ACS Publications. Most Trusted. Most Cited. Most Read
Identification of Highly Reactive Sequences For PLP-Mediated Bioconjugation Using a Combinatorial Peptide Library
My Activity

Figure 1Loading Img
    Article

    Identification of Highly Reactive Sequences For PLP-Mediated Bioconjugation Using a Combinatorial Peptide Library
    Click to copy article linkArticle link copied!

    • Leah S. Witus
      Leah S. Witus
      Department of Chemistry, University of California, Berkeley, California 94720-1460, United States, Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States, and QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, California 94720-1460, United States
    • Troy Moore
      Troy Moore
      Department of Chemistry, University of California, Berkeley, California 94720-1460, United States, Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States, and QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, California 94720-1460, United States
      More by Troy Moore
    • B W. Thuronyi
      B W. Thuronyi
      Department of Chemistry, University of California, Berkeley, California 94720-1460, United States, Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States, and QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, California 94720-1460, United States
    • Aaron P. Esser-Kahn
      Aaron P. Esser-Kahn
      Department of Chemistry, University of California, Berkeley, California 94720-1460, United States, Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States, and QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, California 94720-1460, United States
    • Rebecca A. Scheck
      Rebecca A. Scheck
      Department of Chemistry, University of California, Berkeley, California 94720-1460, United States, Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States, and QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, California 94720-1460, United States
    • Anthony T. Iavarone
      Anthony T. Iavarone
      Department of Chemistry, University of California, Berkeley, California 94720-1460, United States, Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States, and QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, California 94720-1460, United States
    • Matthew B. Francis*
      Matthew B. Francis
      Department of Chemistry, University of California, Berkeley, California 94720-1460, United States, Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States, and QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, California 94720-1460, United States
      [email protected]
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2010, 132, 47, 16812–16817
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja105429n
    Published November 10, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Chemical reactions that facilitate the attachment of synthetic groups to proteins are useful tools for the field of chemical biology and enable the incorporation of proteins into new materials. We have previously reported a pyridoxal 5′-phosphate (PLP)-mediated reaction that site-specifically oxidizes the N-terminal amine of a protein to afford a ketone. This unique functional group can then be used to attach a reagent of choice through oxime formation. Since its initial report, we have found that the N-terminal sequence of the protein can significantly influence the overall success of this strategy. To obtain short sequences that lead to optimal conversion levels, an efficient method for the evaluation of all possible N-terminal amino acid combinations was needed. This was achieved by developing a generalizable combinatorial peptide library screening platform suitable for the identification of sequences that display high levels of reactivity toward a desired bioconjugation reaction. In the context of N-terminal transamination, a highly reactive alanine−lysine motif emerged, which was confirmed to promote the modification of peptide substrates with PLP. This sequence was also tested on two protein substrates, leading to substantial increases in reactivity relative to their wild-type termini. This readily encodable tripeptide thus appears to provide a significant improvement in the reliability with which the PLP-mediated bioconjugation reaction can be used. This study also provides an important first example of how synthetic peptide libraries can accelerate the discovery and optimization of protein bioconjugation strategies.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Full experimental details and additional characterization spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 68 publications.

    1. Erin C. Day, Supraja S. Chittari, Matthew P. Bogen, Abigail S. Knight. Navigating the Expansive Landscapes of Soft Materials: A User Guide for High-Throughput Workflows. ACS Polymers Au 2023, 3 (6) , 406-427. https://doi.org/10.1021/acspolymersau.3c00025
    2. Omozojie P. Aigbogun, Christopher P. Phenix, Ed S. Krol, Eric W. Price. The Chemistry of Creating Chemically Programmed Antibodies (cPAbs): Site-Specific Bioconjugation of Small Molecules. Molecular Pharmaceutics 2023, 20 (2) , 853-874. https://doi.org/10.1021/acs.molpharmaceut.2c00821
    3. Dong Ding, Yu Wen, Chun-Miao Liao, Xu-Guang Yin, Ru-Yan Zhang, Jian Wang, Shi-Hao Zhou, Zhi-Ming Zhang, Yong-Ke Zou, Xiao-Fei Gao, Hua-Wei Wei, Guang-Fu Yang, Jun Guo. Self-Adjuvanting Protein Vaccine Conjugated with a Novel Synthetic TLR4 Agonist on Virus-Like Liposome Induces Potent Immunity against SARS-CoV-2. Journal of Medicinal Chemistry 2023, 66 (2) , 1467-1483. https://doi.org/10.1021/acs.jmedchem.2c01642
    4. Tong Zhang, Wei An, Jiawei Sun, Fei Duan, Zeyu Shao, Fan Zhang, Ting Jiang, Xuliang Deng, Cyrille Boyer, Weiping Gao. N-Terminal Lysozyme Conjugation to a Cationic Polymer Enhances Antimicrobial Activity and Overcomes Antimicrobial Resistance. Nano Letters 2022, 22 (20) , 8294-8303. https://doi.org/10.1021/acs.nanolett.2c03160
    5. Jian Wang, Yu Wen, Shi-Hao Zhou, Hai-Wei Zhang, Xiao-Qian Peng, Ru-Yan Zhang, Xu-Guang Yin, Hong Qiu, Rui Gong, Guang-Fu Yang, Jun Guo. Self-Adjuvanting Lipoprotein Conjugate αGalCer-RBD Induces Potent Immunity against SARS-CoV-2 and its Variants of Concern. Journal of Medicinal Chemistry 2022, 65 (3) , 2558-2570. https://doi.org/10.1021/acs.jmedchem.1c02000
    6. Rui-Xue Ji, Ning Liu, Jiang-Shan Shen. Enantioselective Dynamic Exchange Reactions of Imines. The Journal of Organic Chemistry 2021, 86 (18) , 12932-12944. https://doi.org/10.1021/acs.joc.1c01620
    7. Caitlin M. Carmody, Julie M. Goddard, Sam R. Nugen. Bacteriophage Capsid Modification by Genetic and Chemical Methods. Bioconjugate Chemistry 2021, 32 (3) , 466-481. https://doi.org/10.1021/acs.bioconjchem.1c00018
    8. Samantha L. Pilicer, Pegah R. Bakhshi, Keith W. Bentley, and Christian Wolf . Biomimetic Chirality Sensing with Pyridoxal-5′-phosphate. Journal of the American Chemical Society 2017, 139 (5) , 1758-1761. https://doi.org/10.1021/jacs.6b12056
    9. James T. Patterson, Henry D. Wilson, Shigehiro Asano, Napon Nilchan, Roberta P. Fuller, William R. Roush, Christoph Rader, and Carlos F. Barbas, III . Human Serum Albumin Domain I Fusion Protein for Antibody Conjugation. Bioconjugate Chemistry 2016, 27 (10) , 2271-2275. https://doi.org/10.1021/acs.bioconjchem.6b00432
    10. Tao Zhang, Xiaoyu Niu, Tao Yuan, Marco Tessari, Marcel P. de Vries, Hjalmar P. Permentier, and Rainer Bischoff . Efficient and Selective Chemical Labeling of Electrochemically Generated Peptides Based on Spirolactone Chemistry. Analytical Chemistry 2016, 88 (12) , 6465-6471. https://doi.org/10.1021/acs.analchem.6b01154
    11. Diana Lac, Chun Feng, Gaurav Bhardwaj, Huong Le, Jimmy Tran, Li Xing, Gabriel Fung, Ruiwu Liu, Holland Cheng, and Kit S. Lam . Covalent Chemical Ligation Strategy for Mono- and Polyclonal Immunoglobulins at Their Nucleotide Binding Sites. Bioconjugate Chemistry 2016, 27 (1) , 159-169. https://doi.org/10.1021/acs.bioconjchem.5b00574
    12. Chris Chumsae, Patrick Hossler, Haly Raharimampionona, Yu Zhou, Sean McDermott, Chris Racicot, Czeslaw Radziejewski, and Zhaohui Sunny Zhou . When Good Intentions Go Awry: Modification of a Recombinant Monoclonal Antibody in Chemically Defined Cell Culture by Xylosone, an Oxidative Product of Ascorbic Acid. Analytical Chemistry 2015, 87 (15) , 7529-7534. https://doi.org/10.1021/acs.analchem.5b00801
    13. Adel M. ElSohly and Matthew B. Francis . Development of Oxidative Coupling Strategies for Site-Selective Protein Modification. Accounts of Chemical Research 2015, 48 (7) , 1971-1978. https://doi.org/10.1021/acs.accounts.5b00139
    14. Allie C. Obermeyer and Bradley D. Olsen . Synthesis and Application of Protein-Containing Block Copolymers. ACS Macro Letters 2015, 4 (1) , 101-110. https://doi.org/10.1021/mz500732e
    15. Chris Chumsae, Liqiang Lisa Zhou, Yang Shen, Jessica Wohlgemuth, Emma Fung, Randall Burton, Czeslaw Radziejewski, and Zhaohui Sunny Zhou . Discovery of a Chemical Modification by Citric Acid in a Recombinant Monoclonal Antibody. Analytical Chemistry 2014, 86 (18) , 8932-8936. https://doi.org/10.1021/ac502179m
    16. Allie C. Obermeyer, John B. Jarman, and Matthew B. Francis . N-Terminal Modification of Proteins with o-Aminophenols. Journal of the American Chemical Society 2014, 136 (27) , 9572-9579. https://doi.org/10.1021/ja500728c
    17. Kathrin Lang and Jason W. Chin . Cellular Incorporation of Unnatural Amino Acids and Bioorthogonal Labeling of Proteins. Chemical Reviews 2014, 114 (9) , 4764-4806. https://doi.org/10.1021/cr400355w
    18. Praveena D. Garimella, Tyler Meldrum, Leah S. Witus, Monica Smith, Vikram S. Bajaj, David E. Wemmer, Matthew B. Francis, and Alexander Pines . Hyperpolarized Xenon-Based Molecular Sensors for Label-Free Detection of analytes. Journal of the American Chemical Society 2014, 136 (1) , 164-168. https://doi.org/10.1021/ja406760r
    19. Abigail S. Knight, Effie Y. Zhou, Jeffrey G. Pelton, and Matthew B. Francis . Selective Chromium(VI) Ligands Identified Using Combinatorial Peptoid Libraries. Journal of the American Chemical Society 2013, 135 (46) , 17488-17493. https://doi.org/10.1021/ja408788t
    20. Leah S. Witus, Chawita Netirojjanakul, Kanwal S. Palla, Ellen M. Muehl, Chih-Hisang Weng, Anthony T. Iavarone, and Matthew B. Francis . Site-Specific Protein Transamination Using N-Methylpyridinium-4-carboxaldehyde. Journal of the American Chemical Society 2013, 135 (45) , 17223-17229. https://doi.org/10.1021/ja408868a
    21. Ouafâa El-Mahdi and Oleg Melnyk . α-Oxo Aldehyde or Glyoxylyl Group Chemistry in Peptide Bioconjugation. Bioconjugate Chemistry 2013, 24 (5) , 735-765. https://doi.org/10.1021/bc300516f
    22. Katherine J. Mackenzie and Matthew B. Francis . Recyclable Thermoresponsive Polymer–Cellulase Bioconjugates for Biomass Depolymerization. Journal of the American Chemical Society 2013, 135 (1) , 293-300. https://doi.org/10.1021/ja309277v
    23. Xiaojian Wang and James W. Canary . Rapid Catalyst-Free Hydrazone Ligation: Protein-Pyridoxal Phosphoramides. Bioconjugate Chemistry 2012, 23 (12) , 2329-2334. https://doi.org/10.1021/bc300430k
    24. Zachary M. Carrico, Michelle E. Farkas, Yu Zhou, Sonny C. Hsiao, James D. Marks, Harshal Chokhawala, Douglas S. Clark, and Matthew B. Francis . N-Terminal Labeling of Filamentous Phage To Create Cancer Marker Imaging Agents. ACS Nano 2012, 6 (8) , 6675-6680. https://doi.org/10.1021/nn301134z
    25. Glenn M. Eldridge and Gregory A. Weiss . Hydrazide Reactive Peptide Tags for Site-Specific Protein Labeling. Bioconjugate Chemistry 2011, 22 (10) , 2143-2153. https://doi.org/10.1021/bc200415v
    26. Anne M. Wagner, Mark W. Fegley, John B. Warner, Christina L. J. Grindley, Nicholas P. Marotta, and E. James Petersson . N-Terminal Protein Modification Using Simple Aminoacyl Transferase Substrates. Journal of the American Chemical Society 2011, 133 (38) , 15139-15147. https://doi.org/10.1021/ja2055098
    27. Marjoke F. Debets, Sander S. van Berkel, Jan Dommerholt, A. (Ton) J. Dirks, Floris P. J. T. Rutjes, and Floris L. van Delft . Bioconjugation with Strained Alkenes and Alkynes. Accounts of Chemical Research 2011, 44 (9) , 805-815. https://doi.org/10.1021/ar200059z
    28. Leah S. Witus and Matthew B. Francis . Using Synthetically Modified Proteins to Make New Materials. Accounts of Chemical Research 2011, 44 (9) , 774-783. https://doi.org/10.1021/ar2001292
    29. Ajcharapan Tantipanjaporn, Man-Kin Wong. Development and Recent Advances in Lysine and N-Terminal Bioconjugation for Peptides and Proteins. Molecules 2023, 28 (3) , 1083. https://doi.org/10.3390/molecules28031083
    30. Lydia J. Barber, Nicholas D. J. Yates, Martin A. Fascione, Alison Parkin, Glyn R. Hemsworth, Paul G. Genever, Christopher D. Spicer. Selectivity and stability of N-terminal targeting protein modification chemistries. RSC Chemical Biology 2023, 4 (1) , 56-64. https://doi.org/10.1039/D2CB00203E
    31. Samuel L. Scinto, Tyler R. Reagle, Joseph M. Fox. Affinity Bioorthogonal Chemistry (ABC) Tags for Site‐Selective Conjugation, On‐Resin Protein‐Protein Coupling, and Purification of Protein Conjugates. Angewandte Chemie 2022, 134 (45) https://doi.org/10.1002/ange.202207661
    32. Samuel L. Scinto, Tyler R. Reagle, Joseph M. Fox. Affinity Bioorthogonal Chemistry (ABC) Tags for Site‐Selective Conjugation, On‐Resin Protein‐Protein Coupling, and Purification of Protein Conjugates. Angewandte Chemie International Edition 2022, 61 (45) https://doi.org/10.1002/anie.202207661
    33. Kengo Hanaya, Kaho Yamoto, Kazuaki Taguchi, Kazuaki Matsumoto, Shuhei Higashibayashi, Takeshi Sugai. Single‐Step N‐Terminal Modification of Proteins via a Bio‐Inspired Copper(II)‐Mediated Aldol Reaction. Chemistry – A European Journal 2022, 28 (47) https://doi.org/10.1002/chem.202201677
    34. Xingqing Xiao, Ryan Kilgore, Sudeep Sarma, Wenning Chu, Stefano Menegatti, Carol K. Hall. De novo discovery of peptide-based affinity ligands for the fab fragment of human immunoglobulin G. Journal of Chromatography A 2022, 1669 , 462941. https://doi.org/10.1016/j.chroma.2022.462941
    35. Shi-Hao Zhou, Ru-Yan Zhang, Hai-Wei Zhang, Yan-Ling Liu, Yu Wen, Jian Wang, Yu-Ting Li, Zi-Wei You, Xu-Guang Yin, Hong Qiu, Rui Gong, Guang-Fu Yang, Jun Guo. RBD conjugate vaccine with a built-in TLR1/2 agonist is highly immunogenic against SARS-CoV-2 and variants of concern. Chemical Communications 2022, 58 (13) , 2120-2123. https://doi.org/10.1039/D1CC06520C
    36. Jabadurai Jayapaul, Leif Schröder. Molecular Sensing with Host Systems for Hyperpolarized 129Xe. Molecules 2020, 25 (20) , 4627. https://doi.org/10.3390/molecules25204627
    37. Xianxian Mao, Wei Li, Shiyu Zhu, Juan Zou, Hongyan Tian, Yuting Duan, Yuntao Wang, Jiayue Fei, Xiaojian Wang. Bifunctional pyridoxal derivatives as efficient bioorthogonal reagents for biomacromolecule modifications. Chemical Communications 2020, 56 (55) , 7601-7604. https://doi.org/10.1039/D0CC02722G
    38. Hanjie Jiang, Gabriel D. D'Agostino, Philip A. Cole, Daniel R. Dempsey. Selective protein N-terminal labeling with N-hydroxysuccinimide esters. 2020, 333-353. https://doi.org/10.1016/bs.mie.2020.04.018
    39. Muyi He, You Jiang, Xiaofeng Wang, Yue Zhao, Sijian Ye, Jiabi Ma, Xiang Fang, Wei Xu. Rapid characterization of structure-dependency gas-phase ion/ion reaction via accumulative tandem MS. Talanta 2019, 195 , 17-22. https://doi.org/10.1016/j.talanta.2018.11.017
    40. Sebastian Pomplun, Mohamed Y. H. Mohamed, Tobias Oelschlaegel, Christian Wellner, Frank Bergmann. Efficient Pictet–Spengler Bioconjugation with N ‐Substituted Pyrrolyl Alanine Derivatives. Angewandte Chemie International Edition 2019, 58 (11) , 3542-3547. https://doi.org/10.1002/anie.201814200
    41. Sebastian Pomplun, Mohamed Y. H. Mohamed, Tobias Oelschlaegel, Christian Wellner, Frank Bergmann. Efficient Pictet–Spengler Bioconjugation with N ‐Substituted Pyrrolyl Alanine Derivatives. Angewandte Chemie 2019, 131 (11) , 3580-3585. https://doi.org/10.1002/ange.201814200
    42. Cláudia S.M. Fernandes, Gonçalo D.G. Teixeira, Olga Iranzo, Ana C.A. Roque. Engineered Protein Variants for Bioconjugation. 2018, 105-138. https://doi.org/10.1016/B978-0-323-50878-0.00005-7
    43. Michal Pechar, Robert Pola, Olga Janoušková, Irena Sieglová, Vlastimil Král, Milan Fábry, Barbora Tomalová, Marek Kovář. Polymer Cancerostatics Targeted with an Antibody Fragment Bound via a Coiled Coil Motif: In Vivo Therapeutic Efficacy against Murine BCL1 Leukemia. Macromolecular Bioscience 2018, 18 (1) https://doi.org/10.1002/mabi.201700173
    44. Sascha G. Keller, Andrea Pannwitz, Hendrik Mallin, Oliver S. Wenger, Thomas R. Ward. Streptavidin as a Scaffold for Light‐Induced Long‐Lived Charge Separation. Chemistry – A European Journal 2017, 23 (71) , 18019-18024. https://doi.org/10.1002/chem.201703885
    45. Christian B Rosen, Matthew B Francis. Targeting the N terminus for site-selective protein modification. Nature Chemical Biology 2017, 13 (7) , 697-705. https://doi.org/10.1038/nchembio.2416
    46. Hongcheng Sun, Quan Luo, Chunxi Hou, Junqiu Liu. Nanostructures based on protein self-assembly: From hierarchical construction to bioinspired materials. Nano Today 2017, 14 , 16-41. https://doi.org/10.1016/j.nantod.2017.04.006
    47. Michael D. Glidden, John F. Edelbrock, Amy M. Wen, Sourabh Shukla, Yingfang Ma, Roger H. French, Jonathan K. Pokorski, Nicole F. Steinmetz. Application of Engineered Viral Nanoparticles in Materials and Medicine. 2017, 631-710. https://doi.org/10.1002/9783527683451.ch18
    48. Christian B. Rosen, Richard L. Kwant, James I. MacDonald, Meera Rao, Matthew B. Francis. Capture and Recycling of Sortase A through Site‐Specific Labeling with Lithocholic Acid. Angewandte Chemie 2016, 128 (30) , 8727-8731. https://doi.org/10.1002/ange.201602353
    49. Christian B. Rosen, Richard L. Kwant, James I. MacDonald, Meera Rao, Matthew B. Francis. Capture and Recycling of Sortase A through Site‐Specific Labeling with Lithocholic Acid. Angewandte Chemie International Edition 2016, 55 (30) , 8585-8589. https://doi.org/10.1002/anie.201602353
    50. Richard J. Spears, Martin A. Fascione. Site-selective incorporation and ligation of protein aldehydes. Organic & Biomolecular Chemistry 2016, 14 (32) , 7622-7638. https://doi.org/10.1039/C6OB00778C
    51. Wenguo Zhao, Fei Liu, Yue Chen, Jing Bai, Weiping Gao. Synthesis of well-defined protein–polymer conjugates for biomedicine. Polymer 2015, 66 , A1-A10. https://doi.org/10.1016/j.polymer.2015.03.054
    52. James I MacDonald, Henrik K Munch, Troy Moore, Matthew B Francis. One-step site-specific modification of native proteins with 2-pyridinecarboxyaldehydes. Nature Chemical Biology 2015, 11 (5) , 326-331. https://doi.org/10.1038/nchembio.1792
    53. Michael Brasino, Ju Hun Lee, Jennifer N. Cha. Creating highly amplified enzyme-linked immunosorbent assay signals from genetically engineered bacteriophage. Analytical Biochemistry 2015, 470 , 7-13. https://doi.org/10.1016/j.ab.2014.10.006
    54. Richard L. Kwant, Jake Jaffe, Peter J. Palmere, Matthew B. Francis. Controlled levels of protein modification through a chromatography-mediated bioconjugation. Chemical Science 2015, 6 (4) , 2596-2601. https://doi.org/10.1039/C4SC03790A
    55. Oleksandr Koniev, Alain Wagner. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem. Soc. Rev. 2015, 44 (15) , 5495-5551. https://doi.org/10.1039/C5CS00048C
    56. Joo H Kang, Michael Super, Chong Wing Yung, Ryan M Cooper, Karel Domansky, Amanda R Graveline, Tadanori Mammoto, Julia B Berthet, Heather Tobin, Mark J Cartwright, Alexander L Watters, Martin Rottman, Anna Waterhouse, Akiko Mammoto, Nazita Gamini, Melissa J Rodas, Anxhela Kole, Amanda Jiang, Thomas M Valentin, Alexander Diaz, Kazue Takahashi, Donald E Ingber. An extracorporeal blood-cleansing device for sepsis therapy. Nature Medicine 2014, 20 (10) , 1211-1216. https://doi.org/10.1038/nm.3640
    57. Craig S. McKay, M.G. Finn. Click Chemistry in Complex Mixtures: Bioorthogonal Bioconjugation. Chemistry & Biology 2014, 21 (9) , 1075-1101. https://doi.org/10.1016/j.chembiol.2014.09.002
    58. Christian B Rosen, David Rodriguez-Larrea, Hagan Bayley. Single-molecule site-specific detection of protein phosphorylation with a nanopore. Nature Biotechnology 2014, 32 (2) , 179-181. https://doi.org/10.1038/nbt.2799
    59. Allie C. Obermeyer, John B. Jarman, Chawita Netirojjanakul, Kareem El Muslemany, Matthew B. Francis. Mild Bioconjugation Through the Oxidative Coupling of ortho ‐Aminophenols and Anilines with Ferricyanide. Angewandte Chemie International Edition 2014, 53 (4) , 1057-1061. https://doi.org/10.1002/anie.201307386
    60. Allie C. Obermeyer, John B. Jarman, Chawita Netirojjanakul, Kareem El Muslemany, Matthew B. Francis. Mild Bioconjugation Through the Oxidative Coupling of ortho ‐Aminophenols and Anilines with Ferricyanide. Angewandte Chemie 2014, 126 (4) , 1075-1079. https://doi.org/10.1002/ange.201307386
    61. Rajesh Sunasee, Ravin Narain. Covalent and Noncovalent Bioconjugation Strategies. 2014, 1-75. https://doi.org/10.1002/9781118775882.ch1
    62. Paresh Agarwal, Joep van der Weijden, Ellen M. Sletten, David Rabuka, Carolyn R. Bertozzi. A Pictet-Spengler ligation for protein chemical modification. Proceedings of the National Academy of Sciences 2013, 110 (1) , 46-51. https://doi.org/10.1073/pnas.1213186110
    63. Chawita Netirojjanakul, Leah S. Witus, Christopher R. Behrens, Chih-Hisang Weng, Anthony T. Iavarone, Matthew B. Francis. Synthetically modified Fc domains as building blocks for immunotherapy applications. Chem. Sci. 2013, 4 (1) , 266-272. https://doi.org/10.1039/C2SC21365F
    64. Justin A. Modica, Stratos Skarpathiotis, Milan Mrksich. Modular Assembly of Protein Building Blocks To Create Precisely Defined Megamolecules. ChemBioChem 2012, 13 (16) , 2331-2334. https://doi.org/10.1002/cbic.201200501
    65. Nikolett Mihala, Ferenc Hudecz. Amino acid and peptide bioconjugates. 2012, 1-39. https://doi.org/10.1039/9781849734677-00001
    66. Hui-wang Ai. Biochemical analysis with the expanded genetic lexicon. Analytical and Bioanalytical Chemistry 2012, 403 (8) , 2089-2102. https://doi.org/10.1007/s00216-012-5784-2
    67. Nicholas Stephanopoulos, Matthew B Francis. Choosing an effective protein bioconjugation strategy. Nature Chemical Biology 2011, 7 (12) , 876-884. https://doi.org/10.1038/nchembio.720
    68. Toni L. Lamoureaux, David H. Lee. Chemical activation of MEK1 – a redox trigger for evaluating the effects of phosphorylation. Chemical Communications 2011, 47 (30) , 8623. https://doi.org/10.1039/c1cc11745a

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2010, 132, 47, 16812–16817
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja105429n
    Published November 10, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    4556

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.