ACS Publications. Most Trusted. Most Cited. Most Read
Catalyzing the Translocation of Polypeptides through Attractive Interactions
My Activity

Figure 1Loading Img
    Article

    Catalyzing the Translocation of Polypeptides through Attractive Interactions
    Click to copy article linkArticle link copied!

    View Author Information
    Contribution from the Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom, and Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2007, 129, 45, 14034–14041
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja0749340
    Published October 19, 2007
    Copyright © 2007 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Facilitated translocation of polypeptides through a protein pore is a ubiquitous and fundamental process in biology. Several translocation systems possess various well-defined binding sites within the pore lumen, but a clear mechanistic understanding of how the interaction of the polypeptides with the binding site alters the underlying kinetics is still missing. Here, we employed rational protein design and single-channel electrical recordings to obtain detailed kinetic signatures of polypeptide translocation through the staphylococcal α-hemolysin (αHL) transmembrane pore, a robust, tractable, and versatile β-barrel protein. Acidic binding sites composed of rings of negatively charged aspartic acid residues, engineered at strategic positions within the β barrel, produced dramatic changes in the functional properties of the αHL protein, facilitating the transport of cationic polypeptides from one side of the membrane to the other. When two electrostatic binding sites were introduced, at the entry and exit of the β barrel, both the rate constants of association and dissociation increased substantially, diminishing the free energy barrier for translocation. By contrast, more hydrophobic polypeptides exhibited a considerable decrease in the rate constant of association to the pore lumen, having to overcome a greater energetic barrier because of the hydrophilic nature of the pore interior.

    Copyright © 2007 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Department of Physics, Syracuse University.

     University of Oxford.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    §

     Structural Biology, Biochemistry, and Biophysics Program, Syracuse University.

    Supporting Information Available

    Click to copy section linkSection link copied!

    Detailed I/V profiles for the wild-type and engineered αHL protein pores, ionic selectivity of the wild-type and engineered αHL protein pores, parameters of the transient current blockades, circular dichroism measurements of the polypeptides. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 122 publications.

    1. Aziz Fennouri, Jonathan List, Julie Ducrey, Jessica Dupasquier, Viktorija Sukyte, Simon F. Mayer, Reyner D. Vargas, Laura Pascual Fernandez, Frederick Bertani, Sandra Rodriguez Gonzalo, Jerry Yang, Michael Mayer. Tuning the Diameter, Stability, and Membrane Affinity of Peptide Pores by DNA-Programmed Self-Assembly. ACS Nano 2021, 15 (7) , 11263-11275. https://doi.org/10.1021/acsnano.0c10311
    2. Sejeong Lee, Nicholas G. Housden, Sandra A. Ionescu, Matthew H. Zimmer, Renata Kaminska, Colin Kleanthous, Hagan Bayley. Transmembrane Epitope Delivery by Passive Protein Threading through the Pores of the OmpF Porin Trimer. Journal of the American Chemical Society 2020, 142 (28) , 12157-12166. https://doi.org/10.1021/jacs.0c02362
    3. Motahareh Ghahari Larimi, Lauren Ashley Mayse, Liviu Movileanu. Interactions of a Polypeptide with a Protein Nanopore Under Crowding Conditions. ACS Nano 2019, 13 (4) , 4469-4477. https://doi.org/10.1021/acsnano.9b00008
    4. Hoa T. Phan, Amanda J. Haes. Impacts of pH and Intermolecular Interactions on Surface-Enhanced Raman Scattering Chemical Enhancements. The Journal of Physical Chemistry C 2018, 122 (26) , 14846-14856. https://doi.org/10.1021/acs.jpcc.8b04019
    5. Kai Tian, Xiaowei Chen, Binquan Luan, Prashant Singh, Zhiyu Yang, Kent S. Gates, Mengshi Lin, Azlin Mustapha, Li-Qun Gu. Single Locked Nucleic Acid-Enhanced Nanopore Genetic Discrimination of Pathogenic Serotypes and Cancer Driver Mutations. ACS Nano 2018, 12 (5) , 4194-4205. https://doi.org/10.1021/acsnano.8b01198
    6. Bappa Ghosh and Srabanti Chaudhury . Influence of the Location of Attractive Polymer–Pore Interactions on Translocation Dynamics. The Journal of Physical Chemistry B 2018, 122 (1) , 360-368. https://doi.org/10.1021/acs.jpcb.7b09208
    7. Yong Wang, Kai Tian, Xiao Du, Rui-Cheng Shi, and Li-Qun Gu . Remote Activation of a Nanopore for High-Performance Genetic Detection Using a pH Taxis-Mimicking Mechanism. Analytical Chemistry 2017, 89 (24) , 13039-13043. https://doi.org/10.1021/acs.analchem.7b03979
    8. Amy E. Chavis, Kyle T. Brady, Grace A. Hatmaker, Christopher E. Angevine, Nuwan Kothalawala, Amala Dass, Joseph W. F. Robertson, and Joseph E. Reiner . Single Molecule Nanopore Spectrometry for Peptide Detection. ACS Sensors 2017, 2 (9) , 1319-1328. https://doi.org/10.1021/acssensors.7b00362
    9. Avinash Kumar Thakur, Motahareh Ghahari Larimi, Kristin Gooden, and Liviu Movileanu . Aberrantly Large Single-Channel Conductance of Polyhistidine Arm-Containing Protein Nanopores. Biochemistry 2017, 56 (36) , 4895-4905. https://doi.org/10.1021/acs.biochem.7b00577
    10. Yong Wang, Kai Tian, Ruicheng Shi, Amy Gu, Michael Pennella, Lindsey Alberts, Kent S. Gates, Guangfu Li, Hongxin Fan, Michael X. Wang, and Li-Qun Gu . Nanolock–Nanopore Facilitated Digital Diagnostics of Cancer Driver Mutation in Tumor Tissue. ACS Sensors 2017, 2 (7) , 975-981. https://doi.org/10.1021/acssensors.7b00235
    11. Jejoong Yoo and Aleksei Aksimentiev . Molecular Dynamics of Membrane-Spanning DNA Channels: Conductance Mechanism, Electro-Osmotic Transport, and Mechanical Gating. The Journal of Physical Chemistry Letters 2015, 6 (23) , 4680-4687. https://doi.org/10.1021/acs.jpclett.5b01964
    12. Mikiembo Kukwikila and Stefan Howorka . Nanopore-Based Electrical and Label-Free Sensing of Enzyme Activity in Blood Serum. Analytical Chemistry 2015, 87 (18) , 9149-9154. https://doi.org/10.1021/acs.analchem.5b01764
    13. Shuang Zhang, Xiaofeng Wang, Tang Li, Lei Liu, Hai-Chen Wu, Mengbo Luo, and Jingyuan Li . Sensitive Detection of a Modified Base in Single-Stranded DNA by a Single-Walled Carbon Nanotube. Langmuir 2015, 31 (36) , 10094-10099. https://doi.org/10.1021/acs.langmuir.5b01272
    14. Alina Asandei, Mauro Chinappi, Hee-Kyoung Kang, Chang Ho Seo, Loredana Mereuta, Yoonkyung Park, and Tudor Luchian . Acidity-Mediated, Electrostatic Tuning of Asymmetrically Charged Peptides Interactions with Protein Nanopores. ACS Applied Materials & Interfaces 2015, 7 (30) , 16706-16714. https://doi.org/10.1021/acsami.5b04406
    15. Yong Wang, Vedrana Montana, Vladimir Grubišić, Randy F. Stout, Jr., Vladimir Parpura, and Li-Qun Gu . Nanopore Sensing of Botulinum Toxin Type B by Discriminating an Enzymatically Cleaved Peptide from a Synaptic Protein Synaptobrevin 2 Derivative. ACS Applied Materials & Interfaces 2015, 7 (1) , 184-192. https://doi.org/10.1021/am5056596
    16. Veerle Van Meervelt, Misha Soskine, and Giovanni Maglia . Detection of Two Isomeric Binding Configurations in a Protein–Aptamer Complex with a Biological Nanopore. ACS Nano 2014, 8 (12) , 12826-12835. https://doi.org/10.1021/nn506077e
    17. Loredana Mereuta, Alina Asandei, Chang Ho Seo, Yoonkyung Park, and Tudor Luchian . Quantitative Understanding of pH- and Salt-Mediated Conformational Folding of Histidine-Containing, β-Hairpin-like Peptides, through Single-Molecule Probing with Protein Nanopores. ACS Applied Materials & Interfaces 2014, 6 (15) , 13242-13256. https://doi.org/10.1021/am5031177
    18. Liang Wang, Yujing Han, Shuo Zhou, Guihua Wang, and Xiyun Guan . Nanopore Biosensor for Label-Free and Real-Time Detection of Anthrax Lethal Factor. ACS Applied Materials & Interfaces 2014, 6 (10) , 7334-7339. https://doi.org/10.1021/am500749p
    19. Misha Soskine, Annemie Biesemans, Marc De Maeyer, and Giovanni Maglia . Tuning the Size and Properties of ClyA Nanopores Assisted by Directed Evolution. Journal of the American Chemical Society 2013, 135 (36) , 13456-13463. https://doi.org/10.1021/ja4053398
    20. Hai-Yan Wang, Zhen Gu, Chan Cao, Jian Wang, and Yi-Tao Long . Analysis of a Single α-Synuclein Fibrillation by the Interaction with a Protein Nanopore. Analytical Chemistry 2013, 85 (17) , 8254-8261. https://doi.org/10.1021/ac401496x
    21. Volker Kurz, Edward M. Nelson, Jiwook Shim, and Gregory Timp . Direct Visualization of Single-Molecule Translocations through Synthetic Nanopores Comparable in Size to a Molecule. ACS Nano 2013, 7 (5) , 4057-4069. https://doi.org/10.1021/nn400182s
    22. David J. Niedzwiecki, Raghuvaran Iyer, Philip N. Borer, and Liviu Movileanu . Sampling a Biomarker of the Human Immunodeficiency Virus across a Synthetic Nanopore. ACS Nano 2013, 7 (4) , 3341-3350. https://doi.org/10.1021/nn400125c
    23. Kozhinjampara R. Mahendran, Usha Lamichhane, Mercedes Romero-Ruiz, Stephan Nussberger, and Mathias Winterhalter . Polypeptide Translocation Through the Mitochondrial TOM Channel: Temperature-Dependent Rates at the Single-Molecule Level. The Journal of Physical Chemistry Letters 2013, 4 (1) , 78-82. https://doi.org/10.1021/jz301790h
    24. Abdelghani Oukhaled, Laurent Bacri, Manuela Pastoriza-Gallego, Jean-Michel Betton, and Juan Pelta . Sensing Proteins through Nanopores: Fundamental to Applications. ACS Chemical Biology 2012, 7 (12) , 1935-1949. https://doi.org/10.1021/cb300449t
    25. Pratik Raj Singh, Iván Bárcena-Uribarri, Niraj Modi, Ulrich Kleinekathöfer, Roland Benz, Mathias Winterhalter, and Kozhinjampara R Mahendran . Pulling Peptides across Nanochannels: Resolving Peptide Binding and Translocation through the Hetero-oligomeric Channel from Nocardia farcinica. ACS Nano 2012, 6 (12) , 10699-10707. https://doi.org/10.1021/nn303900y
    26. Ekaterina M. Nestorovich and Sergey M. Bezrukov . Obstructing Toxin Pathways by Targeted Pore Blockage. Chemical Reviews 2012, 112 (12) , 6388-6430. https://doi.org/10.1021/cr300141q
    27. Joseph E. Reiner, Arvind Balijepalli, Joseph W. F. Robertson, Jason Campbell, John Suehle, and John J. Kasianowicz . Disease Detection and Management via Single Nanopore-Based Sensors. Chemical Reviews 2012, 112 (12) , 6431-6451. https://doi.org/10.1021/cr300381m
    28. Loredana Mereuta, Irina Schiopu, Alina Asandei, Yoonkyung Park, Kyung-Soo Hahm, and Tudor Luchian . Protein Nanopore-Based, Single-Molecule Exploration of Copper Binding to an Antimicrobial-Derived, Histidine-Containing Chimera Peptide. Langmuir 2012, 28 (49) , 17079-17091. https://doi.org/10.1021/la303782d
    29. Belete R. Cheneke, Mridhu Indic, Bert van den Berg, and Liviu Movileanu . An Outer Membrane Protein Undergoes Enthalpy- and Entropy-Driven Transitions. Biochemistry 2012, 51 (26) , 5348-5358. https://doi.org/10.1021/bi300332z
    30. Jiaming Liu, Elif Eren, Jagamya Vijayaraghavan, Belete R. Cheneke, Mridhu Indic, Bert van den Berg, and Liviu Movileanu . OccK Channels from Pseudomonas aeruginosa Exhibit Diverse Single-Channel Electrical Signatures but Conserved Anion Selectivity. Biochemistry 2012, 51 (11) , 2319-2330. https://doi.org/10.1021/bi300066w
    31. Belete R. Cheneke, Bert van den Berg, and Liviu Movileanu . Analysis of Gating Transitions among the Three Major Open States of the OpdK Channel. Biochemistry 2011, 50 (22) , 4987-4997. https://doi.org/10.1021/bi200454j
    32. Manuela Pastoriza-Gallego, Leila Rabah, Gabriel Gibrat, Bénédicte Thiebot, Françoise Gisou van der Goot, Loïc Auvray, Jean-Michel Betton, and Juan Pelta . Dynamics of Unfolded Protein Transport through an Aerolysin Pore. Journal of the American Chemical Society 2011, 133 (9) , 2923-2931. https://doi.org/10.1021/ja1073245
    33. Alina Asandei, Aurelia Apetrei, Yoonkyung Park, Kyung-Soo Hahm, and Tudor Luchian . Investigation of Single-Molecule Kinetics Mediated by Weak Hydrogen Bonds within a Biological Nanopore. Langmuir 2011, 27 (1) , 19-24. https://doi.org/10.1021/la104264f
    34. David J. Niedzwiecki, John Grazul and Liviu Movileanu. Single-Molecule Observation of Protein Adsorption onto an Inorganic Surface. Journal of the American Chemical Society 2010, 132 (31) , 10816-10822. https://doi.org/10.1021/ja1026858
    35. Mohammad M. Mohammad and Liviu Movileanu . Impact of Distant Charge Reversals within a Robust β-Barrel Protein Pore. The Journal of Physical Chemistry B 2010, 114 (26) , 8750-8759. https://doi.org/10.1021/jp101311s
    36. Qitao Zhao, Ranulu Samanthi S. de Zoysa, Deqiang Wang, Dilani A. Jayawardhana and Xiyun Guan. Real-Time Monitoring of Peptide Cleavage Using a Nanopore Probe. Journal of the American Chemical Society 2009, 131 (18) , 6324-6325. https://doi.org/10.1021/ja9004893
    37. Qitao Zhao, Dilani A. Jayawardhana, Deqiang Wang and Xiyun Guan. Study of Peptide Transport through Engineered Protein Channels. The Journal of Physical Chemistry B 2009, 113 (11) , 3572-3578. https://doi.org/10.1021/jp809842g
    38. Dmitrii E. Makarov. Computer Simulations and Theory of Protein Translocation. Accounts of Chemical Research 2009, 42 (2) , 281-289. https://doi.org/10.1021/ar800128x
    39. Gabriel Gibrat, Manuela Pastoriza-Gallego, Bénédicte Thiebot, Marie-France Breton, Loïc Auvray and Juan Pelta . Polyelectrolyte Entry and Transport through an Asymmetric α-Hemolysin Channel. The Journal of Physical Chemistry B 2008, 112 (47) , 14687-14691. https://doi.org/10.1021/jp808088y
    40. Virgil Percec, Jonathan G. Rudick, Mihai Peterca and Paul A. Heiney. Nanomechanical Function from Self-Organizable Dendronized Helical Polyphenylacetylenes. Journal of the American Chemical Society 2008, 130 (23) , 7503-7508. https://doi.org/10.1021/ja801863e
    41. Mohammad M. Mohammad,, Sumit Prakash,, Andreas Matouschek, and, Liviu Movileanu. Controlling a Single Protein in a Nanopore through Electrostatic Traps. Journal of the American Chemical Society 2008, 130 (12) , 4081-4088. https://doi.org/10.1021/ja710787a
    42. Rani Wiswedel, Anh Thi Ngoc Bui, Jinhyung Kim, Mi-Kyung Lee. Beta-Barrel Nanopores as Diagnostic Sensors: An Engineering Perspective. Biosensors 2024, 14 (7) , 345. https://doi.org/10.3390/bios14070345
    43. Loredana Mereuta, Alina Asandei, Ioan Andricioaei, Jonggwan Park, Yoonkyung Park, Tudor Luchian. Considerable slowdown of short DNA fragment translocation across a protein nanopore using pH-induced generation of enthalpic traps inside the permeation pathway. Nanoscale 2023, 15 (36) , 14754-14763. https://doi.org/10.1039/D3NR03344A
    44. Shaoxia Zhang, Yunjiao Wang, Dandan Song, Sarah Guan, Daming Zhou, Linyu Gong, Liyuan Liang, Xiyun Guan, Liang Wang. Nanopore discrimination and sensitive plasma detection of multiple natriuretic peptides: The representative biomarker of human heart failure. Biosensors and Bioelectronics 2023, 231 , 115299. https://doi.org/10.1016/j.bios.2023.115299
    45. Mazdak Afshar Bakshloo, Safia Yahiaoui, Fabien Piguet, Manuela Pastoriza-Gallego, Régis Daniel, Jérôme Mathé, John J. Kasianowicz, Abdelghani Oukhaled. Polypeptide analysis for nanopore-based protein identification. Nano Research 2022, 15 (11) , 9831-9842. https://doi.org/10.1007/s12274-022-4610-1
    46. Hongyan Niu, Meng-Ying Li, Yi-Lun Ying, Yi-Tao Long. An engineered third electrostatic constriction of aerolysin to manipulate heterogeneously charged peptide transport. Chemical Science 2022, 13 (8) , 2456-2461. https://doi.org/10.1039/D1SC06459B
    47. Florian Leonardus Rudolfus Lucas, Roderick Corstiaan Abraham Versloot, Liubov Yakovlieva, Marthe T. C. Walvoort, Giovanni Maglia. Protein identification by nanopore peptide profiling. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-26046-9
    48. Zheng‐Li Hu, Ming‐Zhu Huo, Yi‐Lun Ying, Yi‐Tao Long. Biological Nanopore Approach for Single‐Molecule Protein Sequencing. Angewandte Chemie 2021, 133 (27) , 14862-14873. https://doi.org/10.1002/ange.202013462
    49. Zheng‐Li Hu, Ming‐Zhu Huo, Yi‐Lun Ying, Yi‐Tao Long. Biological Nanopore Approach for Single‐Molecule Protein Sequencing. Angewandte Chemie International Edition 2021, 60 (27) , 14738-14749. https://doi.org/10.1002/anie.202013462
    50. Fangzhou Hu, Borislav Angelov, Shuang Li, Na Li, Xubo Lin, Aihua Zou. Single‐Molecule Study of Peptides with the Same Amino Acid Composition but Different Sequences by Using an Aerolysin Nanopore. ChemBioChem 2020, 21 (17) , 2467-2473. https://doi.org/10.1002/cbic.202000119
    51. Rui Gao, Yao Lin, Yi-Lun Ying, Yi-Tao Long. Nanopore-based sensing interface for single molecule electrochemistry. Science China Chemistry 2019, 62 (12) , 1576-1587. https://doi.org/10.1007/s11426-019-9509-6
    52. Fabien Piguet, Hadjer Ouldali, Manuela Pastoriza-Gallego, Philippe Manivet, Juan Pelta, Abdelghani Oukhaled. Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-03418-2
    53. Joseph W. F. Robertson, Joseph E. Reiner. The Utility of Nanopore Technology for Protein and Peptide Sensing. PROTEOMICS 2018, 18 (18) https://doi.org/10.1002/pmic.201800026
    54. Alina Asandei, Isabela Dragomir, Giovanni Di Muccio, Mauro Chinappi, Yoonkyung Park, Tudor Luchian. Single-Molecule Dynamics and Discrimination between Hydrophilic and Hydrophobic Amino Acids in Peptides, through Controllable, Stepwise Translocation across Nanopores. Polymers 2018, 10 (8) , 885. https://doi.org/10.3390/polym10080885
    55. Kai Tian, Xiaowei Chen, Bingqun Luan, Mengshi Lin, Azlin Mustapha, Li-Qun Gu. Single Locked Nucleic Acid-enhanced nanopore genetic discrimination of pathogenic serotypes and cancer driver mutations. 2018, 4492-4495. https://doi.org/10.1109/EMBC.2018.8513177
    56. Yi‐Lun Ying, Rui Gao, Yong‐Xu Hu, Yi‐Tao Long. Electrochemical Confinement Effects for Innovating New Nanopore Sensing Mechanisms. Small Methods 2018, 2 (6) https://doi.org/10.1002/smtd.201700390
    57. Yi LIU, Xu-Feng YAO, Hai-Yan WANG. Protein Detection Through Single Molecule Nanopore. Chinese Journal of Analytical Chemistry 2018, 46 (6) , e1838-e1846. https://doi.org/10.1016/S1872-2040(18)61093-X
    58. Y. M. N. D. Y. Bandara, Jonathan W. Nichols, Buddini Iroshika Karawdeniya, Jason R. Dwyer. Conductance‐based profiling of nanopores: Accommodating fabrication irregularities. ELECTROPHORESIS 2018, 39 (4) , 626-634. https://doi.org/10.1002/elps.201700299
    59. Li-Qun Gu, Kent S. Gates, Michael X. Wang, Guangfu Li. What is the potential of nanolock– and nanocross–nanopore technology in cancer diagnosis?. Expert Review of Molecular Diagnostics 2018, 18 (2) , 113-117. https://doi.org/10.1080/14737159.2018.1410060
    60. Hajar Mamad-Hemouch, Laurent Bacri, Cécile Huin, Cédric Przybylski, Bénédicte Thiébot, Gilles Patriarche, Nathalie Jarroux, Juan Pelta. Versatile cyclodextrin nanotube synthesis with functional anchors for efficient ion channel formation: design, characterization and ion conductance. Nanoscale 2018, 10 (32) , 15303-15316. https://doi.org/10.1039/C8NR02623H
    61. Jason R. Dwyer, Maher Harb. Through a Window, Brightly: A Review of Selected Nanofabricated Thin-Film Platforms for Spectroscopy, Imaging, and Detection. Applied Spectroscopy 2017, 71 (9) , 2051-2075. https://doi.org/10.1177/0003702817715496
    62. Tatyana I. Rokitskaya, Pavel A. Nazarov, Andrey V. Golovin, Yuri N. Antonenko. Blocking of Single α -Hemolysin Pore by Rhodamine Derivatives. Biophysical Journal 2017, 112 (11) , 2327-2335. https://doi.org/10.1016/j.bpj.2017.04.041
    63. Karthik Uppulury, Anatoly B. Kolomeisky. Channel-facilitated molecular transport: The role of strength and spatial distribution of interactions. Chemical Physics 2016, 481 , 34-41. https://doi.org/10.1016/j.chemphys.2016.06.012
    64. J. R. Dwyer, Y. M. N. D. Y. Bandara, J. C. Whelan, B. I. Karawdeniya, J. W. Nichols. Silicon Nitride Thin Films for Nanofluidic Device Fabrication. 2016, 190-236. https://doi.org/10.1039/9781849735230-00190
    65. Kevin J. Freedman, S. Raza Haq, Joshua B. Edel, Per Jemth, MinJun Kim. Single Molecule Protein Unfolding Using a Nanopore. 2016, 237-269. https://doi.org/10.1039/9781849735230-00237
    66. John J. Kasianowicz, Arvind K. Balijepalli, Jessica Ettedgui, Jacob H. Forstater, Haiyan Wang, Huisheng Zhang, Joseph W.F. Robertson. Analytical applications for pore-forming proteins. Biochimica et Biophysica Acta (BBA) - Biomembranes 2016, 1858 (3) , 593-606. https://doi.org/10.1016/j.bbamem.2015.09.023
    67. Aaron J. Wolfe, Mohammad M. Mohammad, Avinash K. Thakur, Liviu Movileanu. Global redesign of a native β-barrel scaffold. Biochimica et Biophysica Acta (BBA) - Biomembranes 2016, 1858 (1) , 19-29. https://doi.org/10.1016/j.bbamem.2015.10.006
    68. Tatiana K. Rostovtseva, Philip A. Gurnev, Olga Protchenko, David P. Hoogerheide, Thai Leong Yap, Caroline C. Philpott, Jennifer C. Lee, Sergey M. Bezrukov. α-Synuclein Shows High Affinity Interaction with Voltage-dependent Anion Channel, Suggesting Mechanisms of Mitochondrial Regulation and Toxicity in Parkinson Disease. Journal of Biological Chemistry 2015, 290 (30) , 18467-18477. https://doi.org/10.1074/jbc.M115.641746
    69. Yanxiao Feng, Yuechuan Zhang, Cuifeng Ying, Deqiang Wang, Chunlei Du. Nanopore-Based Fourth-Generation DNA Sequencing Technology. Genomics, Proteomics & Bioinformatics 2015, 13 (1) , 4-16. https://doi.org/10.1016/j.gpb.2015.01.009
    70. Richard Wagner, David Schmedt, Patrizia Hanhart, Claudius Walter, Christof Meisinger, Philipp Bartsch. Mitochondrial Protein Import Channels. 2015, 33-58. https://doi.org/10.1007/978-3-319-20149-8_2
    71. Thomas Gutsmann, Thomas Heimburg, Ulrich Keyser, Kozhinjampara R Mahendran, Mathias Winterhalter. Protein reconstitution into freestanding planar lipid membranes for electrophysiological characterization. Nature Protocols 2015, 10 (1) , 188-198. https://doi.org/10.1038/nprot.2015.003
    72. Loredana Mereuta, Mahua Roy, Alina Asandei, Jong Kook Lee, Yoonkyung Park, Ioan Andricioaei, Tudor Luchian. Slowing down single-molecule trafficking through a protein nanopore reveals intermediates for peptide translocation. Scientific Reports 2014, 4 (1) https://doi.org/10.1038/srep03885
    73. Philip Gurnev, Ekaterina Nestorovich. Channel-Forming Bacterial Toxins in Biosensing and Macromolecule Delivery. Toxins 2014, 6 (8) , 2483-2540. https://doi.org/10.3390/toxins6082483
    74. Joseph Larkin, Robert Y. Henley, Murugappan Muthukumar, Jacob K. Rosenstein, Meni Wanunu. High-Bandwidth Protein Analysis Using Solid-State Nanopores. Biophysical Journal 2014, 106 (3) , 696-704. https://doi.org/10.1016/j.bpj.2013.12.025
    75. Philip A. Gurnev, Thai Leong Yap, Candace M. Pfefferkorn, Tatiana K. Rostovtseva, Alexander M. Berezhkovskii, Jennifer C. Lee, V. Adrian Parsegian, Sergey M. Bezrukov. Alpha-Synuclein Lipid-Dependent Membrane Binding and Translocation through the α-Hemolysin Channel. Biophysical Journal 2014, 106 (3) , 556-565. https://doi.org/10.1016/j.bpj.2013.12.028
    76. Byoung-jin Jeon, Murugappan Muthukumar. Polymer capture by α-hemolysin pore upon salt concentration gradient. The Journal of Chemical Physics 2014, 140 (1) https://doi.org/10.1063/1.4855075
    77. Vladimir V. Palyulin, Tapio Ala-Nissila, Ralf Metzler. Polymer translocation: the first two decades and the recent diversification. Soft Matter 2014, 10 (45) , 9016-9037. https://doi.org/10.1039/C4SM01819B
    78. Debabrata Panja, Gerard T Barkema, Anatoly B Kolomeisky. Through the eye of the needle: recent advances in understanding biopolymer translocation. Journal of Physics: Condensed Matter 2013, 25 (41) , 413101. https://doi.org/10.1088/0953-8984/25/41/413101
    79. Lai-Sheung Choi, Tivadar Mach, Hagan Bayley. Rates and Stoichiometries of Metal Ion Probes of Cysteine Residues within Ion Channels. Biophysical Journal 2013, 105 (2) , 356-364. https://doi.org/10.1016/j.bpj.2013.04.046
    80. Usha Lamichhane, Tuhidul Islam, Sonal Prasad, Helge Weingart, Kozhinjampara R. Mahendran, Mathias Winterhalter. Peptide translocation through the mesoscopic channel: binding kinetics at the single molecule level. European Biophysics Journal 2013, 42 (5) , 363-369. https://doi.org/10.1007/s00249-012-0885-6
    81. F. Piguet, D. P. Foster. Translocation of short and long polymers through an interacting pore. The Journal of Chemical Physics 2013, 138 (8) https://doi.org/10.1063/1.4792716
    82. Farzin Haque, Jinghong Li, Hai-Chen Wu, Xing-Jie Liang, Peixuan Guo. Solid-state and biological nanopore for real-time sensing of single chemical and sequencing of DNA. Nano Today 2013, 8 (1) , 56-74. https://doi.org/10.1016/j.nantod.2012.12.008
    83. Jiaming Liu, Aaron J. Wolfe, Elif Eren, Jagamya Vijayaraghavan, Mridhu Indic, Bert van den Berg, Liviu Movileanu. Cation selectivity is a conserved feature in the OccD subfamily of Pseudomonas aeruginosa. Biochimica et Biophysica Acta (BBA) - Biomembranes 2012, 1818 (11) , 2908-2916. https://doi.org/10.1016/j.bbamem.2012.07.009
    84. Stephen Mirigian, Yanbo Wang, Murugappan Muthukumar. Translocation of a heterogeneous polymer. The Journal of Chemical Physics 2012, 137 (6) https://doi.org/10.1063/1.4742970
    85. Anatoly B. Kolomeisky. Theoretical Analysis of Molecular Transport Across Membrane Channels and Nanopores. 2012, 297-308. https://doi.org/10.1007/978-1-4614-2146-7_12
    86. Liviu Movileanu. Single-molecule detection of proteins using nanopores. 2012, 363-381. https://doi.org/10.1007/978-3-211-99749-9_25
    87. Kozhinjampara R. Mahendran, Mercedes Romero-Ruiz, Andrea Schlösinger, Mathias Winterhalter, Stephan Nussberger. Protein Translocation through Tom40: Kinetics of Peptide Release. Biophysical Journal 2012, 102 (1) , 39-47. https://doi.org/10.1016/j.bpj.2011.11.4003
    88. Francesco Bonardi, Nico Nouwen, Ben L. Feringa, Arnold J. M. Driessen. Protein conducting channels—mechanisms, structures and applications. Molecular BioSystems 2012, 8 (3) , 709. https://doi.org/10.1039/c2mb05433g
    89. Mohammad M. Mohammad, Liviu Movileanu. Protein Sensing with Engineered Protein Nanopores. 2012, 21-37. https://doi.org/10.1007/978-1-61779-773-6_2
    90. Christopher Christensen, Christian Baran, Besnik Krasniqi, Radu I. Stefureac, Sergiy Nokhrin, Jeremy S. Lee. Effect of charge, topology and orientation of the electric field on the interaction of peptides with the α‐hemolysin pore. Journal of Peptide Science 2011, 17 (11) , 726-734. https://doi.org/10.1002/psc.1393
    91. Anke Harsman, Philipp Bartsch, Birgit Hemmis, Vivien Krüger, Richard Wagner. Exploring protein import pores of cellular organelles at the single molecule level using the planar lipid bilayer technique. European Journal of Cell Biology 2011, 90 (9) , 721-730. https://doi.org/10.1016/j.ejcb.2011.04.012
    92. Wenwei Zheng, Mary A. Rohrdanz, Mauro Maggioni, Cecilia Clementi. Polymer reversal rate calculated via locally scaled diffusion map. The Journal of Chemical Physics 2011, 134 (14) https://doi.org/10.1063/1.3575245
    93. Anatoly B. Kolomeisky, Karthik Uppulury. How Interactions Control Molecular Transport in Channels. Journal of Statistical Physics 2011, 142 (6) , 1268-1276. https://doi.org/10.1007/s10955-010-0069-7
    94. Alina Asandei, Aurelia Apetrei, Tudor Luchian. Uni‐molecular detection and quantification of selected β‐lactam antibiotics with a hybrid α‐hemolysin protein pore. Journal of Molecular Recognition 2011, 24 (2) , 199-207. https://doi.org/10.1002/jmr.1038
    95. Mohammad M. Mohammad, Khalil R. Howard, Liviu Movileanu. Redesign of a Plugged β-Barrel Membrane Protein. Journal of Biological Chemistry 2011, 286 (10) , 8000-8013. https://doi.org/10.1074/jbc.M110.197723
    96. Yi‐Lun Ying, Hai‐Yan Wang, Todd C. Sutherland, Yi‐Tao Long. Monitoring of an ATP‐Binding Aptamer and its Conformational Changes Using an α‐Hemolysin Nanopore. Small 2011, 7 (1) , 87-94. https://doi.org/10.1002/smll.201001428
    97. Xiyun Guan, Ranulu Samanthi S. de Zoysa, Dilani A. Jayawardhana, Qitao Zhao. Stochastic Detection of Terrorist Agents and Biomolecules in a Biological Channel. 2011, 313-334. https://doi.org/10.1007/978-1-4419-8252-0_13
    98. Anke Harsman, Vivien Krüger, Philipp Bartsch, Alf Honigmann, Oliver Schmidt, Sanjana Rao, Christof Meisinger, Richard Wagner. Protein conducting nanopores. Journal of Physics: Condensed Matter 2010, 22 (45) , 454102. https://doi.org/10.1088/0953-8984/22/45/454102
    99. Anmiv S Prabhu, Talukder Zaki N Jubery, Kevin J Freedman, Rafael Mulero, Prashanta Dutta, Min Jun Kim. Chemically modified solid state nanopores for high throughput nanoparticle separation. Journal of Physics: Condensed Matter 2010, 22 (45) , 454107. https://doi.org/10.1088/0953-8984/22/45/454107
    100. Robert Bikwemu, Aaron J Wolfe, Xiangjun Xing, Liviu Movileanu. Facilitated translocation of polypeptides through a single nanopore. Journal of Physics: Condensed Matter 2010, 22 (45) , 454117. https://doi.org/10.1088/0953-8984/22/45/454117
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2007, 129, 45, 14034–14041
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja0749340
    Published October 19, 2007
    Copyright © 2007 American Chemical Society

    Article Views

    1258

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.