ACS Publications. Most Trusted. Most Cited. Most Read
Crystals in Which Some Metal Atoms are More Equal Than Others: Inequalities From Crystal Packing and Their Spectroscopic/Magnetic Consequences
My Activity

Figure 1Loading Img
    Article

    Crystals in Which Some Metal Atoms are More Equal Than Others: Inequalities From Crystal Packing and Their Spectroscopic/Magnetic Consequences
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue, Madison, Wisconsin 53706, Department of Chemistry and Biochemistry, Florida State University, P.O. Box 3064390 Tallahassee, Florida 32306, Max Planck Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany, and Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616
    †University of Wisconsin - Madison.
    ‡Florida State University.
    §Max Planck Institut für Bioanorganische Chemie.
    ∥University of California, Davis.
    Other Access OptionsSupporting Information (2)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2010, 132, 40, 14261–14272
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja106510g
    Published September 22, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Crystal structures of the heterometallic compounds CrCrFe(dpa)4Cl2 (1), CrCrMn(dpa)4Cl2 (2), and MoMoMn(dpa)4Cl2 (3) (dpa = 2,2′-dipyridylamide) show disorder in the metal atom positions such that the linear MAMA···MB array for a given molecule in the crystal is oriented in one of two opposing directions. Despite the fact that the direct coordination sphere of the metals in the two crystallographically independent orientations is identical, subtle differences in some metal−ligand bond distances are observed in 1 and 3 due to differences in the orientation of a solvent molecule of crystallization. The Fe(II) and Mn(II) ions serve as sensitive local spectroscopic probes that have been interrogated by Mössbauer spectroscopy and high-field EPR spectroscopy, respectively. The subtle differences in the two independent Fe and Mn sites in 1 and 3 unexpectedly give rise to unusually large differences in the measured Fe quadrupole splitting (ΔEQ) in 1 and Mn zero-field splitting (D) in 3. Variable-temperature/single-crystal EPR spectroscopy has allowed us to determine that the temperature-dependent D tensors in 3 are oriented along the metal−metal axis and that they show significantly different dynamic behavior with temperature. The differences in ΔEQ and D are reproduced by density functional calculations on truncated models for 1 and 3 that lack the quadruply bonded MAMA groups, though the magnitude of the calculated effect is not as large as that observed experimentally. We suggest that the large observed differences in ΔEQ and D for the individual sites could be due to the influence of the strong diamagnetic anisotropy of the quadruply bonded MM unit.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Crystallographic files, additional figures and a table of crystallographic data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 69 publications.

    1. Amelia M. Wheaton, Jill A. Chipman, Michael D. Roy, John. F. Berry. Metal–Metal Bond Umpolung in Heterometallic Extended Metal Atom Chains. Inorganic Chemistry 2022, 61 (38) , 15058-15069. https://doi.org/10.1021/acs.inorgchem.2c02118
    2. Kazuhiro Uemura, Erina Yasuda, Yuko Sugiyama. Improving the Solubility of Hexanuclear Heterometallic Extended Metal Atom Chain Compounds in Nonpolar Solvents by Introducing Alkyl Amine Moieties. ACS Omega 2021, 6 (28) , 18487-18503. https://doi.org/10.1021/acsomega.1c02634
    3. Gary L. Guillet, Kathleen Y. Arpin, Alan M. Boltin, Jesse B. Gordon, Justin A. Rave, Patrick C. Hillesheim. Synthesis and Characterization of a Linear Triiron(II) Extended Metal Atom Chain Complex with Fe–Fe Bonds. Inorganic Chemistry 2020, 59 (16) , 11238-11243. https://doi.org/10.1021/acs.inorgchem.0c01625
    4. Jill A. Chipman, John F. Berry. Paramagnetic Metal–Metal Bonded Heterometallic Complexes. Chemical Reviews 2020, 120 (5) , 2409-2447. https://doi.org/10.1021/acs.chemrev.9b00540
    5. Kazuhiro Uemura, Rika Miyake. Paramagnetic One-Dimensional Chain Complex Consisting of Three Kinds of Metallic Species Showing Magnetic Interaction through Metal–Metal Bonds. Inorganic Chemistry 2020, 59 (3) , 1692-1701. https://doi.org/10.1021/acs.inorgchem.9b02844
    6. Mariano Spivak, Xavier López, Coen de Graaf. Trends in the Bond Multiplicity of Cr2, Cr3, and Cr2M (M = Zn, Ni, Fe, Mn) Complexes Extracted from Multiconfigurational Wave Functions. The Journal of Physical Chemistry A 2019, 123 (8) , 1538-1547. https://doi.org/10.1021/acs.jpca.8b10124
    7. Jill A. Chipman, John F. Berry. Facile Axial Ligand Substitution in Linear Mo≣Mo–Ni Complexes. Inorganic Chemistry 2018, 57 (15) , 9354-9363. https://doi.org/10.1021/acs.inorgchem.8b01331
    8. Alessio Nicolini, Rita Galavotti, Anne-Laure Barra, Marco Borsari, Matteo Caleffi, Guangpu Luo, Ghenadie Novitchi, Kyungwha Park, Antonio Ranieri, Luca Rigamonti, Fabrizio Roncaglia, Cyrille Train, Andrea Cornia. Filling the Gap in Extended Metal Atom Chains: Ferromagnetic Interactions in a Tetrairon(II) String Supported by Oligo-α-pyridylamido Ligands. Inorganic Chemistry 2018, 57 (9) , 5438-5448. https://doi.org/10.1021/acs.inorgchem.8b00405
    9. Jonathan H. Christian, David W. Brogden, Jasleen K. Bindra, Jared S. Kinyon, Johan van Tol, Jingfang Wang, John F. Berry, and Naresh S. Dalal . Enhancing the Magnetic Anisotropy of Linear Cr(II) Chain Compounds Using Heavy Metal Substitutions. Inorganic Chemistry 2016, 55 (13) , 6376-6383. https://doi.org/10.1021/acs.inorgchem.5b02545
    10. David W. Brogden and John F. Berry . Heterometallic Second-Row Transition Metal Chain Compounds in Two Charge States: Syntheses, Properties, and Electronic Structures of [Mo–Mo–Ru]6+/7+ Chains. Inorganic Chemistry 2015, 54 (15) , 7660-7665. https://doi.org/10.1021/acs.inorgchem.5b01370
    11. David W. Brogden and John F. Berry . Heterometallic Multiple Bonding: Delocalized Three-Center σ and π Bonding in Chains of 4d and 5d Transition Metals. Inorganic Chemistry 2014, 53 (21) , 11354-11356. https://doi.org/10.1021/ic5024218
    12. David W. Brogden, Yevgeniya Turov, Michael Nippe, Giovanni Li Manni, Elizabeth A. Hillard, Rodolphe Clérac, Laura Gagliardi, and John F. Berry . Oxidative Stretching of Metal–Metal Bonds to Their Limits. Inorganic Chemistry 2014, 53 (9) , 4777-4790. https://doi.org/10.1021/ic5007204
    13. Rui-Ling Chen, Xue-Yun Chen, Sheng-Run Zheng, Jun Fan, and Wei-Guang Zhang . Construction of Ag(I)–Ln(III) Heterometallic Coordination Polymers Based on Binuclear Ag2(DSPT)2 (H2DSPT = 4′-(2,4-Disulfophenyl)-2,2′:6′2″-terpyridine) Rings and Ln(III) Dimeric Molecular Building Blocks. Crystal Growth & Design 2013, 13 (10) , 4428-4434. https://doi.org/10.1021/cg400926q
    14. Song-Liang Cai, Sheng-Run Zheng, Zhen-Zhen Wen, Jun Fan, and Wei-Guang Zhang . A Series of New Three-Dimensional d–f Heterometallic Coordination Polymers with Rare 10-Connected bct Net Topology Based on Planar Hexanuclear Heterometallic Second Building Units. Crystal Growth & Design 2012, 12 (11) , 5737-5745. https://doi.org/10.1021/cg301256g
    15. Song-Liang Cai, Sheng-Run Zheng, Zhen-Zhen Wen, Jun Fan, Ning Wang, and Wei-Guang Zhang . Two Types of New Three-Dimensional d–f Heterometallic Coordination Polymers Based on 2-(Pyridin-3-yl)-1H-Imidazole-4,5-Dicarboxylate and Oxalate Ligands: Syntheses, Structures, Luminescence, and Magnetic Properties. Crystal Growth & Design 2012, 12 (9) , 4441-4449. https://doi.org/10.1021/cg300613t
    16. Michael Nippe, Yevgeniya Turov, and John F. Berry . Remote Effects of Axial Ligand Substitution in Heterometallic Cr≡Cr···M Chains. Inorganic Chemistry 2011, 50 (21) , 10592-10599. https://doi.org/10.1021/ic2011309
    17. Michael Nippe, Eckhard Bill, and John F. Berry . Group 6 Complexes with Iron and Zinc Heterometals: Understanding the Structural, Spectroscopic, and Electrochemical Properties of a Complete Series of MM···M′ Compounds. Inorganic Chemistry 2011, 50 (16) , 7650-7661. https://doi.org/10.1021/ic2011315
    18. Fengying Zhou, Miaoshui Lin, Lei Li, Xueqing Zhang, Zhou Chen, Yahong Li, Yang Zhao, Jin Wu, Guimin Qian, Bin Hu, and Wu Li . Heterobimetallic Samarium(III) and Titanium(IV) Complexes with Bifunctional Catalytic Properties. Organometallics 2011, 30 (6) , 1283-1286. https://doi.org/10.1021/om1010935
    19. Mohammed Obies. Exploring the effect of axial ligands, solvation, and redox on structure and inter-metal communication in Fe 3 -EMACs. New Journal of Chemistry 2024, 48 (24) , 10943-10948. https://doi.org/10.1039/D4NJ01164C
    20. Shie‐Ming Peng, Tien‐Sung Lin, Chun‐hsien Chen, Ming‐Chuan Cheng, Geng‐Min Lin. Coordination Ladder Polymers: Helical Metal Strings. 2023, 349-400. https://doi.org/10.1002/9783527833306.ch13
    21. Kazuhiro Uemura, Yuya Ikeda, Atsushi Takamori, Tomoyuki Takeyama, Satoshi Iwatsuki. Asymmetrical Platinum and Rhodium Dinuclear Complex Strongly Bound to Filled d Complexes by Unbridged Pt−Metal Bonds: Toward Heterometallic‐Extended Metal Atom Chains. Chemistry – A European Journal 2023, 29 (16) https://doi.org/10.1002/chem.202204057
    22. Ming‐Chuan Cheng, Gene‐Hsiang Lee, Tien‐Sung Lin, Yu‐Chiao Liu, Ming‐Hsi Chiang, Chun‐hsien Chen, Shie‐Ming Peng. Metal replacement in the syntheses of M A M B M C heterometallic metal‐string complexes: MPdM '(dpa) 4 Cl 2 . Journal of the Chinese Chemical Society 2022, 69 (8) , 1438-1448. https://doi.org/10.1002/jccs.202200154
    23. Kazuhiro Uemura, Yusuke Aoki, Atsushi Takamori. Paramagnetic one-dimensional chains containing high-spin manganese atoms showing antiferromagnetic interaction through –Pt–Rh–Rh–Pt– bonds. Dalton Transactions 2022, 51 (3) , 946-957. https://doi.org/10.1039/D1DT03537A
    24. Mariano Spivak, Coen de Graaf, Vaida Arcisauskaite, Xavier López. Gating the conductance of extended metal atom chains: a computational analysis of Ru 3 (dpa) 4 (NCS) 2 and [Ru 3 (npa) 4 (NCS) 2 ]. Physical Chemistry Chemical Physics 2021, 23 (27) , 14836-14844. https://doi.org/10.1039/D1CP02429A
    25. Alessio Nicolini, Marco Affronte, Daniel J. SantaLucia, Marco Borsari, Benjamin Cahier, Matteo Caleffi, Antonio Ranieri, John F. Berry, Andrea Cornia. Tetrairon( ii ) extended metal atom chains as single-molecule magnets. Dalton Transactions 2021, 50 (22) , 7571-7589. https://doi.org/10.1039/D1DT01007G
    26. Ming-Chuan Cheng, Gene-Hsiang Lee, Tien-Sung Lin, Yu-Chiao Liu, Ming-Hsi Chiang, Shie-Ming Peng. A new series of heteronuclear metal strings, MRhRh(dpa) 4 Cl 2 and MRhRhM(dpa) 4 X 2 , from the reactions of Rh 2 (dpa) 4 with metal ions of group 7 to group 12. Dalton Transactions 2021, 50 (2) , 520-534. https://doi.org/10.1039/D0DT03311A
    27. John F. Berry, Michael Roy. 2-Aminopyridine and Related Ligands to Support Metal-Metal Bonded Compounds. 2021, 406-427. https://doi.org/10.1016/B978-0-08-102688-5.00075-1
    28. Yi-Chou Tsai. Molybdenum. 2021, 567-745. https://doi.org/10.1016/B978-0-08-102688-5.00040-4
    29. Anders Reinholdt, Orion Staples, Daniel J. Mindiola. Chromium(II) Complexes. 2021, 478-507. https://doi.org/10.1016/B978-0-08-102688-5.00012-X
    30. Cheng-Chang Chiu, Ming-Chuan Cheng, Sheng-Hsiang Lin, Cheng-Wei Yan, Gene-Hsiang Lee, Mu-Chieh Chang, Tien-Sung Lin, Shie-Ming Peng. Structure and magnetic properties of a novel heteroheptanuclear metal string complex [Ni 3 Ru 2 Ni 2 (μ 7 -teptra) 4 (NCS) 2 ](PF 6 ). Dalton Transactions 2020, 49 (20) , 6635-6643. https://doi.org/10.1039/D0DT00156B
    31. Masayuki Nakagaki, Naoki Nakatani, Shigeyoshi Sakaki. How to understand very weak Cr–Cr double bonds and negative spin populations in trinuclear Cr complexes: theoretical insight. Physical Chemistry Chemical Physics 2019, 21 (41) , 22976-22989. https://doi.org/10.1039/C9CP03645H
    32. Tsai-Jung Liu, Shie-Ming Peng, Bih-Yaw Jin. Hemihelices on molecular scale: extended metal atom chains with helical perversions in ligands. New Journal of Chemistry 2019, 43 (40) , 16089-16095. https://doi.org/10.1039/C9NJ04345D
    33. Stephanie A. Beach, Linda A. Zuckerman, Romeo I. Portillo, Matthew P. Shores, Arnold L. Rheingold, Linda H. Doerrer. Heterobimetallic {PtMn} and {PtFe} lantern complexes with exceptionally long metallophilic contacts. Inorganica Chimica Acta 2019, 493 , 81-90. https://doi.org/10.1016/j.ica.2019.04.054
    34. Yu‐Chiao Liu, Shao‐An Hua, Ming‐Chuan Cheng, Li‐Chung Yu, Serhiy Demeshko, Sebastian Dechert, Franc Meyer, Gene‐Hsiang Lee, Ming‐Hsi Chiang, Shie‐Ming Peng. Electron Delocalization of Mixed‐Valence Diiron Sites Mediated by Group 10 Metal Ions in Heterotrimetallic Fe‐M‐Fe (M=Ni, Pd, and Pt) Chain Complexes. Chemistry – A European Journal 2018, 24 (45) , 11649-11666. https://doi.org/10.1002/chem.201801325
    35. Efdal Cimen, Ilkay Gumus, Hakan Arslan. The role of intermolecular interactions in the assembly of Zinc(II) and Lead(II) complexes containing carboxylate ligand and their conversion to metal oxides. Journal of Molecular Structure 2018, 1166 , 397-406. https://doi.org/10.1016/j.molstruc.2018.04.024
    36. Nibedita Behera, Vadivelu Manivannan. Molecular structures of some bivalent metal complexes of 1-(4-acetylphenyl)imidazole and co-ligands. Polyhedron 2018, 149 , 84-94. https://doi.org/10.1016/j.poly.2018.04.023
    37. Jill A. Chipman, John F. Berry. Extraordinarily Large Ferromagnetic Coupling ( J ≥150 cm −1 ) by Electron Delocalization in a Heterometallic Mo≣Mo−Ni Chain Complex. Chemistry – A European Journal 2018, 24 (7) , 1494-1499. https://doi.org/10.1002/chem.201704588
    38. Ming-Chuan Cheng, Shao-An Hua, Qiying Lv, Marc Sigrist, Gene-Hsiang Lee, Yu-Chiao Liu, Ming-Hsi Chiang, Shie-Ming Peng. Stepwise synthesis of the heterotrimetallic chains [MRu 2 (dpa) 4 X 2 ] 0/1+ using group 7 to group 12 transition metal ions and [Ru 2 (dpa) 4 Cl]. Dalton Transactions 2018, 47 (5) , 1422-1434. https://doi.org/10.1039/C7DT04114D
    39. Kyle N. W. Rozic, Mahmood Azizpoor Fard, Bahareh Khalili Najafabadi, John F. Corrigan. Metal Trimethylsilylthiolates for the Synthesis of Trinuclear MnPd 2 Complexes. Zeitschrift für anorganische und allgemeine Chemie 2017, 643 (15) , 973-979. https://doi.org/10.1002/zaac.201700179
    40. Wei-Cheng Chang, Che-Wei Chang, Marc Sigrist, Shao-An Hua, Tsai-Jung Liu, Gene-Hsiang Lee, Bih-Yaw Jin, Chun-hsien Chen, Shie-Ming Peng. Nonhelical heterometallic [Mo 2 M(npo) 4 (NCS) 2 ] string complexes (M = Fe, Co, Ni) with high single-molecule conductance. Chemical Communications 2017, 53 (63) , 8886-8889. https://doi.org/10.1039/C7CC05449A
    41. M. Spivak, V. Arcisauskaite, X. López, J. E. McGrady, C. de Graaf. A multiconfigurational approach to the electronic structure of trichromium extended metal atom chains. Dalton Transactions 2017, 46 (19) , 6202-6211. https://doi.org/10.1039/C7DT01096F
    42. Li‐Chung Yu, Gene‐Hsiang Lee, Marc Sigrist, Tien‐Sung Lin, Shie‐Ming Peng. Structure and Antiferromagnetism of Trinuclear Heterometallic Strings Containing Mn II –M II –Mn II Frameworks (M = Ni, Pd, Pt). European Journal of Inorganic Chemistry 2016, 2016 (26) , 4250-4256. https://doi.org/10.1002/ejic.201600835
    43. David W. Brogden, John F. Berry. Coordination Chemistry of 2,2’-Dipyridylamine: The Gift That Keeps on Giving. Comments on Inorganic Chemistry 2016, 36 (1) , 17-37. https://doi.org/10.1080/02603594.2015.1079522
    44. Brian S. Dolinar, John F. Berry. Influence of Lewis acid charge and proximity in Mo Mo⋯M linear chain compounds with M = Na+, Ca2+, Sr2+, and Y3+. Polyhedron 2016, 103 , 71-78. https://doi.org/10.1016/j.poly.2015.09.028
    45. Wei-Chieh Hung, Marc Sigrist, Shao-An Hua, Lai-Chin Wu, Tsai-Jung Liu, Bih-Yaw Jin, Gene-Hsiang Lee, Shie-Ming Peng. A heteropentanuclear metal string complex [Mo 2 NiMo 2 (tpda) 4 (NCS) 2 ] with two linearly aligned quadruply bonded Mo 2 units connected by a Ni ion and a meso configuration of the complex. Chemical Communications 2016, 52 (83) , 12380-12382. https://doi.org/10.1039/C6CC07364F
    46. Sheng-Run Zheng, Jing-Bo Tan, Song-Liang Cai, Jun Fan, Wei-Guang Zhang. Construction of six new luminescent Ln( iii )–Zn( ii ) heterometallic coordination polymers based on heterometallic secondary building units. CrystEngComm 2016, 18 (44) , 8672-8682. https://doi.org/10.1039/C6CE01184E
    47. Jin-Xia Yang, Ye-Yan Qin, Run-Ping Ye, Xin Zhang, Yuan-Gen Yao. Employing mixed-ligand strategy to construct a series of luminescent Cd( ii ) compounds with structural diversities. CrystEngComm 2016, 18 (42) , 8309-8320. https://doi.org/10.1039/C6CE01607C
    48. Brian S. Dolinar, Stosh A. Kozimor, John F. Berry. K 3 [Mo 2 (SNO5) 4 Cl] 3 [Mo 2 (SNO5) 4 ]: the first example of a heterometallic extended metal atom node (HEMAN). Dalton Transactions 2016, 45 (44) , 17602-17605. https://doi.org/10.1039/C6DT03659G
    49. Sheng-Run Zheng, Zhen-Zhen Wen, Yin-Yu Chen, Song-Liang Cai, Jun Fan, Wei-Guang Zhang. Two new three-dimensional (3,4)-connected lanthanide (III) coordination polymers based on 2-(3-Pyridyl)-1H-imidazole-4, 5-dicarboxylate: Structures and luminescent properties. Inorganic Chemistry Communications 2015, 55 , 165-168. https://doi.org/10.1016/j.inoche.2015.03.035
    50. Shao‐An Hua, Ming‐Chuan Cheng, Chun‐hsien Chen, Shie‐Ming Peng. From Homonuclear Metal String Complexes to Heteronuclear Metal String Complexes. European Journal of Inorganic Chemistry 2015, 2015 (15) , 2510-2523. https://doi.org/10.1002/ejic.201403237
    51. David W. Brogden, Jonathan H. Christian, Naresh S. Dalal, John F. Berry. Completing the series of Group VI heterotrimetallic M2Cr(dpa)4Cl2 (M2= Cr2, Mo2, MoW and W2) compounds and investigating their metal–metal interactions using density functional theory. Inorganica Chimica Acta 2015, 424 , 241-247. https://doi.org/10.1016/j.ica.2014.08.020
    52. Vaida Arcisauskaite, Mariano Spivak, John E. McGrady. Structure and bonding in trimetallic arrays containing a Cr–Cr quadruple bond: A challenge to density functional theory. Inorganica Chimica Acta 2015, 424 , 293-299. https://doi.org/10.1016/j.ica.2014.08.061
    53. Li Zhang, Jia-Dan Zheng, Yi-Ting Chen, Sheng-Run Zheng, Jun Fan, Wei-Guang Zhang. Syntheses, structures, and properties of nine d 10 or p-block coordination polymers based on a ligand containing both terpyridyl and sulfo groups. CrystEngComm 2015, 17 (29) , 5538-5550. https://doi.org/10.1039/C5CE00767D
    54. Tian-Tian Li, Yuan-yuan Tian, Rong-Hua Zeng, Sheng-Run Zheng. A novel Eu(III) –Ag(I) heterometallic coordination polymer based on planar hexanuclear heterometallic second building unit. Inorganic Chemistry Communications 2014, 50 , 75-78. https://doi.org/10.1016/j.inoche.2014.10.006
    55. Zhi-Qiang Shi, Yi-Zhi Li, Zi-Jian Guo, He-Gen Zheng. Syntheses, structures, and photoluminescent properties of a series of metal–organic frameworks constructed by 5,5′-bis(1H-imidazol-1-yl)-2,2′-bithiophene and various carboxylate ligands. CrystEngComm 2014, 16 (5) , 900-909. https://doi.org/10.1039/C3CE41966E
    56. Zhi-Qiang Shi, Zi-Jian Guo, He-Gen Zheng. Syntheses, crystal structures, and optical properties of five metal complexes constructed from a V-shaped thiophene-containing ligand and different dicarboxylate ligands. Dalton Trans. 2014, 43 (35) , 13250-13258. https://doi.org/10.1039/C4DT01400F
    57. Sheng-Run Zheng, Rui-Ling Chen, Tao Xie, Zi-Meng Liu, Xi-Ling Wen, Xue-Yun Chen, Jun Fan, Wei-Guang Zhang. Construction of several new s-/p-block complexes containing binuclear metal–terpyridine building blocks: dependence of structural diversity on the number of coordinated water molecules. CrystEngComm 2014, 16 (19) , 4029. https://doi.org/10.1039/c3ce41790e
    58. Yan-Chun Liu, Shui-Xing Wu, Zhong-Min Su, Hou-Yu Zhang. Can a linear metal–metal bonded array of tetravanadium be stabilized between two dicyclopenta[a,e]pentalene ligands? A theoretical investigation. New Journal of Chemistry 2014, 38 (3) , 1092. https://doi.org/10.1039/c3nj00857f
    59. Shao‐An Hua, Yi‐Chou Tsai, Shie‐Ming Peng. A Journey of Metal‐metal Bonding beyond Cotton's Quadruple Bonds. Journal of the Chinese Chemical Society 2014, 61 (1) , 9-26. https://doi.org/10.1002/jccs.201300417
    60. Ling-Zhi Zhao, Yuan-Yuan Tian, Ying-Xin Gong, Xiao-Ting Huang, Fen Zhang, Jian-Xiong Rong, Xia Cai, Wen-Tao Li, Rong-Hua Zeng, Dong-Sheng Lu. 2D Ln III (Nd/La)-Ag I Heterometallic and Tm III Homometallic Coordination Polymers Based on Pyridine Dicarboxylate ­Ligands. Zeitschrift für anorganische und allgemeine Chemie 2014, 640 (1) , 147-152. https://doi.org/10.1002/zaac.201300197
    61. Vihar P. Georgiev, P.J. Mohan, Daniel DeBrincat, John E. McGrady. Low-symmetry distortions in Extended Metal Atom Chains (EMACs): Origins and consequences for electron transport. Coordination Chemistry Reviews 2013, 257 (1) , 290-298. https://doi.org/10.1016/j.ccr.2012.05.025
    62. Daniel DeBrincat, Oliver Keers, John E. McGrady. Can heterometallic 1-dimensional chains support current rectification?. Chemical Communications 2013, 49 (80) , 9116. https://doi.org/10.1039/c3cc45063e
    63. Zhen-Zhen Wen, Xi-Ling Wen, Song-Liang Cai, Sheng-Run Zheng, Jun Fan, Wei-Guang Zhang. The construction of Cu(i)/Cu(ii) coordination polymers based on pyrazine–carboxylate: Structural diversity tuned by in situ hydrolysis reaction. CrystEngComm 2013, 15 (26) , 5359. https://doi.org/10.1039/c3ce26817a
    64. Joshua Telser, Andrew Ozarowski, J. Krzystek. High-frequency and -field electron paramagnetic resonance of transition metal ion (d block) coordination complexes. 2012, 209-263. https://doi.org/10.1039/9781849734837-00209
    65. Giovanni Li Manni, Allison L. Dzubak, Abbas Mulla, David W. Brogden, John F. Berry, Laura Gagliardi. Assessing Metal–Metal Multiple Bonds in CrCr, MoMo, and WW Compounds and a Hypothetical UU Compound: A Quantum Chemical Study Comparing DFT and Multireference Methods. Chemistry – A European Journal 2012, 18 (6) , 1737-1749. https://doi.org/10.1002/chem.201103096
    66. Song-Liang Cai, Sheng-Run Zheng, Zhen-Zhen Wen, Jun Fan, Wei-Guang Zhang. Construction of luminescent three-dimensional Ln(iii)–Zn(ii) heterometallic coordination polymers based on 2-pyridyl imidazole dicarboxylate. CrystEngComm 2012, 14 (23) , 8236. https://doi.org/10.1039/c2ce25803j
    67. Yevgeniya Turov, John F. Berry. Synthesis, characterization and thermal properties of trimetallic N3–CrCr⋯M–N3 azide complexes with M = Cr, Mn, Fe, and Co. Dalton Transactions 2012, 41 (26) , 8153. https://doi.org/10.1039/c2dt30150d
    68. Dilahan Aydin-Cantürk, Hanne Nuss. Synthesis, Structure Determination, and Magnetic Properties of the New Heterometallic Chain Compound CrCrNi(di-2,2′-pyridylamido)4Cl2·Et2O. Zeitschrift für anorganische und allgemeine Chemie 2011, 637 (5) , 543-546. https://doi.org/10.1002/zaac.201100061
    69. Virendra Kumar Rai, Masayoshi Nishiura, Masanori Takimoto, Zhaomin Hou. Synthesis, structure and efficient electroluminescence of a heteroleptic dipyridylamido/bis(pyridylphenyl)iridium(iii) complex. Chemical Communications 2011, 47 (20) , 5726. https://doi.org/10.1039/c1cc10213c

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2010, 132, 40, 14261–14272
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja106510g
    Published September 22, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    1590

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.