ACS Publications. Most Trusted. Most Cited. Most Read
A Remote Arene-Binding Site on Prostate Specific Membrane Antigen Revealed by Antibody-Recruiting Small Molecules
My Activity

Figure 1Loading Img
    Article

    A Remote Arene-Binding Site on Prostate Specific Membrane Antigen Revealed by Antibody-Recruiting Small Molecules
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Yale University, 225 Prospect Street, P.O. Box 208107, New Haven, Connecticut 06510-8107, Laboratory of Structural Biology, Institute of Biotechnology AS CR, v.v.i., 14200 Prague 4, Czech Republic, Macromolecular Crystallography Laboratory, 539 Boyles Street, National Cancer Institute at Frederick, Frederick, Maryland 21702, and Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520
    †Yale University.
    ‡Institute of Biotechnology AS CR.
    §National Cancer Institute at Frederick.
    ∥Yale University School of Medicine.
    Other Access OptionsSupporting Information (6)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2010, 132, 36, 12711–12716
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja104591m
    Published August 20, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Prostate specific membrane antigen (PSMA) is a membrane-bound glutamate carboxypeptidase overexpressed in many forms of prostate cancer. Our laboratory has recently disclosed a class of small molecules, called ARM-Ps (antibody-recruiting molecule targeting prostate cancer) that are capable of enhancing antibody-mediated immune recognition of prostate cancer cells. Interestingly, during the course of these studies, we found ARM-Ps to exhibit extraordinarily high potencies toward PSMA, compared to previously reported inhibitors. Here, we report in-depth biochemical, crystallographic, and computational investigations which elucidate the origin of the observed affinity enhancement. These studies reveal a previously unreported arene-binding site on PSMA, which we believe participates in an aromatic stacking interaction with ARMs. Although this site is composed of only a few amino acid residues, it drastically enhances small molecule binding affinity. These results provide critical insights into the design of PSMA-targeted small molecules for prostate cancer diagnosis and treatment; more broadly, the presence of similar arene-binding sites throughout the proteome could prove widely enabling in the optimization of small molecule−protein interactions.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Detailed experimental procedures and compound characterizations as well as videos of simulations are provided. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 125 publications.

    1. Benjamin P. M. Lake, Anthony F. Rullo. Offsetting Low-Affinity Carbohydrate Binding with Covalency to Engage Sugar-Specific Proteins for Tumor-Immune Proximity Induction. ACS Central Science 2023, 9 (11) , 2064-2075. https://doi.org/10.1021/acscentsci.3c01052
    2. Veronika Temml, Jakub Kollár, Theresa Schönleitner, Anna Höll, Daniela Schuster, Zsófia Kutil. Combination of In Silico and In Vitro Screening to Identify Novel Glutamate Carboxypeptidase II Inhibitors. Journal of Chemical Information and Modeling 2023, 63 (4) , 1249-1259. https://doi.org/10.1021/acs.jcim.2c01269
    3. Christos Liolios, Christos Patsis, George Lambrinidis, Efpraxia Tzortzini, Mareike Roscher, Ulrike Bauder-Wüst, Antonios Kolocouris, Klaus Kopka. Investigation of Tumor Cells and Receptor-Ligand Simulation Models for the Development of PET Imaging Probes Targeting PSMA and GRPR and a Possible Crosstalk between the Two Receptors. Molecular Pharmaceutics 2022, 19 (7) , 2231-2247. https://doi.org/10.1021/acs.molpharmaceut.2c00070
    4. Shimpei Iikuni, Yuta Tarumizu, Kazuma Nakashima, Yusuke Higaki, Hiroaki Ichikawa, Hiroyuki Watanabe, Masahiro Ono. Radiotheranostics Using a Novel 225Ac-Labeled Radioligand with Improved Pharmacokinetics Targeting Prostate-Specific Membrane Antigen. Journal of Medicinal Chemistry 2021, 64 (18) , 13429-13438. https://doi.org/10.1021/acs.jmedchem.1c00772
    5. Sebastian Martin, Roswitha Tönnesmann, Ina Hierlmeier, Stephan Maus, Florian Rosar, Juri Ruf, Jason P. Holland, Samer Ezziddin, Mark D. Bartholomä. Identification, Characterization, and Suppression of Side Products Formed during the Synthesis of [177Lu]Lu-PSMA-617. Journal of Medicinal Chemistry 2021, 64 (8) , 4960-4971. https://doi.org/10.1021/acs.jmedchem.1c00045
    6. Xiaojun Zhang, Yitian Wu, Qi Zeng, Tianxin Xie, Shulin Yao, Jinming Zhang, Mengchao Cui. Synthesis, Preclinical Evaluation, and First-in-Human PET Study of Quinoline-Containing PSMA Tracers with Decreased Renal Excretion. Journal of Medicinal Chemistry 2021, 64 (7) , 4179-4195. https://doi.org/10.1021/acs.jmedchem.1c00117
    7. Jens Cardinale, Mareike Roscher, Martin Schäfer, Max Geerlings, Martina Benešová, Ulrike Bauder-Wüst, Yvonne Remde, Matthias Eder, Zora Nováková, Lucia Motlová, Cyril Barinka, Frederik L. Giesel, Klaus Kopka. Development of PSMA-1007-Related Series of 18F-Labeled Glu-Ureido-Type PSMA Inhibitors. Journal of Medicinal Chemistry 2020, 63 (19) , 10897-10907. https://doi.org/10.1021/acs.jmedchem.9b01479
    8. Benjamin Lake, Nickolas Serniuck, Eden Kapcan, Alex Wang, Anthony F. Rullo. Covalent Immune Recruiters: Tools to Gain Chemical Control Over Immune Recognition. ACS Chemical Biology 2020, 15 (4) , 1089-1095. https://doi.org/10.1021/acschembio.0c00112
    9. Kyul Kim, Hongmok Kwon, Cyril Barinka, Lucia Motlova, SangJin Nam, Doyoung Choi, Hyunsoo Ha, Hwanhee Nam, Sang-Hyun Son, Il Minn, Martin G. Pomper, Xing Yang, Zsofia Kutil, Youngjoo Byun. Novel β- and γ-Amino Acid-Derived Inhibitors of Prostate-Specific Membrane Antigen. Journal of Medicinal Chemistry 2020, 63 (6) , 3261-3273. https://doi.org/10.1021/acs.jmedchem.9b02022
    10. Arindom Pal, Wabel Albusairi, Fang Liu, Md Tariqul Haque Tuhin, Mark Miller, Dengpan Liang, Hyun Joo, Toufiq Ul Amin, Elizabeth A. Wilson, Jesika S. Faridi, Miki Park, Mamoun M. Alhamadsheh. Hydrophilic Small Molecules That Harness Transthyretin To Enhance the Safety and Efficacy of Targeted Chemotherapeutic Agents. Molecular Pharmaceutics 2019, 16 (7) , 3237-3252. https://doi.org/10.1021/acs.molpharmaceut.9b00432
    11. Alexander Wurzer, Julia Pollmann, Alexander Schmidt, Dominik Reich, Hans-Jürgen Wester, Johannes Notni. Molar Activity of Ga-68 Labeled PSMA Inhibitor Conjugates Determines PET Imaging Results. Molecular Pharmaceutics 2018, 15 (9) , 4296-4302. https://doi.org/10.1021/acs.molpharmaceut.8b00602
    12. Chunlan Liu, Shu Lu, Limin Yang, Peijie Chen, Peiming Bai, and Qiuquan Wang . Near-Infrared Neodymium Tag for Quantifying Targeted Biomarker and Counting Its Host Circulating Tumor Cells. Analytical Chemistry 2017, 89 (17) , 9239-9246. https://doi.org/10.1021/acs.analchem.7b02016
    13. Nan-Sheng Li, Nathan P. Gossai, Jordan A. Naumann, Peter M. Gordon, and Joseph A. Piccirilli . Efficient Synthetic Approach to Linear Dasatinib–DNA Conjugates by Click Chemistry. Bioconjugate Chemistry 2016, 27 (10) , 2575-2579. https://doi.org/10.1021/acs.bioconjchem.6b00557
    14. Yingqin Hou, Jingsong Yuan, Yu Zhou, Jin Yu, and Hua Lu . A Concise Approach to Site-Specific Topological Protein–Poly(amino acid) Conjugates Enabled by in Situ-Generated Functionalities. Journal of the American Chemical Society 2016, 138 (34) , 10995-11000. https://doi.org/10.1021/jacs.6b05413
    15. Shorouk Dannoon, Tanushree Ganguly, Hendry Cahaya, Jonathan J. Geruntho, Matthew S. Galliher, Sophia K. Beyer, Cindy J. Choy, Mark R. Hopkins, Melanie Regan, Joseph E. Blecha, Lubica Skultetyova, Christopher R. Drake, Salma Jivan, Cyril Barinka, Ella F. Jones, Clifford E. Berkman, and Henry F. VanBrocklin . Structure–Activity Relationship of 18F-Labeled Phosphoramidate Peptidomimetic Prostate-Specific Membrane Antigen (PSMA)-Targeted Inhibitor Analogues for PET Imaging of Prostate Cancer. Journal of Medicinal Chemistry 2016, 59 (12) , 5684-5694. https://doi.org/10.1021/acs.jmedchem.5b01850
    16. Sangeeta Ray Banerjee, Zhengping Chen, Mrudula Pullambhatla, Ala Lisok, Jian Chen, Ronnie C. Mease, and Martin G. Pomper . Preclinical Comparative Study of 68Ga-Labeled DOTA, NOTA, and HBED-CC Chelated Radiotracers for Targeting PSMA. Bioconjugate Chemistry 2016, 27 (6) , 1447-1455. https://doi.org/10.1021/acs.bioconjchem.5b00679
    17. Zora Novakova, Krystyna Wozniak, Andrej Jancarik, Rana Rais, Ying Wu, Jiri Pavlicek, Dana Ferraris, Barbora Havlinova, Jakub Ptacek, Jan Vavra, Niyada Hin, Camilo Rojas, Pavel Majer, Barbara S. Slusher, Takashi Tsukamoto, and Cyril Barinka . Unprecedented Binding Mode of Hydroxamate-Based Inhibitors of Glutamate Carboxypeptidase II: Structural Characterization and Biological Activity. Journal of Medicinal Chemistry 2016, 59 (10) , 4539-4550. https://doi.org/10.1021/acs.jmedchem.5b01806
    18. Afaf R. Genady, Nancy Janzen, Laura Banevicius, Mahmoud El-Gamal, Mohamed E. El-Zaria, and John F. Valliant . Preparation and Evaluation of Radiolabeled Antibody Recruiting Small Molecules That Target Prostate-Specific Membrane Antigen for Combined Radiotherapy and Immunotherapy. Journal of Medicinal Chemistry 2016, 59 (6) , 2660-2673. https://doi.org/10.1021/acs.jmedchem.5b01881
    19. Martina Benešová, Ulrike Bauder-Wüst, Martin Schäfer, Karel D. Klika, Walter Mier, Uwe Haberkorn, Klaus Kopka, and Matthias Eder . Linker Modification Strategies To Control the Prostate-Specific Membrane Antigen (PSMA)-Targeting and Pharmacokinetic Properties of DOTA-Conjugated PSMA Inhibitors. Journal of Medicinal Chemistry 2016, 59 (5) , 1761-1775. https://doi.org/10.1021/acs.jmedchem.5b01210
    20. Yi An, Jacob W. G. Bloom, and Steven E. Wheeler . Quantifying the π-Stacking Interactions in Nitroarene Binding Sites of Proteins. The Journal of Physical Chemistry B 2015, 119 (45) , 14441-14450. https://doi.org/10.1021/acs.jpcb.5b08126
    21. Rémi Cuchillo, Kevin Pinto-Gil, and Julien Michel . A Collective Variable for the Rapid Exploration of Protein Druggability. Journal of Chemical Theory and Computation 2015, 11 (3) , 1292-1307. https://doi.org/10.1021/ct501072t
    22. Patrick J. McEnaney, Kelly J. Fitzgerald, Andrew X. Zhang, Eugene F. Douglass, Jr., Weifang Shan, Aaron Balog, Mariya D. Kolesnikova, and David A. Spiegel . Chemically Synthesized Molecules with the Targeting and Effector Functions of Antibodies. Journal of the American Chemical Society 2014, 136 (52) , 18034-18043. https://doi.org/10.1021/ja509513c
    23. Kaisa Helttunen, Lauri Lehtovaara, Hannu Häkkinen, and Maija Nissinen . Crystal Structures and Density Functional Theory Calculations of o- and p-Nitroaniline Derivatives: Combined Effect of Hydrogen Bonding and Aromatic Interactions on Dimerization Energy. Crystal Growth & Design 2013, 13 (8) , 3603-3612. https://doi.org/10.1021/cg4005714
    24. Patrick J. McEnaney, Christopher G. Parker, Andrew X. Zhang, and David A. Spiegel . Antibody-Recruiting Molecules: An Emerging Paradigm for Engaging Immune Function in Treating Human Disease. ACS Chemical Biology 2012, 7 (7) , 1139-1151. https://doi.org/10.1021/cb300119g
    25. Anna Plechanovová, Youngjoo Byun, Glenda Alquicer, L'ubica Škultétyová, Petra Mlčochová, Adriana Němcová, Hyung-Joon Kim, Michal Navrátil, Ronnie Mease, Jacek Lubkowski, Martin Pomper, Jan Konvalinka, Lubomír Rulíšek, and Cyril Bařinka . Novel Substrate-Based Inhibitors of Human Glutamate Carboxypeptidase II with Enhanced Lipophilicity. Journal of Medicinal Chemistry 2011, 54 (21) , 7535-7546. https://doi.org/10.1021/jm200807m
    26. Yuqing Xiong, Xinlin Wang, Mengchao Cui, Yajun Liu, Beibei Wang. Balancing enthalpy and entropy in inhibitor binding to the prostate-specific membrane antigen (PSMA). Physical Chemistry Chemical Physics 2025, 27 (4) , 2260-2271. https://doi.org/10.1039/D4CP04137B
    27. Marco Nicola Iannone, Silvia Valtorta, Stefano Stucchi, Stefano Altomonte, Elia Anna Turolla, Elisa Vino, Paolo Rainone, Valentina Zecca, Alessia Lo Dico, Marco Maspero, Mariangela Figini, Matteo Bellone, Samuele Ciceri, Diego Colombo, Clizia Chinello, Lisa Pagani, Rosa Maria Moresco, Sergio Todde, Patrizia Ferraboschi. Automated radiosynthesis and preclinical evaluation of two new PSMA-617 derivatives radiolabelled via [18F]AlF2+ method. EJNMMI Radiopharmacy and Chemistry 2024, 9 (1) https://doi.org/10.1186/s41181-024-00280-0
    28. Sebastian Martin, Moritz-Valentin Schreck, Tobias Stemler, Stephan Maus, Florian Rosar, Caroline Burgard, Andrea Schaefer-Schuler, Samer Ezziddin, Mark D. Bartholomä. Development of a homotrimeric PSMA radioligand based on the NOTI chelating platform. EJNMMI Radiopharmacy and Chemistry 2024, 9 (1) https://doi.org/10.1186/s41181-024-00314-7
    29. Amanda R. Noble, Saeed Akkad, Nicholas D. J. Yates, James M. Jeffries, Nathalie Signoret, Martin A. Fascione. Towards a ‘clicked’ PSMA targeting gene delivery bioconjugate-polyplex for prostate cancer. RSC Advances 2024, 14 (33) , 23796-23801. https://doi.org/10.1039/D4RA03640A
    30. Suresh Alati, Rajan Singh, Martin G. Pomper, Steven P. Rowe, Sangeeta Ray Banerjee. Preclinical Development in Radiopharmaceutical Therapy for Prostate Cancer. Seminars in Nuclear Medicine 2023, 53 (5) , 663-686. https://doi.org/10.1053/j.semnuclmed.2023.06.007
    31. A. A Uspenskaia, P. A Krasnikov, A. G Majouga, E. K Beloglazkina, A. E Machulkin. Fluorescent conjugates based on prostatic specific membrane antigen ligands as an effective visualization tool for prostate cancer. Биохимия 2023, 88 (7) , 1173-1190. https://doi.org/10.31857/S0320972523070084
    32. Anastasiia A. Uspenskaia, Pavel A. Krasnikov, Elena K. Beloglazkina, Aleksei E. Machulkin. Fluorescent Conjugates Based on Prostate-Specific Membrane Antigen Ligands as an Effective Visualization Tool for Prostate Cancer. Biochemistry (Moscow) 2023, 88 (7) , 953-967. https://doi.org/10.1134/S0006297923070088
    33. Hersa Milawati, Yoshiyuki Manabe, Takuya Matsumoto, Masato Tsutsui, Yoshihiro Ueda, Ayane Miura, Kazuya Kabayama, Koichi Fukase. Practical Antibody Recruiting by Metabolic Labeling with Caged Glycans. Angewandte Chemie 2023, 135 (25) https://doi.org/10.1002/ange.202303750
    34. Hersa Milawati, Yoshiyuki Manabe, Takuya Matsumoto, Masato Tsutsui, Yoshihiro Ueda, Ayane Miura, Kazuya Kabayama, Koichi Fukase. Practical Antibody Recruiting by Metabolic Labeling with Caged Glycans. Angewandte Chemie International Edition 2023, 62 (25) https://doi.org/10.1002/anie.202303750
    35. Erika Murce, Savanne Beekman, Evelien Spaan, Maryana Handula, Debra Stuurman, Corrina de Ridder, Yann Seimbille. Preclinical Evaluation of a PSMA-Targeting Homodimer with an Optimized Linker for Imaging of Prostate Cancer. Molecules 2023, 28 (10) , 4022. https://doi.org/10.3390/molecules28104022
    36. Benjamin P. M. Lake, Ryan G. Wylie, Cyril Bařinka, Anthony F. Rullo. Tunable Multivalent Platform for Immune Recruitment to Lower Antigen Expressing Cancers. Angewandte Chemie 2023, 135 (9) https://doi.org/10.1002/ange.202214659
    37. Benjamin P. M. Lake, Ryan G. Wylie, Cyril Bařinka, Anthony F. Rullo. Tunable Multivalent Platform for Immune Recruitment to Lower Antigen Expressing Cancers. Angewandte Chemie International Edition 2023, 62 (9) https://doi.org/10.1002/anie.202214659
    38. Michael DuPont, Hannah Visca, Anna Moshnikova, Donald M. Engelman, Yana K. Reshetnyak, Oleg A. Andreev. Tumor treatment by pHLIP-targeted antigen delivery. Frontiers in Bioengineering and Biotechnology 2023, 10 https://doi.org/10.3389/fbioe.2022.1082290
    39. Janna Morawitz, Julian Kirchner, Johannes Hertelendy, Christina Loberg, Lars Schimmöller, Mardjan Dabir, Lena Häberle, Eduards Mamlins, Christina Antke, Christian Arsov, Gerald Antoch, Lino M. Sawicki. Is there a diagnostic benefit of late-phase abdomino-pelvic PET/CT after urination as part of whole-body 68 Ga-PSMA-11 PET/CT for restaging patients with biochemical recurrence of prostate cancer after radical prostatectomy?. EJNMMI Research 2022, 12 (1) https://doi.org/10.1186/s13550-022-00885-z
    40. Mena Asha Krishnan, Amit Pandit, Rajesh Sharma, Venkatesh Chelvam. Imaging of prostate cancer: optimizing affinity to prostate specific membrane antigen by spacer modifications in a tumor spheroid model. Journal of Biomolecular Structure and Dynamics 2022, 40 (20) , 9909-9930. https://doi.org/10.1080/07391102.2021.1936642
    41. Juan Sun, Zhenyuan Huangfu, Jiangtao Yang, Guanglin Wang, Kuan Hu, Mingyuan Gao, Zhiyuan Zhong. Imaging-guided targeted radionuclide tumor therapy: From concept to clinical translation. Advanced Drug Delivery Reviews 2022, 190 , 114538. https://doi.org/10.1016/j.addr.2022.114538
    42. Agostino Cilibrizzi, Julie Tzu-Wen Wang, Siham Memdouh, Antonella Iacovone, Kate McElroy, Noor Jaffar, Jennifer Denise Young, Robert C. Hider, Philip Blower, Khuloud Al-Jamal, Vincenzo Abbate. PSMA-targeted NIR probes for image-guided detection of prostate cancer. Colloids and Surfaces B: Biointerfaces 2022, 218 , 112734. https://doi.org/10.1016/j.colsurfb.2022.112734
    43. Nikolai Y. Zyk, Anton P. Ber, Ekaterina A. Nimenko, Radik R. Shafikov, Sergei A. Evteev, Stanislav A. Petrov, Anastasia A. Uspenskaya, Natalia S. Dashkova, Yan A. Ivanenkov, Dmitry A. Skvortsov, Elena K. Beloglazkina, Alexander G. Majouga, Aleksei E. Machulkin. Synthesis and initial in vitro evaluation of PSMA-targeting ligands with a modified aromatic moiety at the lysine ε-nitrogen atom. Bioorganic & Medicinal Chemistry Letters 2022, 71 , 128840. https://doi.org/10.1016/j.bmcl.2022.128840
    44. José Carlos dos Santos, Martin Schäfer, Ulrike Bauder-Wüst, Barbro Beijer, Matthias Eder, Karin Leotta, Christian Kleist, Jan-Philip Meyer, Thomas R. Dilling, Jason S. Lewis, Clemens Kratochwil, Klaus Kopka, Uwe Haberkorn, Walter Mier. Refined Chelator Spacer Moieties Ameliorate the Pharmacokinetics of PSMA-617. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.898692
    45. Mathieu Szponarski, Karl Gademann. Antibody Recognition of Cancer Cells via Glycan Surface Engineering. ChemBioChem 2022, 23 (15) https://doi.org/10.1002/cbic.202200125
    46. Nives Hribernik, Fabrizio Chiodo, Roland J. Pieters, Anna Bernardi. Rhamnose-based glycomimetic for recruitment of endogenous anti-rhamnose antibodies. Tetrahedron Letters 2022, 99 , 153843. https://doi.org/10.1016/j.tetlet.2022.153843
    47. Shuobin Liang, Xinyuan Ma, Man Li, Yanliang Yi, Qianqian Gao, Yongmin Zhang, Lihe Zhang, Demin Zhou, Sulong Xiao. Novel β-Cyclodextrin-Based Heptavalent Glycyrrhetinic Acid Conjugates: Synthesis, Characterization, and Anti-Influenza Activity. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.836955
    48. Marco N. Iannone, Stefano Stucchi, Elia A. Turolla, Chiara Beretta, Samuele Ciceri, Clizia Chinello, Lisa Pagani, Sergio Todde, Patrizia Ferraboschi. Synthesis and automated fluorine‐18 radiolabeling of new PSMA‐617 derivatives with a CuAAC radiosynthetic approach. Journal of Labelled Compounds and Radiopharmaceuticals 2022, 65 (3) , 48-62. https://doi.org/10.1002/jlcr.3959
    49. Zahra Nikfarjam, Farshid Zargari, Alireza Nowroozi, Omid Bavi. Metamorphosis of prostate specific membrane antigen (PSMA) inhibitors. Biophysical Reviews 2022, 14 (1) , 303-315. https://doi.org/10.1007/s12551-021-00919-1
    50. Martin K. Bakht, John J. Hayward, Farsheed Shahbazi-Raz, Magdalena Skubal, Ryo Tamura, Keith F. Stringer, Daniel Meister, Varadha Balaji Venkadakrishnan, Hui Xue, Adam Pillon, Mathew Stover, Adam Tronchin, Bre-Anne Fifield, Lavleen Mader, Sheng-Yu Ku, Gi Jeong Cheon, Keon Wook Kang, Yuzhuo Wang, Xuesen Dong, Himisha Beltran, Jan Grimm, Lisa A. Porter, John F. Trant. Identification of alternative protein targets of glutamate-ureido-lysine associated with PSMA tracer uptake in prostate cancer cells. Proceedings of the National Academy of Sciences 2022, 119 (4) https://doi.org/10.1073/pnas.2025710119
    51. Valentin Dietlin-Auril, Maxime Lecerf, Stephanie Depinay, Rémi Noé, Jordan D. Dimitrov. Interaction with 2,4-dinitrophenol correlates with polyreactivity, self-binding, and stability of clinical-stage therapeutic antibodies. Molecular Immunology 2021, 140 , 233-239. https://doi.org/10.1016/j.molimm.2021.10.019
    52. Srikanth Boinapally, Hye-Hyun Ahn, Bei Cheng, Mary Brummet, Hwanhee Nam, Kathleen L. Gabrielson, Sangeeta R. Banerjee, Il Minn, Martin G. Pomper. A prostate-specific membrane antigen (PSMA)-targeted prodrug with a favorable in vivo toxicity profile. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-86551-1
    53. Hanane Lahnif, Tilmann Grus, Stefanie Pektor, Lukas Greifenstein, Mathias Schreckenberger, Frank Rösch. Hybrid Chelator-Based PSMA Radiopharmaceuticals: Translational Approach. Molecules 2021, 26 (21) , 6332. https://doi.org/10.3390/molecules26216332
    54. Yi-Shen Zhu, Kexing Tang, Jiayi Lv. Peptide–drug conjugate-based novel molecular drug delivery system in cancer. Trends in Pharmacological Sciences 2021, 42 (10) , 857-869. https://doi.org/10.1016/j.tips.2021.07.001
    55. Ann-Christin Eder, Martin Schäfer, Jana Schmidt, Ulrike Bauder-Wüst, Mareike Roscher, Karin Leotta, Uwe Haberkorn, Klaus Kopka, Matthias Eder. Rational Linker Design to Accelerate Excretion and Reduce Background Uptake of Peptidomimetic PSMA-Targeting Hybrid Molecules. Journal of Nuclear Medicine 2021, 62 (10) , 1461-1467. https://doi.org/10.2967/jnumed.120.248443
    56. Savaş Karyağar, Osman Güven, Sevda Sağlampinar Karyağar, Serdar Arici, Oğuzhan Selvi, Çağlayan Geredeli, Filiz Özülker. Can 68Ga-PSMA PET/CT-derived prostate-specific membrane antigen expression parameters predict prostate-specific antigen response to enzalutamide treatment?. Nuclear Medicine Communications 2021, 42 (9) , 1011-1016. https://doi.org/10.1097/MNM.0000000000001431
    57. Sung Chang Lee, Jennifer S. Y. Ma, Min Soo Kim, Eduardo Laborda, Sei-Hyun Choi, Eric N. Hampton, Hwayoung Yun, Vanessa Nunez, Michelle T. Muldong, Christina N. Wu, Wenxue Ma, Anna A. Kulidjian, Christopher J. Kane, Vadim Klyushnichenko, Ashley K. Woods, Sean B. Joseph, Mike Petrassi, John Wisler, Jing Li, Christina A. M. Jamieson, Peter G. Schultz, Chan Hyuk Kim, Travis S. Young. A PSMA-targeted bispecific antibody for prostate cancer driven by a small-molecule targeting ligand. Science Advances 2021, 7 (33) https://doi.org/10.1126/sciadv.abi8193
    58. Mohamed El Fakiri, Nicolas M. Geis, Nawal Ayada, Matthias Eder, Ann-Christin Eder. PSMA-Targeting Radiopharmaceuticals for Prostate Cancer Therapy: Recent Developments and Future Perspectives. Cancers 2021, 13 (16) , 3967. https://doi.org/10.3390/cancers13163967
    59. Biagio Todaro, Silvia Achilli, Benjamin Liet, Eugénie Laigre, Claire Tiertant, David Goyard, Nathalie Berthet, Olivier Renaudet. Structural influence of antibody recruiting glycodendrimers (ARGs) on antitumoral cytotoxicity. Biomaterials Science 2021, 9 (11) , 4076-4085. https://doi.org/10.1039/D1BM00485A
    60. Hyunsoo Ha, Hongmok Kwon, Taehyeong Lim, Jaebong Jang, Song-Kyu Park, Youngjoo Byun. Inhibitors of prostate-specific membrane antigen in the diagnosis and therapy of metastatic prostate cancer – a review of patent literature. Expert Opinion on Therapeutic Patents 2021, 31 (6) , 525-547. https://doi.org/10.1080/13543776.2021.1878145
    61. Eden Kapcan, Benjamin Lake, Zi Yang, Anthony F. Rullo. Methods to Validate Binding and Kinetics of “Proximity‐Inducing” Covalent Immune‐Recruiting Molecules. Current Protocols in Chemical Biology 2020, 12 (4) https://doi.org/10.1002/cpch.88
    62. Byoung Se Lee, So Young Chu, Woon Jung Jung, Hyeon Jin Jeong, Kyongkyu Lee, Min Hwan Kim, Mi Hyun Kim, Dae Yoon Chi, Heesu Ahn, Yong Jin Lee, Kyo Chul Lee, Sang Moo Lim. 18 F‐labeled 1,2,3‐triazole‐linked Glu‐urea‐Lys‐based PSMA ligands have good pharmacokinetic properties for positron emission tomography imaging of prostate cancer. The Prostate 2020, 80 (16) , 1383-1393. https://doi.org/10.1002/pros.24062
    63. Annemiek Uvyn, Bruno G. De Geest. Multivalent Antibody‐Recruiting Macromolecules: Linking Increased Binding Affinity with Enhanced Innate Immune Killing. ChemBioChem 2020, 21 (21) , 3036-3043. https://doi.org/10.1002/cbic.202000261
    64. Hongmok Kwon, Hyunwoong Lim, Hyunsoo Ha, Doyoung Choi, Sang-Hyun Son, Hwanhee Nam, Il Minn, Youngjoo Byun. Structure-activity relationship studies of prostate-specific membrane antigen (PSMA) inhibitors derived from α-amino acid with (S)- or (R)-configuration at P1′ region. Bioorganic Chemistry 2020, 104 , 104304. https://doi.org/10.1016/j.bioorg.2020.104304
    65. Verena I. Böhmer, Wiktor Szymanski, Keimpe‐Oeds van den Berg, Chantal Mulder, Piermichele Kobauri, Hugo Helbert, Dion van der Born, Friederike Reeβing, Anja Huizing, Marten Klopstra, Douwe F. Samplonius, Ines F. Antunes, Jürgen W. A. Sijbesma, Gert Luurtsema, Wijnand Helfrich, Ton J. Visser, Ben L. Feringa, Philip H. Elsinga. Modular Medical Imaging Agents Based on Azide–Alkyne Huisgen Cycloadditions: Synthesis and Pre‐Clinical Evaluation of 18 F‐Labeled PSMA‐Tracers for Prostate Cancer Imaging. Chemistry – A European Journal 2020, 26 (47) , 10871-10881. https://doi.org/10.1002/chem.202001795
    66. Felipe Couñago, Claudio Martínez-Ballesteros, Carlos Artigas, Ana Aurora Díaz-Gavela, Luis Leonardo Guerrero Gómez, María Eugenia Lillo-García, José Reinaldo Chicharo, Manuel Recio, Antonio Maldonado, Israel J. Thuissard, Cristina Andreu-Vázquez, David Sanz-Rosa, Antonio José Conde-Moreno, Francisco José Marcos, Sofía Sánchez García, Juan Ignacio Martínez-Salamanca, Joaquin Carballido-Rodríguez, Javier Hornedo, Elia del Cerro. Impact of 68Ga-PSMA PET/CT in the treatment of prostate cancer: Initial experience in Spain. Reports of Practical Oncology & Radiotherapy 2020, 25 (3) , 405-411. https://doi.org/10.1016/j.rpor.2020.03.024
    67. Lukas Greifenstein, Nils Engelbogen, Hanane Lahnif, Jean‐Philippe Sinnes, Ralf Bergmann, Michael Bachmann, Frank Rösch. Synthesis, Labeling and Preclinical Evaluation of a Squaric Acid Containing PSMA Inhibitor Labeled with 68 Ga: A Comparison with PSMA‐11 and PSMA‐617. ChemMedChem 2020, 15 (8) , 695-704. https://doi.org/10.1002/cmdc.201900559
    68. Christine Rangger, Roland Haubner. Radiolabelled Peptides for Positron Emission Tomography and Endoradiotherapy in Oncology. Pharmaceuticals 2020, 13 (2) , 22. https://doi.org/10.3390/ph13020022
    69. José Carlos dos Santos, Barbro Beijer, Ulrike Bauder-Wüst, Martin Schäfer, Karin Leotta, Matthias Eder, Martina Benešová, Christian Kleist, Frederik Giesel, Clemens Kratochwil, Klaus Kopka, Uwe Haberkorn, Walter Mier. Development of Novel PSMA Ligands for Imaging and Therapy with Copper Isotopes. Journal of Nuclear Medicine 2020, 61 (1) , 70-79. https://doi.org/10.2967/jnumed.119.229054
    70. Xiangyi Jiang, Ji Yu, Zhongxia Zhou, Jacob Kongsted, Yuning Song, Christophe Pannecouque, Erik De Clercq, Dongwei Kang, Vasanthanathan Poongavanam, Xinyong Liu, Peng Zhan. Molecular design opportunities presented by solvent‐exposed regions of target proteins. Medicinal Research Reviews 2019, 39 (6) , 2194-2238. https://doi.org/10.1002/med.21581
    71. Sagnik Sengupta, Mena Asha Krishnan, Amit Pandit, Premansh Dudhe, Rajesh Sharma, Venkatesh Chelvam. Tyrosine-based asymmetric urea ligand for prostate carcinoma: Tuning biological efficacy through in silico studies. Bioorganic Chemistry 2019, 91 , 103154. https://doi.org/10.1016/j.bioorg.2019.103154
    72. Alexey E. Machulkin, Dmitry A. Skvortsov, Yan A. Ivanenkov, Anton P. Ber, Mikhail V. Kavalchuk, Anastasia V. Aladinskaya, Anastasia A. Uspenskaya, Radik R. Shafikov, Ekaterina A. Plotnikova, Raisa I. Yakubovskaya, Ekaterina A. Nimenko, Nikolay U. Zyk, Elena K. Beloglazkina, Nikolay V. Zyk, Victor E Koteliansky, Alexander G. Majouga. Synthesis and biological evaluation of PSMA-targeting paclitaxel conjugates. Bioorganic & Medicinal Chemistry Letters 2019, 29 (16) , 2229-2235. https://doi.org/10.1016/j.bmcl.2019.06.035
    73. Manuela A. Hoffmann, Helmut J. Wieler, Christian Baues, Nicholas J. Kuntz, Ines Richardsen, Mathias Schreckenberger. The Impact of 68Ga-PSMA PET/CT and PET/MRI on the Management of Prostate Cancer. Urology 2019, 130 , 1-12. https://doi.org/10.1016/j.urology.2019.04.004
    74. Clemens Kratochwil, Uwe Haberkorn, Frederik L. Giesel. Radionuclide Therapy of Metastatic Prostate Cancer. Seminars in Nuclear Medicine 2019, 49 (4) , 313-325. https://doi.org/10.1053/j.semnuclmed.2019.02.003
    75. Hans-Jürgen Wester, Margret Schottelius. PSMA-Targeted Radiopharmaceuticals for Imaging and Therapy. Seminars in Nuclear Medicine 2019, 49 (4) , 302-312. https://doi.org/10.1053/j.semnuclmed.2019.02.008
    76. José Carlos dos Santos, Martin Schäfer, Ulrike Bauder-Wüst, Wencke Lehnert, Karin Leotta, Alfred Morgenstern, Klaus Kopka, Uwe Haberkorn, Walter Mier, Clemens Kratochwil. Development and dosimetry of 203Pb/212Pb-labelled PSMA ligands: bringing “the lead” into PSMA-targeted alpha therapy?. European Journal of Nuclear Medicine and Molecular Imaging 2019, 46 (5) , 1081-1091. https://doi.org/10.1007/s00259-018-4220-z
    77. Wei Diao, Huawei Cai, Lihong Chen, Xi Jin, Xinyang Liao, Zhiyun Jia. Recent Advances in Prostate-Specific Membrane Antigen-Based Radiopharmaceuticals. Current Topics in Medicinal Chemistry 2019, 19 (1) , 33-56. https://doi.org/10.2174/1568026619666190201100739
    78. Cyril Barinka, Zora Novakova, Niyada Hin, Daniel Bím, Dana V. Ferraris, Bridget Duvall, Gabriel Kabarriti, Reiji Tsukamoto, Milos Budesinsky, Lucia Motlova, Camilo Rojas, Barbara S. Slusher, Tibor András Rokob, Lubomír Rulíšek, Takashi Tsukamoto. Structural and computational basis for potent inhibition of glutamate carboxypeptidase II by carbamate-based inhibitors. Bioorganic & Medicinal Chemistry 2019, 27 (2) , 255-264. https://doi.org/10.1016/j.bmc.2018.11.022
    79. Martina Wirtz, Alexander Schmidt, Margret Schottelius, Stephanie Robu, Thomas Günther, Markus Schwaiger, Hans-Jürgen Wester. Synthesis and in vitro and in vivo evaluation of urea-based PSMA inhibitors with increased lipophilicity. EJNMMI Research 2018, 8 (1) https://doi.org/10.1186/s13550-018-0440-2
    80. Daiko Matsuoka, Hiroyuki Watanabe, Yoichi Shimizu, Hiroyuki Kimura, Yusuke Yagi, Ryoko Kawai, Masahiro Ono, Hideo Saji. Structure–activity relationships of succinimidyl-Cys-C(O)-Glu derivatives with different near-infrared fluorophores as optical imaging probes for prostate-specific membrane antigen. Bioorganic & Medicinal Chemistry 2018, 26 (9) , 2291-2301. https://doi.org/10.1016/j.bmc.2018.03.015
    81. Tilman Läppchen, Yvonne Kiefer, Jason P. Holland, Mark D. Bartholomä. In vitro and in vivo evaluation of the bifunctional chelator NODIA-Me in combination with a prostate-specific membrane antigen targeting vector. Nuclear Medicine and Biology 2018, 60 , 45-54. https://doi.org/10.1016/j.nucmedbio.2018.03.002
    82. Alexander Wurzer, Adrienn Vágner, Dávid Horváth, Flóra Fellegi, Hans-Jürgen Wester, Ferenc K. Kálmán, Johannes Notni. Synthesis of Symmetrical Tetrameric Conjugates of the Radiolanthanide Chelator DOTPI for Application in Endoradiotherapy by Means of Click Chemistry. Frontiers in Chemistry 2018, 6 https://doi.org/10.3389/fchem.2018.00107
    83. Zhihao Zha, Karl Ploessl, Seok Rye Choi, Zehui Wu, Lin Zhu, Hank F. Kung. Synthesis and evaluation of a novel urea-based 68 Ga-complex for imaging PSMA binding in tumor. Nuclear Medicine and Biology 2018, 59 , 36-47. https://doi.org/10.1016/j.nucmedbio.2017.12.007
    84. Ann-Christin Baranski, Martin Schäfer, Ulrike Bauder-Wüst, Mareike Roscher, Jana Schmidt, Esther Stenau, Tobias Simpfendörfer, Dogu Teber, Lena Maier-Hein, Boris Hadaschik, Uwe Haberkorn, Matthias Eder, Klaus Kopka. PSMA-11–Derived Dual-Labeled PSMA Inhibitors for Preoperative PET Imaging and Precise Fluorescence-Guided Surgery of Prostate Cancer. Journal of Nuclear Medicine 2018, 59 (4) , 639-645. https://doi.org/10.2967/jnumed.117.201293
    85. Masanobu Nagano, Nancy Carrillo, Nobumasa Otsubo, Wataru Hakamata, Hitoshi Ban, Roberta P. Fuller, Nasir K. Bashiruddin, Carlos F. Barbas. In vivo programming of endogenous antibodies via oral administration of adaptor ligands. Bioorganic & Medicinal Chemistry 2017, 25 (21) , 5952-5961. https://doi.org/10.1016/j.bmc.2017.09.010
    86. Guanghui Yang, Rui Zhou, Yigong Shi. Cryo-EM structures of human γ-secretase. Current Opinion in Structural Biology 2017, 46 , 55-64. https://doi.org/10.1016/j.sbi.2017.05.013
    87. R J S Calopedos, V Chalasani, R Asher, L Emmett, H H Woo. Lutetium-177-labelled anti-prostate-specific membrane antigen antibody and ligands for the treatment of metastatic castrate-resistant prostate cancer: a systematic review and meta-analysis. Prostate Cancer and Prostatic Diseases 2017, 20 (3) , 352-360. https://doi.org/10.1038/pcan.2017.23
    88. Klaus Kopka, Martina Benešová, Cyril Bařinka, Uwe Haberkorn, John Babich. Glu-Ureido–Based Inhibitors of Prostate-Specific Membrane Antigen: Lessons Learned During the Development of a Novel Class of Low-Molecular-Weight Theranostic Radiotracers. Journal of Nuclear Medicine 2017, 58 (Supplement 2) , 17S-26S. https://doi.org/10.2967/jnumed.116.186775
    89. Patrick J. McEnaney, Christopher G. Parker, Andrew X. Zhang. Antibody-Recruiting Small Molecules: Synthetic Constructs as Immunotherapeutics. 2017, 481-518. https://doi.org/10.1016/bs.armc.2017.08.008
    90. Devon F. A. Fontaine, Valerie A. Ivancic, Michael B. Reardon, Noel D. Lazo, Charles E. Jakobsche. A versatile platform for adding functional properties to amyloid fibrils. Organic & Biomolecular Chemistry 2017, 15 (38) , 8023-8027. https://doi.org/10.1039/C7OB02042B
    91. Zhiwei Zhang, Zheng Zhu, Deyong Yang, Weiwei Fan, Jianbo Wang, Xiancheng Li, Xiaochi Chen, Qifeng Wang, Xishuang Song. Preparation and affinity identification of glutamic acid-urea small molecule analogs in prostate cancer. Oncology Letters 2016, 12 (2) , 1001-1006. https://doi.org/10.3892/ol.2016.4699
    92. Michal Navrátil, Jan Tykvart, Jiří Schimer, Petr Pachl, Václav Navrátil, Tibor András Rokob, Klára Hlouchová, Lubomír Rulíšek, Jan Konvalinka. Comparison of human glutamate carboxypeptidases II and III reveals their divergent substrate specificities. The FEBS Journal 2016, 283 (13) , 2528-2545. https://doi.org/10.1111/febs.13761
    93. Anthony F. Rullo, Kelly J. Fitzgerald, Viswanathan Muthusamy, Min Liu, Cai Yuan, Mingdong Huang, Minsup Kim, Art E. Cho, David A. Spiegel. Re‐engineering the Immune Response to Metastatic Cancer: Antibody‐Recruiting Small Molecules Targeting the Urokinase Receptor. Angewandte Chemie 2016, 128 (11) , 3706-3710. https://doi.org/10.1002/ange.201510866
    94. Anthony F. Rullo, Kelly J. Fitzgerald, Viswanathan Muthusamy, Min Liu, Cai Yuan, Mingdong Huang, Minsup Kim, Art E. Cho, David A. Spiegel. Re‐engineering the Immune Response to Metastatic Cancer: Antibody‐Recruiting Small Molecules Targeting the Urokinase Receptor. Angewandte Chemie International Edition 2016, 55 (11) , 3642-3646. https://doi.org/10.1002/anie.201510866
    95. Melissa A. Gray, Ran N. Tao, Sandra M. DePorter, David A. Spiegel, Brian R. McNaughton. A Nanobody Activation Immunotherapeutic that Selectively Destroys HER2‐Positive Breast Cancer Cells. ChemBioChem 2016, 17 (2) , 155-158. https://doi.org/10.1002/cbic.201500591
    96. Justin B Lee, Kaixin Zhang, Yuen Yi C Tam, Joslyn Quick, Ying K Tam, Paulo JC Lin, Sam Chen, Yan Liu, Jayaprakash K Nair, Ivan Zlatev, Kallanthottathil G Rajeev, Muthiah Manoharan, Paul S Rennie, Pieter R Cullis. A Glu-urea-Lys Ligand-conjugated Lipid Nanoparticle/siRNA System Inhibits Androgen Receptor Expression In Vivo. Molecular Therapy - Nucleic Acids 2016, 5 , e348. https://doi.org/10.1038/mtna.2016.43
    97. Ryan P. Murelli, Michael P. D'Erasmo, Danielle R. Hirsch, Christine Meck, Takashi Masaoka, Jennifer A. Wilson, Baofeng Zhang, Rajat K. Pal, Emilio Gallicchio, John A. Beutler, Stuart F. J. Le Grice. Synthetic α-hydroxytropolones as inhibitors of HIV reverse transcriptase ribonuclease H activity. MedChemComm 2016, 7 (9) , 1783-1788. https://doi.org/10.1039/C6MD00238B
    98. Zora Novakova, Jiri Cerny, Cindy J. Choy, Jessie R. Nedrow, Joeseph K. Choi, Jacek Lubkowski, Clifford E. Berkman, Cyril Barinka. Design of composite inhibitors targeting glutamate carboxypeptidase II : the importance of effector functionalities. The FEBS Journal 2016, 283 (1) , 130-143. https://doi.org/10.1111/febs.13557
    99. Noeen Malik, Benjamin Baur, Gordon Winter, Sven N. Reske, Ambros J. Beer, Christoph Solbach. Radiofluorination of PSMA-HBED via Al18F2+ Chelation and Biological Evaluations In Vitro. Molecular Imaging and Biology 2015, 17 (6) , 777-785. https://doi.org/10.1007/s11307-015-0844-6
    100. Sihyun Youn, Kyung Im Kim, Jakub Ptacek, Kiwon Ok, Zora Novakova, YunHye Kim, JaeHyung Koo, Cyril Barinka, Youngjoo Byun. Carborane-containing urea-based inhibitors of glutamate carboxypeptidase II: Synthesis and structural characterization. Bioorganic & Medicinal Chemistry Letters 2015, 25 (22) , 5232-5236. https://doi.org/10.1016/j.bmcl.2015.09.062
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2010, 132, 36, 12711–12716
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja104591m
    Published August 20, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    6136

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.