Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Flow Induced Dispersion Analysis Quantifies Noncovalent Interactions in Nanoliter Samples
My Activity

Figure 1Loading Img
    Communication

    Flow Induced Dispersion Analysis Quantifies Noncovalent Interactions in Nanoliter Samples
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2010, 132, 12, 4070–4071
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja100484d
    Published March 4, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Flow Induced Dispersion Analysis (FIDA) is presented as a new approach to characterize noncovalent interactions. The new method only requires nanoliter samples, is easy to implement, and also provides diffusivities of the free analyte and the formed complex. The technique is based on signal analysis of temporal variances obtained for pressure driven flows in micrometer sized fused silica capillaries.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Details on experimental procedures and data evaluation. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 54 publications.

    1. Tong Ye Wang, Jean-Luc Rukundo, Zhiyuan Mao, Sergey N. Krylov. Maximizing the Accuracy of Equilibrium Dissociation Constants for Affinity Complexes: From Theory to Practical Recommendations. ACS Chemical Biology 2024, 19 (9) , 1852-1867. https://doi.org/10.1021/acschembio.4c00259
    2. Andreas V. Madsen, Oscar Mejias-Gomez, Lasse E. Pedersen, Kerstin Skovgaard, Peter Kristensen, Steffen Goletz. Immobilization-Free Binding and Affinity Characterization of Higher Order Bispecific Antibody Complexes Using Size-Based Microfluidics. Analytical Chemistry 2022, 94 (40) , 13652-13658. https://doi.org/10.1021/acs.analchem.2c02705
    3. Camille Malburet, Laurent Leclercq, Jean-François Cotte, Jérôme Thiebaud, Sergio Marco, Marie-Claire Nicolaï, Hervé Cottet. Antigen-Adjuvant Interactions in Vaccines by Taylor Dispersion Analysis: Size Characterization and Binding Parameters. Analytical Chemistry 2021, 93 (16) , 6508-6515. https://doi.org/10.1021/acs.analchem.1c00420
    4. Morten E. Pedersen, Jesper Østergaard, Henrik Jensen. In-Solution IgG Titer Determination in Fermentation Broth Using Affibodies and Flow-Induced Dispersion Analysis. ACS Omega 2020, 5 (18) , 10519-10524. https://doi.org/10.1021/acsomega.0c00791
    5. Magnus Saed Restan, Morten E. Pedersen, Henrik Jensen, Stig Pedersen-Bjergaard. Electromembrane Extraction of Unconjugated Fluorescein Isothiocyanate from Solutions of Labeled Proteins Prior to Flow Induced Dispersion Analysis. Analytical Chemistry 2019, 91 (10) , 6702-6708. https://doi.org/10.1021/acs.analchem.9b00730
    6. Morten E. Pedersen, Sarah I. Gad, Jesper Østergaard, Henrik Jensen. Protein Characterization in 3D: Size, Folding, and Functional Assessment in a Unified Approach. Analytical Chemistry 2019, 91 (8) , 4975-4979. https://doi.org/10.1021/acs.analchem.9b00537
    7. Farid Oukacine, Annabelle Gèze, Luc Choisnard, Jean-Luc Putaux, Jean-Paul Stahl, and Eric Peyrin . Inline Coupling of Electrokinetic Preconcentration Method to Taylor Dispersion Analysis for Size-Based Characterization of Low-UV-Absorbing Nanoparticles. Analytical Chemistry 2018, 90 (4) , 2493-2500. https://doi.org/10.1021/acs.analchem.7b03344
    8. Nicklas N. Poulsen, Morten E. Pedersen, Jesper Østergaard, Nickolaj J. Petersen, Christoffer T. Nielsen, Niels H. H. Heegaard, and Henrik Jensen . Flow-Induced Dispersion Analysis for Probing Anti-dsDNA Antibody Binding Heterogeneity in Systemic Lupus Erythematosus Patients: Toward a New Approach for Diagnosis and Patient Stratification. Analytical Chemistry 2016, 88 (18) , 9056-9061. https://doi.org/10.1021/acs.analchem.6b01741
    9. Joseph Chamieh, Jean Philippe Biron, Luca Cipelletti, and Hervé Cottet . Monitoring Biopolymer Degradation by Taylor Dispersion Analysis. Biomacromolecules 2015, 16 (12) , 3945-3951. https://doi.org/10.1021/acs.biomac.5b01260
    10. Laurent Leclercq, Sören Reinhard, Joseph Chamieh, Markus Döblinger, Ernst Wagner, and Hervé Cottet . Fast Characterization of Polyplexes by Taylor Dispersion Analysis. Macromolecules 2015, 48 (19) , 7216-7221. https://doi.org/10.1021/acs.macromol.5b01824
    11. Luca Cipelletti, Jean-Philippe Biron, Michel Martin, and Hervé Cottet . Measuring Arbitrary Diffusion Coefficient Distributions of Nano-Objects by Taylor Dispersion Analysis. Analytical Chemistry 2015, 87 (16) , 8489-8496. https://doi.org/10.1021/acs.analchem.5b02053
    12. Marc-Alexandre Schott, Martine Domurado, Laurent Leclercq, Christel Barbaud, and Dominique Domurado . Solubilization of Water-Insoluble Drugs Due to Random Amphiphilic and Degradable Poly(dimethylmalic acid) Derivatives. Biomacromolecules 2013, 14 (6) , 1936-1944. https://doi.org/10.1021/bm400323c
    13. Laurent Leclercq and Hervé Cottet . Fast Characterization of Polyelectrolyte Complexes by Inline Coupling of Capillary Electrophoresis to Taylor Dispersion Analysis. Analytical Chemistry 2012, 84 (3) , 1740-1743. https://doi.org/10.1021/ac203208k
    14. Anna Bielejewska, Andrzej Bylina, Kazimiera Duszczyk, Marcin Fiałkowski and Robert Hołyst . Evaluation of Ligand-Selector Interaction from Effective Diffusion Coefficient. Analytical Chemistry 2010, 82 (13) , 5463-5469. https://doi.org/10.1021/ac1008207
    15. Sam Dawes, Nicholas Hurst, Gabriel Grey, Lukasz Wieteska, Nathan V Wright, Iain W Manfield, Mohammed H Hussain, Arnout P Kalverda, Jozef R Lewandowski, Beining Chen, Anastasia Zhuravleva. Chaperone BiP controls ER stress sensor Ire1 through interactions with its oligomers. Life Science Alliance 2024, 7 (10) , e202402702. https://doi.org/10.26508/lsa.202402702
    16. Rasmus K. Norrild, Thomas O. Mason, Lars Boyens‐Thiele, Soumik Ray, Joachim B. Mortensen, Anatol W. Fritsch, Juan M. Iglesias‐Artola, Louise K. Klausen, Emil G. P. Stender, Henrik Jensen, Alexander K. Buell. Taylor Dispersion‐Induced Phase Separation for the Efficient Characterisation of Protein Condensate Formation. Angewandte Chemie International Edition 2024, 63 (25) https://doi.org/10.1002/anie.202404018
    17. Rasmus K. Norrild, Thomas O. Mason, Lars Boyens‐Thiele, Soumik Ray, Joachim B. Mortensen, Anatol W. Fritsch, Juan M. Iglesias‐Artola, Louise K. Klausen, Emil G. P. Stender, Henrik Jensen, Alexander K. Buell. Taylor Dispersion‐Induced Phase Separation for the Efficient Characterisation of Protein Condensate Formation. Angewandte Chemie 2024, 136 (25) https://doi.org/10.1002/ange.202404018
    18. Grace H. Hwang, Maria F. Pazyra-Murphy, Hyuk-Soo Seo, Sirano Dhe-Paganon, Sylwia A. Stopka, Marina DiPiazza, Nizhoni Sutter, Thomas W. Gero, Alison Volkert, Lincoln Ombelets, Georgia Dittemore, Matthew G. Rees, Melissa M. Ronan, Jennifer A. Roth, Nathalie Y.R. Agar, David A. Scott, Rosalind A. Segal. A Benzarone Derivative Inhibits EYA to Suppress Tumor Growth in SHH Medulloblastoma. Cancer Research 2024, 84 (6) , 872-886. https://doi.org/10.1158/0008-5472.CAN-22-3784
    19. Azad Farzadfard, Antonin Kunka, Thomas Oliver Mason, Jacob Aunstrup Larsen, Rasmus Krogh Norrild, Elisa Torrescasana Dominguez, Soumik Ray, Alexander K. Buell. Thermodynamic characterization of amyloid polymorphism by microfluidic transient incomplete separation. Chemical Science 2024, 15 (7) , 2528-2544. https://doi.org/10.1039/D3SC05371G
    20. Alexey Ferapontov, Marjan Omer, Isabelle Baudrexel, Jesper Sejrup Nielsen, Daniel Miotto Dupont, Kristian Juul-Madsen, Philipp Steen, Alexandra S. Eklund, Steffen Thiel, Thomas Vorup-Jensen, Ralf Jungmann, Jørgen Kjems, Søren Egedal Degn. Antigen footprint governs activation of the B cell receptor. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-36672-0
    21. Arne Matteo Jörgensen, Richard Wibel, Florina Veider, Barbara Hoyer, Joseph Chamieh, Hervé Cottet, Andreas Bernkop-Schnürch. Self-emulsifying drug delivery systems (SEDDS): How organic solvent release governs the fate of their cargo. International Journal of Pharmaceutics 2023, 647 , 123534. https://doi.org/10.1016/j.ijpharm.2023.123534
    22. Melanie N. Hug, Sabrina Keller, Talea Marty, Daniel Gygax, Dominik Meinel, Peter Spies, Joëlle Handschin, Marc Kleiser, Noemi Vazquez, Janina Linnik, Rico Buchli, Frans Claas, Sebastiaan Heidt, Cynthia S. M. Kramer, Suzanne Bezstarosti, Jar‐How Lee, Stefan Schaub, Gideon Hönger. HLA antibody affinity determination: From HLA ‐specific monoclonal antibodies to donor HLA specific antibodies ( DSA ) in patient serum. HLA 2023, 102 (3) , 278-300. https://doi.org/10.1111/tan.15047
    23. Yuanli Dai, Chang Sun, Yunhe Yang, Shuanghao Wang, Huihui Li, David Da Yong Chen. β‐Cyclodextrin and folic acid host–guest interaction binding parameters determined by Taylor dispersion analysis and affinity capillary electrophoresis. ELECTROPHORESIS 2023, 44 (13-14) , 1027-1036. https://doi.org/10.1002/elps.202200279
    24. Matilda Bingham, Thomas Pesnot, Andrew D. Scott. Biophysical screening and characterisation in medicinal chemistry. 2023, 61-104. https://doi.org/10.1016/bs.pmch.2023.10.002
    25. Helena Ø. Rasmussen, Amit Kumar, Ben Shin, Fisentzos Stylianou, Lee Sewell, Yingqi Xu, Daniel E. Otzen, Jan Skov Pedersen, Steve J. Matthews. FapA is an Intrinsically Disordered Chaperone for Pseudomonas Functional Amyloid FapC. Journal of Molecular Biology 2023, 435 (2) , 167878. https://doi.org/10.1016/j.jmb.2022.167878
    26. Morten E. Pedersen, Jesper Østergaard, Bente Glintborg, Merete L. Hetland, Henrik Jensen. Assessment of immunogenicity and drug activity in patient sera by flow-induced dispersion analysis. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-08682-3
    27. Morten E. Pedersen, Jesper Østergaard, Henrik Jensen. Quantification of Structural Integrity and Stability Using Nanograms of Protein by Flow-Induced Dispersion Analysis. Molecules 2022, 27 (8) , 2506. https://doi.org/10.3390/molecules27082506
    28. Henry C. W. Chu, Stephen Garoff, Robert D. Tilton, Aditya S. Khair. Tuning chemotactic and diffusiophoretic spreading via hydrodynamic flows. Soft Matter 2022, 18 (9) , 1896-1910. https://doi.org/10.1039/D2SM00139J
    29. Fabian Dingfelder, Anette Henriksen, Per-Olof Wahlund, Paolo Arosio, Nikolai Lorenzen. Measuring Self-Association of Antibody Lead Candidates with Dynamic Light Scattering. 2022, 241-258. https://doi.org/10.1007/978-1-0716-1450-1_14
    30. Julián Valero, Laia Civit, Daniel M. Dupont, Denis Selnihhin, Line S. Reinert, Manja Idorn, Brett A. Israels, Aleksandra M. Bednarz, Claus Bus, Benedikt Asbach, David Peterhoff, Finn S. Pedersen, Victoria Birkedal, Ralf Wagner, Søren R. Paludan, Jørgen Kjems. A serum-stable RNA aptamer specific for SARS-CoV-2 neutralizes viral entry. Proceedings of the National Academy of Sciences 2021, 118 (50) https://doi.org/10.1073/pnas.2112942118
    31. Emil G. P. Stender, Soumik Ray, Rasmus K. Norrild, Jacob Aunstrup Larsen, Daniel Petersen, Azad Farzadfard, Céline Galvagnion, Henrik Jensen, Alexander K. Buell. Capillary flow experiments for thermodynamic and kinetic characterization of protein liquid-liquid phase separation. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-27433-y
    32. Morten E. Pedersen, Ragna M. S. Haegebaert, Jesper Østergaard, Henrik Jensen. Size-based characterization of adalimumab and TNF-α interactions using flow induced dispersion analysis: assessment of avidity-stabilized multiple bound species. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-84113-z
    33. Daniel E. Otzen, Alexander K. Buell, Henrik Jensen. Microfluidics and the quantification of biomolecular interactions. Current Opinion in Structural Biology 2021, 70 , 8-15. https://doi.org/10.1016/j.sbi.2021.02.006
    34. Debashis Dutta. Band broadening in mobility shift affinity capillary electrophoresis due to pressure-driven flow. Physics of Fluids 2021, 33 (10) https://doi.org/10.1063/5.0062701
    35. Adrian Krzyzanowski, Raphael Gasper, Hélène Adihou, Peter 't Hart, Herbert Waldmann. Biochemical Investigation of the Interaction of pICln, RioK1 and COPR5 with the PRMT5–MEP50 Complex. ChemBioChem 2021, 22 (11) , 1908-1914. https://doi.org/10.1002/cbic.202100079
    36. Krishna Mohan Poluri, Khushboo Gulati, Sharanya Sarkar. Experimental Methods for Determination of Protein–Protein Interactions. 2021, 197-264. https://doi.org/10.1007/978-981-16-1594-8_5
    37. Nicolas Sisavath, Jean‐Luc Rukundo, J. C. Yves Le Blanc, Victor A. Galievsky, Jiayin Bao, Sven Kochmann, Alexander S. Stasheuski, Sergey N. Krylov. Transient Incomplete Separation Facilitates Finding Accurate Equilibrium Dissociation Constant of Protein–Small Molecule Complex. Angewandte Chemie 2019, 131 (20) , 6707-6711. https://doi.org/10.1002/ange.201901345
    38. Nicolas Sisavath, Jean‐Luc Rukundo, J. C. Yves Le Blanc, Victor A. Galievsky, Jiayin Bao, Sven Kochmann, Alexander S. Stasheuski, Sergey N. Krylov. Transient Incomplete Separation Facilitates Finding Accurate Equilibrium Dissociation Constant of Protein–Small Molecule Complex. Angewandte Chemie International Edition 2019, 58 (20) , 6635-6639. https://doi.org/10.1002/anie.201901345
    39. Morten E. Pedersen, Jesper Østergaard, Henrik Jensen. Flow-Induced Dispersion Analysis (FIDA) for Protein Quantification and Characterization. 2019, 109-123. https://doi.org/10.1007/978-1-4939-9213-3_8
    40. Gonzalo Ramírez-García, Laura Trapiella-Alfonso, Fanny d’Orlyé, Anne Varenne. Electrophoretic Methods for Characterizing Nanoparticles and Evaluating Their Bio-interactions for Their Further Use as Diagnostic, Imaging, or Therapeutic Tools. 2018, 397-421. https://doi.org/10.1016/B978-0-12-809375-7.00019-8
    41. Hadar Zaman, Andrew G. Bright, Kevin Adams, David M. Goodall, Robert T. Forbes. Characterisation of aggregates of cyclodextrin-drug complexes using Taylor Dispersion Analysis. International Journal of Pharmaceutics 2017, 522 (1-2) , 98-109. https://doi.org/10.1016/j.ijpharm.2017.02.012
    42. Jan Petr. Rapid determination of the critical micelle concentration by Taylor dispersion analysis in capillaries using both direct and indirect detection. Journal of Separation Science 2017, 40 (6) , 1421-1426. https://doi.org/10.1002/jssc.201601085
    43. Ulrich B. Høgstedt, Grégoire Schwach, Marco van de Weert, Jesper Østergaard. Taylor Dispersion Analysis as a promising tool for assessment of peptide-peptide interactions. European Journal of Pharmaceutical Sciences 2016, 93 , 21-28. https://doi.org/10.1016/j.ejps.2016.07.015
    44. Jesper Østergaard, Susan W. Larsen, Henrik Jensen. Capillary-Based Techniques for Physical-Chemical Characterization of Drug Substances and Drug Delivery Systems. 2016, 439-465. https://doi.org/10.1007/978-1-4939-4029-5_14
    45. Nicklas N. Poulsen, Nina Z. Andersen, Jesper Østergaard, Guisheng Zhuang, Nickolaj J. Petersen, Henrik Jensen. Flow induced dispersion analysis rapidly quantifies proteins in human plasma samples. The Analyst 2015, 140 (13) , 4365-4369. https://doi.org/10.1039/C5AN00697J
    46. Farid Oukacine, Stephane Bernard, Iulian Bobe, Hervé Cottet. Physico-chemical characterization of polymeric micelles loaded with platinum derivatives by capillary electrophoresis and related methods. Journal of Controlled Release 2014, 196 , 139-145. https://doi.org/10.1016/j.jconrel.2014.09.022
    47. Joseph Chamieh, Hervé Cottet. Size-based characterisation of nanomaterials by Taylor dispersion analysis. 2014, 173-192. https://doi.org/10.1016/B978-0-444-62614-1.00009-0
    48. Guisheng Zhuang, Nicklas N. Poulsen, Nickolaj J. Petersen, Jesper Ostergaard, Henrik Jensen. A capillary-based microfluidic device incorporating optical fibers for flow induced dispersion analysis. 2013, 1054-1057. https://doi.org/10.1109/NEMS.2013.6559903
    49. H. Jensen, S.W. Larsen, C. Larsen, J. Østergaard. Physicochemical profiling of drug candidates using capillary-based techniques. Journal of Drug Delivery Science and Technology 2013, 23 (4) , 333-345. https://doi.org/10.1016/S1773-2247(13)50050-5
    50. Ulrik Franzen, Jesper Østergaard. Physico-chemical characterization of liposomes and drug substance–liposome interactions in pharmaceutics using capillary electrophoresis and electrokinetic chromatography. Journal of Chromatography A 2012, 1267 , 32-44. https://doi.org/10.1016/j.chroma.2012.07.018
    51. Mette Thing, Sabrine Smedegaard Jensen, Claus Larsen, Jesper Østergaard, Susan Weng Larsen. Modification of concomitant drug release from oil vehicles using drug–prodrug combinations to achieve sustained balanced analgesia after joint installation. International Journal of Pharmaceutics 2012, 439 (1-2) , 246-253. https://doi.org/10.1016/j.ijpharm.2012.09.033
    52. Fengbin Ye, Henrik Jensen, Susan W. Larsen, Anan Yaghmur, Claus Larsen, Jesper Østergaard. Measurement of drug diffusivities in pharmaceutical solvents using Taylor dispersion analysis. Journal of Pharmaceutical and Biomedical Analysis 2012, 61 , 176-183. https://doi.org/10.1016/j.jpba.2011.11.030
    53. Marie Girardot, Hong-Yi Li, Stéphanie Descroix, Anne Varenne. Determination of binding parameters between lysozyme and its aptamer by frontal analysis continuous microchip electrophoresis (FACMCE). Journal of Chromatography A 2011, 1218 (26) , 4052-4058. https://doi.org/10.1016/j.chroma.2011.04.077
    54. Ulrik Franzen, Charlotte Vermehren, Henrik Jensen, Jesper Østergaard. Physicochemical characterization of a PEGylated liposomal drug formulation using capillary electrophoresis. ELECTROPHORESIS 2011, 32 (6-7) , 738-748. https://doi.org/10.1002/elps.201000552

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2010, 132, 12, 4070–4071
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja100484d
    Published March 4, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    2217

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.