Enantioselective Metal-Catalyzed Carbonyl Reductive Coupling: Past, Present, and Future. ACS Catalysis 2021, 11 (9) , 5572-5585. https://doi.org/10.1021/acscatal.1c01109
    7. Liexin Wu, Huiying Xu, Hui Gao, Liping Li, Weijie Chen, Zhi Zhou, Wei Yi. Chiral Allylic Amine Synthesis Enabled by the Enantioselective CpXRh(III)-Catalyzed Carboaminations of 1,3-Dienes. ACS Catalysis 2021, 11 (4) , 2279-2287. https://doi.org/10.1021/acscatal.0c04777
    8. Aaron Trowbridge, Scarlett M. Walton, Matthew J. Gaunt. New Strategies for the Transition-Metal Catalyzed Synthesis of Aliphatic Amines. Chemical Reviews 2020, 120 (5) , 2613-2692. https://doi.org/10.1021/acs.chemrev.9b00462
    9. Xu Zhang, Zhi Zhou, Huiying Xu, Xuefeng Xu, Xiyong Yu, Wei Yi. Cobalt-Catalyzed Allylation of Amides with Styrenes Using DMSO as Both the Solvent and the α-Methylene Source. Organic Letters 2019, 21 (18) , 7248-7253. https://doi.org/10.1021/acs.orglett.9b02462
    10. Pierre A. Spreider, Bernhard Breit. Palladium-Catalyzed Stereoselective Cyclization of in Situ Formed Allenyl Hemiacetals: Synthesis of Rosuvastatin and Pitavastatin. Organic Letters 2018, 20 (11) , 3286-3290. https://doi.org/10.1021/acs.orglett.8b01156
    11. Taisuke Itoh, Yohei Shimizu, and Motomu Kanai . Ligand-Enabled, Copper-Catalyzed Regio- and Stereoselective Synthesis of Trialkylsubstituted Alkenylboronates from Unactivated Internal Alkynes. Journal of the American Chemical Society 2016, 138 (24) , 7528-7531. https://doi.org/10.1021/jacs.6b04646
    12. Ignacio Colomer, Chirag Gheewala, Carmen Simal, Marina Velado, Roberto Fernández de la Pradilla, and Alma Viso . Sulfinyl-Mediated Stereoselective Overman Rearrangements and Diels–Alder Cycloadditions. The Journal of Organic Chemistry 2016, 81 (10) , 4081-4097. https://doi.org/10.1021/acs.joc.6b00365
    13. Evan P. Jackson and John Montgomery . Regiocontrol in Catalytic Reductive Couplings through Alterations of Silane Rate Dependence. Journal of the American Chemical Society 2015, 137 (2) , 958-963. https://doi.org/10.1021/ja511778a
    14. Yusuke Ebe and Takahiro Nishimura . Iridium-Catalyzed Annulation of Salicylimines with 1,3-Dienes. Journal of the American Chemical Society 2014, 136 (26) , 9284-9287. https://doi.org/10.1021/ja504990a
    15. Xiaoming Zeng . Recent Advances in Catalytic Sequential Reactions Involving Hydroelement Addition to Carbon–Carbon Multiple Bonds. Chemical Reviews 2013, 113 (8) , 6864-6900. https://doi.org/10.1021/cr400082n
    16. Shujie Zhu, Xiaoxia Lu, Yueting Luo, Wei Zhang, Huanfeng Jiang, Ming Yan, and Wei Zeng . Ruthenium(II)-Catalyzed Regioselective Reductive Coupling of α-Imino Esters with Dienes. Organic Letters 2013, 15 (7) , 1440-1443. https://doi.org/10.1021/ol4006079
    17. Abbas Hassan and Michael J. Krische . Unlocking Hydrogenation for C–C Bond Formation: A Brief Overview of Enantioselective Methods. Organic Process Research & Development 2011, 15 (6) , 1236-1242. https://doi.org/10.1021/op200195m
    18. Chang-Yue Zhou, Shou-Fei Zhu, Li-Xin Wang and Qi-Lin Zhou. Enantioselective Nickel-Catalyzed Reductive Coupling of Alkynes and Imines. Journal of the American Chemical Society 2010, 132 (32) , 10955-10957. https://doi.org/10.1021/ja104505t
    19. Yumei Lin, Hui Xu, Lei Gong, Ting Bin Wen, Xu-Min He and Haiping Xia. C−H Bond Activation and Subsequent C(sp2)−C(sp3) Bond Formation: Coupling of Bromomethyl and Triphenylphosphine in an Iridium Complex. Organometallics 2010, 29 (13) , 2904-2910. https://doi.org/10.1021/om100187t
    20. Hasnain A. Malik, Grant J. Sormunen and John Montgomery. A General Strategy for Regiocontrol in Nickel-Catalyzed Reductive Couplings of Aldehydes and Alkynes. Journal of the American Chemical Society 2010, 132 (18) , 6304-6305. https://doi.org/10.1021/ja102262v
    21. Vanessa M. Williams, Jong Rock Kong, Byoung Joon Ko, Yogita Mantri, Jennifer S. Brodbelt, Mu-Hyun Baik and Michael J. Krische. ESI-MS, DFT, and Synthetic Studies on the H2-Mediated Coupling of Acetylene: Insertion of C═X Bonds into Rhodacyclopentadienes and Brønsted Acid Cocatalyzed Hydrogenolysis of Organorhodium Intermediates. Journal of the American Chemical Society 2009, 131 (44) , 16054-16062. https://doi.org/10.1021/ja906225n
    22. Ming Z. Chen and Glenn C. Micalizio. Convergent Synthesis of Piperidines by the Union of Conjugated Alkynes with Imines: A Unique Regioselective Bond Construction for Heterocycle Synthesis. Organic Letters 2009, 11 (21) , 4982-4985. https://doi.org/10.1021/ol902169k
    23. Michael A. Tarselli and Glenn C. Micalizio. Aliphatic Imines in Titanium-Mediated Reductive Cross-Coupling: Unique Reactivity of Ti(O-i-Pr)4/n-BuLi. Organic Letters 2009, 11 (20) , 4596-4599. https://doi.org/10.1021/ol901870n
    24. Rui Cao, Huiyuan Ma, Yurii V. Geletii, Kenneth I. Hardcastle and Craig L. Hill. Structurally Characterized Iridium(III)-Containing Polytungstate and Catalytic Water Oxidation Activity. Inorganic Chemistry 2009, 48 (13) , 5596-5598. https://doi.org/10.1021/ic900538g
    25. Eduardas Skucas, Jason R. Zbieg and Michael J. Krische. anti-Aminoallylation of Aldehydes via Ruthenium-Catalyzed Transfer Hydrogenative Coupling of Sulfonamido Allenes: 1,2-Aminoalcohols. Journal of the American Chemical Society 2009, 131 (14) , 5054-5055. https://doi.org/10.1021/ja900827p
    26. Ryan L. Patman, Mani Raj Chaulagain, Vanessa M. Williams and Michael J. Krische. Direct Vinylation of Alcohols or Aldehydes Employing Alkynes as Vinyl Donors: A Ruthenium Catalyzed C−C Bond-Forming Transfer Hydrogenation. Journal of the American Chemical Society 2009, 131 (6) , 2066-2067. https://doi.org/10.1021/ja809456u
    27. Laura L. Anderson and K. A. Woerpel. Formation and Utility of Azasilacyclopentadienes Derived from Silacyclopropenes and Nitriles. Organic Letters 2009, 11 (2) , 425-428. https://doi.org/10.1021/ol802412b
    28. Samuel Suárez-Pantiga, Eduardo Rubio, Carmen Alvarez-Rúa and José M. González . Intermolecular Reaction of Internal Alkynes and Imines: Propargyl Tosylates as Key Partners in a Gold-Catalyzed [4 + 1] Unusual Cyclization Leading to Cyclopent-2-enimines. Organic Letters 2009, 11 (1) , 13-16. https://doi.org/10.1021/ol8025523
    29. In Su Kim, Ming-Yu Ngai and Michael J. Krische. Enantioselective Iridium-Catalyzed Carbonyl Allylation from the Alcohol or Aldehyde Oxidation Level via Transfer Hydrogenative Coupling of Allyl Acetate: Departure from Chirally Modified Allyl Metal Reagents in Carbonyl Addition. Journal of the American Chemical Society 2008, 130 (44) , 14891-14899. https://doi.org/10.1021/ja805722e
    30. Fumitoshi Shibahara, John F. Bower and Michael J. Krische. Diene Hydroacylation from the Alcohol or Aldehyde Oxidation Level via Ruthenium-Catalyzed C−C Bond-Forming Transfer Hydrogenation: Synthesis of β,γ-Unsaturated Ketones. Journal of the American Chemical Society 2008, 130 (43) , 14120-14122. https://doi.org/10.1021/ja805356j
    31. Ming-Yu Ngai, Eduardas Skucas and Michael J. Krische. Ruthenium Catalyzed C−C Bond Formation via Transfer Hydrogenation: Branch-Selective Reductive Coupling of Allenes to Paraformaldehyde and Higher Aldehydes. Organic Letters 2008, 10 (13) , 2705-2708. https://doi.org/10.1021/ol800836v
    32. Fumitoshi Shibahara, John F. Bower and Michael J. Krische. Ruthenium-Catalyzed C−C Bond Forming Transfer Hydrogenation: Carbonyl Allylation from the Alcohol or Aldehyde Oxidation Level Employing Acyclic 1,3-Dienes as Surrogates to Preformed Allyl Metal Reagents. Journal of the American Chemical Society 2008, 130 (20) , 6338-6339. https://doi.org/10.1021/ja801213x
    33. Eduardas Skucas, Ming-Yu Ngai, Venukrishnan Komanduri and Michael J. Krische. Enantiomerically Enriched Allylic Alcohols and Allylic Amines via C–C Bond-Forming Hydrogenation: Asymmetric Carbonyl and Imine Vinylation. Accounts of Chemical Research 2007, 40 (12) , 1394-1401. https://doi.org/10.1021/ar7001123
    34. Ming-Yu Ngai,, Andriy Barchuk, and, Michael J. Krische. Enantioselective Iridium-Catalyzed Imine Vinylation:  Optically Enriched Allylic Amines via Alkyne−Imine Reductive Coupling Mediated by Hydrogen. Journal of the American Chemical Society 2007, 129 (42) , 12644-12645. https://doi.org/10.1021/ja075438e
    35. Xing-Zhong Shu, Ying-Hui Yang. Reductive Metal-Catalyzed Coupling as an Alternative to the Use of Stoichiometric Organometallic Reagents in Carbonyl and Imine Additions. 2024https://doi.org/10.1016/B978-0-323-96025-0.00037-5
    36. Wataru Atsumi, Motomu Kanai. Recent Advances in H2-Mediated C–C Coupling. 2023https://doi.org/10.1016/B978-0-32-390644-9.00093-7
    37. Jia-Yue Li, Lun Li, Yun-Zhi Lin, Hang Shi. External-Ligand-Free, Nickel-Catalyzed Alkenylation of N-Sulfonylamines with Internal Alkynes. Synthesis 2022, 54 (15) , 3341-3350. https://doi.org/10.1055/s-0040-1719913
    38. Hetti Handi Chaminda Lakmal, Jacob Istre, Xiaolin Qian, Hui Zhou, Henry U. Valle, Xue Xu, Xin Cui. Catalytic Amidomethylative [2+2+2] Cycloaddition of Formaldimine and Styrenes toward N-Heterocycles. Synthesis 2022, 54 (09) , 2165-2174. https://doi.org/10.1055/a-1710-7256
    39. Abhijit Sen, Linpeng Zhu, Shinobu Takizawa, Kazuhiro Takenaka, Hiroaki Sasai. Synthesis of Allylamine Derivatives via Intermolecular Aza‐Wacker‐Type Reaction Promoted by Palladium‐SPRIX Catalyst. Advanced Synthesis & Catalysis 2020, 362 (17) , 3558-3563. https://doi.org/10.1002/adsc.202000644
    40. Wei-Wei Yao, Ran Li, Jiang-Fei Li, Juan Sun, Mengchun Ye. NHC ligand-enabled Ni-catalyzed reductive coupling of alkynes and imines using isopropanol as a reductant. Green Chemistry 2019, 21 (9) , 2240-2244. https://doi.org/10.1039/C9GC00653B
    41. Yin Zheng, Weiwei Zi. Transition-metal catalyzed enantioselective hydrofunctionalization of alkynes. Tetrahedron Letters 2018, 59 (23) , 2205-2213. https://doi.org/10.1016/j.tetlet.2018.04.057
    42. Li‐Jun Xiao, Chao‐Yue Zhao, Lei Cheng, Bo‐Ya Feng, Wei‐Min Feng, Jian‐Hua Xie, Xiu‐Fang Xu, Qi‐Lin Zhou. Nickel(0)‐Catalyzed Hydroalkenylation of Imines with Styrene and Its Derivatives. Angewandte Chemie 2018, 130 (13) , 3454-3458. https://doi.org/10.1002/ange.201713333
    43. Li‐Jun Xiao, Chao‐Yue Zhao, Lei Cheng, Bo‐Ya Feng, Wei‐Min Feng, Jian‐Hua Xie, Xiu‐Fang Xu, Qi‐Lin Zhou. Nickel(0)‐Catalyzed Hydroalkenylation of Imines with Styrene and Its Derivatives. Angewandte Chemie International Edition 2018, 57 (13) , 3396-3400. https://doi.org/10.1002/anie.201713333
    44. Mitchell Lee, Mary Nguyen, Chance Brandt, Werner Kaminsky, Gojko Lalic. Catalytic Hydroalkylation of Allenes. Angewandte Chemie 2017, 129 (49) , 15909-15913. https://doi.org/10.1002/ange.201709144
    45. Mitchell Lee, Mary Nguyen, Chance Brandt, Werner Kaminsky, Gojko Lalic. Catalytic Hydroalkylation of Allenes. Angewandte Chemie International Edition 2017, 56 (49) , 15703-15707. https://doi.org/10.1002/anie.201709144
    46. Kazuhiko Semba, Yoshiaki Nakao. Cross-Coupling Reactions by Cooperative Metal Catalysis. Journal of Synthetic Organic Chemistry, Japan 2017, 75 (11) , 1133-1140. https://doi.org/10.5059/yukigoseikyokaishi.75.1133
    47. Pierre A. Spreider, Alexander M. Haydl, Marc Heinrich, Bernhard Breit. Rhodium‐Catalyzed Diastereoselective Cyclization of Allenyl‐Sulfonylcarbamates: A Stereodivergent Approach to 1,3‐Aminoalcohol Derivatives. Angewandte Chemie 2016, 128 (50) , 15798-15802. https://doi.org/10.1002/ange.201609366
    48. Pierre A. Spreider, Alexander M. Haydl, Marc Heinrich, Bernhard Breit. Rhodium‐Catalyzed Diastereoselective Cyclization of Allenyl‐Sulfonylcarbamates: A Stereodivergent Approach to 1,3‐Aminoalcohol Derivatives. Angewandte Chemie International Edition 2016, 55 (50) , 15569-15573. https://doi.org/10.1002/anie.201609366
    49. Dan Du, Qin Xu, Xiao‐Ge Li, Min Shi. Construction of Spirocyclic Oxindoles through Regio‐ and Stereoselective [3+2] or [3+2]/[4+2] Cascade Reaction of α,β‐Unsaturated Imines with 3‐Isothiocyanato Oxindole. Chemistry – A European Journal 2016, 22 (14) , 4733-4737. https://doi.org/10.1002/chem.201600497
    50. Kun Xu, Yu-Hsuan Wang, Vahid Khakyzadeh, Bernhard Breit. Asymmetric synthesis of allylic amines via hydroamination of allenes with benzophenone imine. Chemical Science 2016, 7 (5) , 3313-3316. https://doi.org/10.1039/C5SC04984A
    51. Miyuki Hatano, Takahiro Nishimura. Hydroxoiridium/Chiral Diene Complexes as Effective Catalysts for Asymmetric Annulation of α‐Oxo‐ and Iminocarboxamides with 1,3‐Dienes. Angewandte Chemie 2015, 127 (37) , 11099-11102. https://doi.org/10.1002/ange.201505382
    52. Miyuki Hatano, Takahiro Nishimura. Hydroxoiridium/Chiral Diene Complexes as Effective Catalysts for Asymmetric Annulation of α‐Oxo‐ and Iminocarboxamides with 1,3‐Dienes. Angewandte Chemie International Edition 2015, 54 (37) , 10949-10952. https://doi.org/10.1002/anie.201505382
    53. Brannon Sam, Bernhard Breit, Michael J. Krische. Paraformaldehyd und Methanol als C 1 ‐Rohstoffe in metallkatalysierten C‐C‐Kupplungen π‐ungesättigter Edukte. Angewandte Chemie 2015, 127 (11) , 3317-3325. https://doi.org/10.1002/ange.201407888
    54. Brannon Sam, Bernhard Breit, Michael J. Krische. Paraformaldehyde and Methanol as C 1  Feedstocks in Metal‐Catalyzed CC Couplings of π‐Unsaturated Reactants: Beyond Hydroformylation. Angewandte Chemie International Edition 2015, 54 (11) , 3267-3274. https://doi.org/10.1002/anie.201407888
    55. Masato Ohashi, Yoichi Hoshimoto, Sensuke Ogoshi. Aza-nickelacycle key intermediate in nickel(0)-catalyzed transformation reactions. Dalton Transactions 2015, 44 (27) , 12060-12073. https://doi.org/10.1039/C5DT00640F
    56. Subhash P. Chavan, Lalit B. Khairnar, Prakash N. Chavan. Efficient and mild method for preparation of allylic amines from aziridine-2-alcohols using PPh3/I2/imidazole. Tetrahedron Letters 2014, 55 (43) , 5905-5907. https://doi.org/10.1016/j.tetlet.2014.08.078
    57. Chandi C. Malakar, Sara Stas, Wouter Herrebout, Kourosch Abbaspour Tehrani. Lewis Acid Mediated Vinyl‐Transfer Reaction of Alkynes to N ‐Alkylimines by Using the N ‐Alkyl Residue as a Sacrificial Hydrogen Donor. Chemistry – A European Journal 2013, 19 (42) , 14263-14270. https://doi.org/10.1002/chem.201300469
    58. Tse‐Lok Ho, Mary Fieser, Louis Fieser. Iridium complexes. 2013, 286-288. https://doi.org/10.1002/9780471264194.fos05949.pub4
    59. Tse‐Lok Ho, Mary Fieser, Louis Fieser. Iridium complexes. 2013, 286-288. https://doi.org/10.1002/9780471264194.fos05949.pub5
    60. Joseph Moran, Michael J. Krische. Formation of CC BONDS via Catalytic Hydrogenation and Transfer Hydrogenation. 2013, 363-408. https://doi.org/10.1002/9781118354520.ch16
    61. Wei Li, Xumu Zhang. Asymmetric Hydrogenation of Imines. 2013, 103-144. https://doi.org/10.1007/128_2013_483
    62. Behjat Barati, Majid Moghadam, Abbas Rahmati, Valiollah Mirkhani, Shahram Tangestaninejad, Iraj Mohammadpoor-Baltork. Ruthenium hydride complex supported on multi-wall carbon nanotubes for catalytic C–C bond formation via transfer hydrogenation. Journal of Organometallic Chemistry 2013, 724 , 32-39. https://doi.org/10.1016/j.jorganchem.2012.10.028
    63. Joyce C. Leung, Ryan L. Patman, Brannon Sam, Michael J. Krische. Alkyne–Aldehyde Reductive CC Coupling through Ruthenium‐Catalyzed Transfer Hydrogenation: Direct Regio‐ and Stereoselective Carbonyl Vinylation to Form Trisubstituted Allylic Alcohols in the Absence of Premetallated Reagents. Chemistry – A European Journal 2011, 17 (44) , 12437-12443. https://doi.org/10.1002/chem.201101554
    64. Cory C. Bausch, Ryan L. Patman, Bernhard Breit, Michael J. Krische. Divergent Regioselectivity in the Synthesis of Trisubstituted Allylic Alcohols by Nickel‐ and Ruthenium‐Catalyzed Alkyne Hydrohydroxymethylation with Formaldehyde. Angewandte Chemie 2011, 123 (25) , 5805-5808. https://doi.org/10.1002/ange.201101496
    65. Cory C. Bausch, Ryan L. Patman, Bernhard Breit, Michael J. Krische. Divergent Regioselectivity in the Synthesis of Trisubstituted Allylic Alcohols by Nickel‐ and Ruthenium‐Catalyzed Alkyne Hydrohydroxymethylation with Formaldehyde. Angewandte Chemie International Edition 2011, 50 (25) , 5687-5690. https://doi.org/10.1002/anie.201101496
    66. Peng Liu, Michael J. Krische, Kendall N. Houk. Mechanism and Origins of Regio‐ and Enantioselectivities in Rh I ‐Catalyzed Hydrogenative Couplings of 1,3‐Diynes and Activated Carbonyl Partners: Intervention of a Cumulene Intermediate. Chemistry – A European Journal 2011, 17 (14) , 4021-4029. https://doi.org/10.1002/chem.201002741
    67. Laksmikanta Adak, Wei Chuen Chan, Naohiko Yoshikai. Nickel‐Catalyzed, Directing‐Group‐Assisted [2+2+2] Cycloaddition of Imine and Alkynes. Chemistry – An Asian Journal 2011, 6 (2) , 359-362. https://doi.org/10.1002/asia.201000564
    68. John F. Bower, Michael J. Krische. Formation of C–C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation. 2011, 107-138. https://doi.org/10.1007/978-3-642-15334-1_5
    69. Xiang-Biao Zhang, Zhao Xi. A theoretical study of the mechanism for the homogeneous catalytic reversible dehydrogenation—hydrogenation of nitrogen heterocycles. Physical Chemistry Chemical Physics 2011, 13 (9) , 3997. https://doi.org/10.1039/c0cp02419h
    70. John F. Bower, Michael J. Krische. Hydrogenation for C  C Bond Formation. 2010, 205-254. https://doi.org/10.1002/9783527628698.hgc008
    71. Allan U. Barlan, Glenn C. Micalizio. The regio- and stereochemical course of reductive cross-coupling reactions between 1,3-disubstituted allenes and vinylsilanes: synthesis of (Z)-dienes. Tetrahedron 2010, 66 (26) , 4775-4783. https://doi.org/10.1016/j.tet.2010.02.062
    72. Tse‐Lok Ho, Mary Fieser, Louis Fieser. Iridium complexes. 2010, 000-000. https://doi.org/10.1002/9780471264194.fos05949.pub3
    73. Holly A. Reichard, Martin McLaughlin, Ming Z. Chen, Glenn C. Micalizio. Regioselective Reductive Cross‐Coupling Reactions of Unsymmetrical Alkynes. European Journal of Organic Chemistry 2010, 2010 (3) , 391-409. https://doi.org/10.1002/ejoc.200901094
    74. Junji Itoh, Soo Bong Han, Michael J. Krische. Enantioselective Allylation, Crotylation, and Reverse Prenylation of Substituted Isatins: Iridium‐Catalyzed CC Bond‐Forming Transfer Hydrogenation. Angewandte Chemie 2009, 121 (34) , 6431-6434. https://doi.org/10.1002/ange.200902328
    75. Junji Itoh, Soo Bong Han, Michael J. Krische. Enantioselective Allylation, Crotylation, and Reverse Prenylation of Substituted Isatins: Iridium‐Catalyzed CC Bond‐Forming Transfer Hydrogenation. Angewandte Chemie International Edition 2009, 48 (34) , 6313-6316. https://doi.org/10.1002/anie.200902328
    76. John F. Bower, In Su Kim, Ryan L. Patman, Michael J. Krische. Katalytische Carbonyladdition durch Transferhydrierung: weg von vorab gebildeten Organometallreagentien. Angewandte Chemie 2009, 121 (1) , 36-48. https://doi.org/10.1002/ange.200802938
    77. John F. Bower, In Su Kim, Ryan L. Patman, Michael J. Krische. Catalytic Carbonyl Addition through Transfer Hydrogenation: A Departure from Preformed Organometallic Reagents. Angewandte Chemie International Edition 2009, 48 (1) , 34-46. https://doi.org/10.1002/anie.200802938
    78. Yasutaka Ishii, Yasushi Obora, Satoshi Sakaguchi. Iridium‐Catalyzed Coupling Reactions. 2008, 251-275. https://doi.org/10.1002/9783527623075.ch10
    79. Fumitoshi Shibahara, Michael J Krische. Formation of C–C Bonds via Ruthenium-catalyzed Transfer Hydrogenation: Carbonyl Addition from the Alcohol or Aldehyde Oxidation Level. Chemistry Letters 2008, 37 (11) , 1102-1107. https://doi.org/10.1246/cl.2008.1102
    80. Harim Lee, Min-Soo Jang, Jong-Tai Hong, Hye-Young Jang. Platinum-catalyzed reductive coupling of activated alkenes under hydrogenation conditions. Tetrahedron Letters 2008, 49 (40) , 5785-5788. https://doi.org/10.1016/j.tetlet.2008.07.117
    81. Andriy Barchuk, Ming‐Yu Ngai, Michael J. Krische. Allylic Amines via Iridium‐Catalyzed C—C Bond Forming Hydrogenation: Imine Vinylation in the Absence of Stoichiometric By‐Products or Metallic Reagents.. ChemInform 2007, 38 (45) https://doi.org/10.1002/chin.200745052