ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Assessing the Purity of Metal−Organic Frameworks Using Photoluminescence: MOF-5, ZnO Quantum Dots, and Framework Decomposition

View Author Information
Sandia National Laboratories, Livermore, California 94551-0969
Cite this: J. Am. Chem. Soc. 2010, 132, 44, 15487–15489
Publication Date (Web):October 20, 2010
https://doi.org/10.1021/ja1065625
Copyright © 2010 American Chemical Society

    Article Views

    6771

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (594 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Photoluminescence (PL) spectroscopy was used to characterize nanoscale ZnO impurities, amine-donor charge-transfer exciplexes, and framework decomposition in samples of MOF-5 prepared by various methods. The combined results cast doubt on previous reports describing MOF-5 as a semiconductor and demonstrate that PL as a tool for characterizing MOF purity possesses advantages such as simplicity, speed, and sensitivity over currently employed powder XRD MOF characterization methods.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Details of all experimental procedures, UV−vis absorption data, additional steady-state PL spectra, transmission electron micrographs, and details of the Scherrer equation. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 133 publications.

    1. Adrien Schlachter, Paul Asselin, Daniel Fortin, Paul-Ludovic Karsenti, Pierre D. Harvey. Strong Host–Guest Dependence on the Emissive Properties of MOF-5 and [Zn2(BTTB)(DMF)2•(H2O)3]n. Inorganic Chemistry 2023, 62 (34) , 13757-13764. https://doi.org/10.1021/acs.inorgchem.3c01378
    2. Yifan Zan, Ferdaous Ben Romdhane, Antoine Miche, Christophe Méthivier, Jean-Marc Krafft, Claude Jolivalt, Julien Reboul. Copper Nanoparticles Supported on ZIF-8: Comparison of Cu(II) Reduction Processes and Application as Benzyl Alcohol Oxidation Catalysts. ACS Applied Materials & Interfaces 2023, 15 (32) , 38716-38728. https://doi.org/10.1021/acsami.3c08906
    3. Hanhua Chen, Ren Ma, Yifan Zhang, Tingting Zhang, Biyun Jing, Zhengqiang Xia, Qi Yang, Gang Xie, Sanping Chen. A Stable Triphenylamine-Based Zn(II)-MOF for Photocatalytic H2 Evolution and Photooxidative Carbon–Carbon Coupling Reaction. Inorganic Chemistry 2023, 62 (20) , 7954-7963. https://doi.org/10.1021/acs.inorgchem.3c00763
    4. Ran Liu, Xiaoning Zhao, Haibo Zhao, Liang Liang, Shaolei Zhao, Yiwen Zhang. Carbon-Coated MnO Quantum Dot-Decorated Three-Dimensional Graphene Aerogel Composite for High-Performance Lithium-Ion Batteries. Energy & Fuels 2023, 37 (8) , 6240-6247. https://doi.org/10.1021/acs.energyfuels.3c00350
    5. Asena Çiftlik, Tuğçe Günay Semerci, Onur Şahin, Fatih Semerci. Two-Dimensional Metal–Organic Framework Nanostructures Based on 4,4′-Sulfonyldibenzoate for Photocatalytic Degradation of Organic Dyes. Crystal Growth & Design 2021, 21 (6) , 3364-3374. https://doi.org/10.1021/acs.cgd.1c00152
    6. Aseem Rajan Kshirsagar, Xavier Blase, Claudio Attaccalite, Roberta Poloni. Strongly Bound Excitons in Metal–Organic Framework MOF-5: A Many-Body Perturbation Theory Study. The Journal of Physical Chemistry Letters 2021, 12 (16) , 4045-4051. https://doi.org/10.1021/acs.jpclett.1c00543
    7. Long Yang, Haijun Huang, Xuedan Luo, Huichao He, Fang Gao, Yong Zhou. Unpaired Electron-Induced Wide-Range Light Absorption within Zn (or Cu) MOFs Containing Electron-Withdrawing Ligands: A Theoretical and Experimental Study. The Journal of Physical Chemistry A 2020, 124 (26) , 5314-5322. https://doi.org/10.1021/acs.jpca.0c01577
    8. Vincent J. Pastore, Timothy R. Cook, Javid Rzayev. Polymer–MOF Hybrid Composites with High Porosity and Stability through Surface-Selective Ligand Exchange. Chemistry of Materials 2018, 30 (23) , 8639-8649. https://doi.org/10.1021/acs.chemmater.8b03881
    9. Zhong-Jie Wang, Li-Juan Han, Xiang-Jing Gao, He-Gen Zheng. Three Cd(II) MOFs with Different Functional Groups: Selective CO2 Capture and Metal Ions Detection. Inorganic Chemistry 2018, 57 (9) , 5232-5239. https://doi.org/10.1021/acs.inorgchem.8b00272
    10. Meng-Meng Wu, Jiao-Yang Wang, Rui Sun, Cui Zhao, Jiong-Peng Zhao, Guang-Bo Che, and Fu-Chen Liu . The Design of Dual-Emissive Composite Material [Zn2(HL)3]+@MOF-5 as Self-Calibrating Luminescent Sensors of Al3+ Ions and Monoethanolamine. Inorganic Chemistry 2017, 56 (16) , 9555-9562. https://doi.org/10.1021/acs.inorgchem.7b00939
    11. Tianyu Du, Hui Jiang, and Xuemei Wang . Understanding the Photochemical Response of Zeolitic Imidazolate Framework-8 in the Sight of Framework, Uncoordinated 2-Methylimidazole and ZnxOy Clusters. The Journal of Physical Chemistry C 2017, 121 (22) , 12278-12284. https://doi.org/10.1021/acs.jpcc.7b03466
    12. Feng-Ling Yuan, Yan-Qiu Yuan, Meng-Yao Chao, David J. Young, Wen-Hua Zhang, and Jian-Ping Lang . Deciphering the Structural Relationships of Five Cd-Based Metal–Organic Frameworks. Inorganic Chemistry 2017, 56 (11) , 6522-6531. https://doi.org/10.1021/acs.inorgchem.7b00592
    13. Zuo-Xi Li, Kang-Yu Zou, Xue Zhang, Tong Han, and Ying Yang . Hierarchically Flower-like N-Doped Porous Carbon Materials Derived from an Explosive 3-Fold Interpenetrating Diamondoid Copper Metal–Organic Framework for a Supercapacitor. Inorganic Chemistry 2016, 55 (13) , 6552-6562. https://doi.org/10.1021/acs.inorgchem.6b00746
    14. Haonan Huang, Michelle Beuchel, Yeseul Park, Patrick J. Baesjou, Stefan C. J. Meskers, Dago M. de Leeuw, and Kamal Asadi . Solvent-Induced Galvanoluminescence of Metal–Organic Framework Electroluminescent Diodes. The Journal of Physical Chemistry C 2016, 120 (20) , 11045-11048. https://doi.org/10.1021/acs.jpcc.6b03846
    15. Samuel O. Odoh, Christopher J. Cramer, Donald G. Truhlar, and Laura Gagliardi . Quantum-Chemical Characterization of the Properties and Reactivities of Metal–Organic Frameworks. Chemical Reviews 2015, 115 (12) , 6051-6111. https://doi.org/10.1021/cr500551h
    16. Hong-Ru Fu, Zhong-Xuan Xu, and Jian Zhang . Water-Stable Metal–Organic Frameworks for Fast and High Dichromate Trapping via Single-Crystal-to-Single-Crystal Ion Exchange. Chemistry of Materials 2015, 27 (1) , 205-210. https://doi.org/10.1021/cm503767r
    17. Qihan Gong, Zhichao Hu, Benjamin J. Deibert, Thomas J. Emge, Simon J. Teat, Debasis Banerjee, Brianna Mussman, Nathan D. Rudd, and Jing Li . Solution Processable MOF Yellow Phosphor with Exceptionally High Quantum Efficiency. Journal of the American Chemical Society 2014, 136 (48) , 16724-16727. https://doi.org/10.1021/ja509446h
    18. Li-Ming Yang, Guo-Yong Fang, Jing Ma, Eric Ganz, and Sang Soo Han . Band Gap Engineering of Paradigm MOF-5. Crystal Growth & Design 2014, 14 (5) , 2532-2541. https://doi.org/10.1021/cg500243s
    19. Seung Jae Yang, Seunghoon Nam, Taehoon Kim, Ji Hyuk Im, Haesol Jung, Jong Hun Kang, Sungun Wi, Byungwoo Park, and Chong Rae Park . Preparation and Exceptional Lithium Anodic Performance of Porous Carbon-Coated ZnO Quantum Dots Derived from a Metal–Organic Framework. Journal of the American Chemical Society 2013, 135 (20) , 7394-7397. https://doi.org/10.1021/ja311550t
    20. Timothy R. Cook, Yao-Rong Zheng, and Peter J. Stang . Metal–Organic Frameworks and Self-Assembled Supramolecular Coordination Complexes: Comparing and Contrasting the Design, Synthesis, and Functionality of Metal–Organic Materials. Chemical Reviews 2013, 113 (1) , 734-777. https://doi.org/10.1021/cr3002824
    21. Min Ji, Xin Lan, Zhenping Han, Ce Hao, and Jieshan Qiu . Luminescent Properties of Metal–Organic Framework MOF-5: Relativistic Time-Dependent Density Functional Theory Investigations. Inorganic Chemistry 2012, 51 (22) , 12389-12394. https://doi.org/10.1021/ic301771b
    22. Farhana Gul-E-Noor, Bettina Jee, Matthias Mendt, Dieter Himsl, Andreas Pöppl, Martin Hartmann, Jürgen Haase, Harald Krautscheid, and Marko Bertmer . Formation of Mixed Metal Cu3–xZnx(btc)2 Frameworks with Different Zinc Contents: Incorporation of Zn2+ into the Metal–Organic Framework Structure as Studied by Solid-State NMR. The Journal of Physical Chemistry C 2012, 116 (39) , 20866-20873. https://doi.org/10.1021/jp3054857
    23. Chi-Kai Lin, Dan Zhao, Wen-Yang Gao, Zhenzhen Yang, Jingyun Ye, Tao Xu, Qingfeng Ge, Shengqian Ma, and Di-Jia Liu . Tunability of Band Gaps in Metal–Organic Frameworks. Inorganic Chemistry 2012, 51 (16) , 9039-9044. https://doi.org/10.1021/ic301189m
    24. Yuanjing Cui, Yanfeng Yue, Guodong Qian, and Banglin Chen . Luminescent Functional Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2) , 1126-1162. https://doi.org/10.1021/cr200101d
    25. Jeremy I. Feldblyum, Elizabeth A. Keenan, Adam J. Matzger, and Stephen Maldonado . Photoresponse Characteristics of Archetypal Metal–Organic Frameworks. The Journal of Physical Chemistry C 2012, 116 (4) , 3112-3121. https://doi.org/10.1021/jp206426w
    26. Jun He, Matthias Zeller, Allen D. Hunter, and Zhengtao Xu . White Light Emission and Second Harmonic Generation from Secondary Group Participation (SGP) in a Coordination Network. Journal of the American Chemical Society 2012, 134 (3) , 1553-1559. https://doi.org/10.1021/ja2073559
    27. Natalia B. Shustova, Brian D. McCarthy, and Mircea Dincă . Turn-On Fluorescence in Tetraphenylethylene-Based Metal–Organic Frameworks: An Alternative to Aggregation-Induced Emission. Journal of the American Chemical Society 2011, 133 (50) , 20126-20129. https://doi.org/10.1021/ja209327q
    28. Zhi-Yuan Gu, Jun-Qing Jiang, and Xiu-Ping Yan . Fabrication of Isoreticular Metal–Organic Framework Coated Capillary Columns for High-Resolution Gas Chromatographic Separation of Persistent Organic Pollutants. Analytical Chemistry 2011, 83 (13) , 5093-5100. https://doi.org/10.1021/ac200646w
    29. Hossein Khajavi, Jorge Gascon, Juleon M. Schins, Laurens D. A. Siebbeles, and Freek Kapteijn . Unraveling the Optoelectronic and Photochemical Behavior of Zn4O-Based Metal Organic Frameworks. The Journal of Physical Chemistry C 2011, 115 (25) , 12487-12493. https://doi.org/10.1021/jp201760s
    30. Yijia Shen, Guangmin Zhang, Xinguang Zhou. Identification of an unusual pale green material on the surface of an ancient Chinese bronze vessel and application of laser cleaning to its removal. Heritage Science 2023, 11 (1) https://doi.org/10.1186/s40494-023-00933-4
    31. Kongjun Ma, Xiaofei Liu, Zeliang Luo, Zhenxing Zhou, Wenlong Mo, Xintai Su. FeNi-MIL53 bimetallic MOFs as a visible light photocatalyst for water oxidation. Materials Letters 2023, 332 , 133477. https://doi.org/10.1016/j.matlet.2022.133477
    32. Rong Shi, Ze-Ming Xu, Chen Cao, Zheng Niu, Jian-Ping Lang. A 3D/3D hetero-interpenetrated MOF with a novel (3,9)-c net and 6-c lcy net for the fluorescence detection of carbaryl. Dalton Transactions 2022, 51 (41) , 15644-15647. https://doi.org/10.1039/D2DT01893D
    33. Fajar I. Pambudi. Electronic properties of heterometallic zeolitic imidazolate framework and its encapsulation with Ni, Pd and Pt. Inorganic Chemistry Communications 2022, 143 , 109798. https://doi.org/10.1016/j.inoche.2022.109798
    34. Rakesh Kumar Gupta, Muhammad Riaz, Mo Ashafaq, Zhi-Yong Gao, Rajender S. Varma, Da-Cheng Li, Ping Cui, Chen-Ho Tung, Di Sun. Adenine-incorporated metal–organic frameworks. Coordination Chemistry Reviews 2022, 464 , 214558. https://doi.org/10.1016/j.ccr.2022.214558
    35. Pietro Rassu, Xiaojie Ma, Bo Wang. Engineering of catalytically active sites in photoactive metal–organic frameworks. Coordination Chemistry Reviews 2022, 465 , 214561. https://doi.org/10.1016/j.ccr.2022.214561
    36. Yicui Wei, Mengfan Wang, Wei Qi, Zhimin He. Flame-resistant bifunctional MOF-based sponges for effective separation of oil/water mixtures and enzyme-like degradation of organic pollutants. Process Safety and Environmental Protection 2022, 163 , 636-644. https://doi.org/10.1016/j.psep.2022.05.072
    37. Yu Liu, Yan Wang, Xiao-Sa Zhang, Wen-Ze Li, Ai-Ai Yang, Jian Luan, Hong-Zhu Liu, Zhong-Gang Wang. Synthesis of a Magnetic Co@C Material via the Design of a MOF Precursor for Efficient and Selective Adsorption of Water Pollutants. Journal of Inorganic and Organometallic Polymers and Materials 2022, 32 (2) , 700-712. https://doi.org/10.1007/s10904-021-02157-0
    38. Vincent Villemot, Nicolas Dufour, Sharvanee Mauree, Benoît Sabot, Guillaume H. V. Bertrand, Matthieu Hamel. From Sintering to Particle Discrimination: New Opportunities in Metal–Organic Frameworks Scintillators. Advanced Photonics Research 2022, 3 (1) https://doi.org/10.1002/adpr.202100259
    39. Siyu He, Li Wu, Xue Li, Hongyu Sun, Ting Xiong, Jie Liu, Chengxi Huang, Huipeng Xu, Huimin Sun, Weidong Chen, Ruxandra Gref, Jiwen Zhang. Metal-organic frameworks for advanced drug delivery. Acta Pharmaceutica Sinica B 2021, 11 (8) , 2362-2395. https://doi.org/10.1016/j.apsb.2021.03.019
    40. Yousef Tamsilian, Zeinab Ansari-Asl, Ali Maghsoudian, Abdolreza Kazemi Abadshapoori, Amaia Agirre, Radmila Tomovska. Superhydrophobic ZIF8/PDMS-coated polyurethane nanocomposite sponge: Synthesis, characterization and evaluation of organic pollutants continuous separation. Journal of the Taiwan Institute of Chemical Engineers 2021, 125 , 204-214. https://doi.org/10.1016/j.jtice.2021.06.023
    41. Junkuo Gao, Qing Huang, Yuhang Wu, Ya-Qian Lan, Banglin Chen. Metal–Organic Frameworks for Photo/Electrocatalysis. Advanced Energy and Sustainability Research 2021, 2 (8) https://doi.org/10.1002/aesr.202100033
    42. Kuan-Guan Liu, Zahra Sharifzadeh, Farzaneh Rouhani, Massomeh Ghorbanloo, Ali Morsali. Metal-organic framework composites as green/sustainable catalysts. Coordination Chemistry Reviews 2021, 436 , 213827. https://doi.org/10.1016/j.ccr.2021.213827
    43. K. Bhuvaneswari, G. Palanisamy, T. Pazhanivel, T. Maiyalagan, P. Shanmugam, Andrews Nirmala Grace. In-situ development of metal organic frameworks assisted ZnMgAl layered triple hydroxide 2D/2D hybrid as an efficient photocatalyst for organic dye degradation. Chemosphere 2021, 270 , 128616. https://doi.org/10.1016/j.chemosphere.2020.128616
    44. Guan‐E Wang, Yonggang Zhen, Guo‐Dong Wu, Huanli Dong, Gang Xu. The Relationship Between Structure and Electric Property. 2021, 669-704. https://doi.org/10.1002/9783527831753.ch12a
    45. Guan‐E Wang, Yonggang Zhen, Guo‐Dong Wu, Huanli Dong, Gang Xu. The Relationship Between Structure and Electric Property. 2021, 704-725. https://doi.org/10.1002/9783527831753.ch12b
    46. Guan‐E Wang, Yonggang Zhen, Guo‐Dong Wu, Huanli Dong, Gang Xu. The Relationship Between Structure and Electric Property. 2021, 725-776. https://doi.org/10.1002/9783527831753.ch12c
    47. Sadra Sadeghian, Hossein Pourfakhar, Majid Baghdadi, Behnoush Aminzadeh. Application of sand particles modified with NH2-MIL-101(Fe) as an efficient visible-light photocatalyst for Cr(VI) reduction. Chemosphere 2021, 268 , 129365. https://doi.org/10.1016/j.chemosphere.2020.129365
    48. Kun Wu, Ji Zheng, Yong-Liang Huang, Dong Luo, Yan Yan Li, Weigang Lu, Dan Li. Cr 2 O 7 2− inside Zr/Hf-based metal–organic frameworks: highly sensitive and selective detection and crystallographic evidence. Journal of Materials Chemistry C 2020, 8 (47) , 16974-16983. https://doi.org/10.1039/D0TC04154H
    49. Maram Bakiro, Salwa Hussein Ahmed, Ahmed Alzamly. Cycloaddition of CO2 to propylene oxide using BiNbO4/NH2-MIL-125(Ti) composites as visible-light photocatalysts. Journal of Environmental Chemical Engineering 2020, 8 (6) , 104461. https://doi.org/10.1016/j.jece.2020.104461
    50. Nicolás Artemio Rodríguez, Rodrigo Parra, María Alejandra Grela. Triethylamine as a tuning agent of the MIL-125 particle morphology and its effect on the photocatalytic activity. SN Applied Sciences 2020, 2 (11) https://doi.org/10.1007/s42452-020-03683-1
    51. Ruhollah Khajavian, Masoud Mirzaei, Hanie Alizadeh. Current status and future prospects of metal–organic frameworks at the interface of dye-sensitized solar cells. Dalton Transactions 2020, 49 (40) , 13936-13947. https://doi.org/10.1039/D0DT02798G
    52. Aurobinda Mohanty, Udai P. Singh, R. J. Butcher, Neeladrisingha Das, Partha Roy. Synthesis of fluorescent MOFs: live-cell imaging and sensing of a herbicide. CrystEngComm 2020, 22 (26) , 4468-4477. https://doi.org/10.1039/D0CE00490A
    53. Zhongchao Jin, Xiaorong Zhu, Ningning Wang, Yafei Li, Huangxian Ju, Jianping Lei. Electroactive Metal–Organic Frameworks as Emitters for Self‐Enhanced Electrochemiluminescence in Aqueous Medium. Angewandte Chemie 2020, 132 (26) , 10532-10536. https://doi.org/10.1002/ange.202002713
    54. Zhongchao Jin, Xiaorong Zhu, Ningning Wang, Yafei Li, Huangxian Ju, Jianping Lei. Electroactive Metal–Organic Frameworks as Emitters for Self‐Enhanced Electrochemiluminescence in Aqueous Medium. Angewandte Chemie International Edition 2020, 59 (26) , 10446-10450. https://doi.org/10.1002/anie.202002713
    55. Jiajia Zhang, Fang Cui, Li Li, Yang Liu, Xiao Zhang, Tieyu Cui. From coordination polymers to nanocrystals: general and facile synthesis of ultra-small metal oxide nanocrystals. Chemical Communications 2020, 56 (45) , 6145-6148. https://doi.org/10.1039/D0CC01248C
    56. Jinhua Wang, Bin Song, Jiali Tang, Guyue Hu, Jingyang Wang, Mingyue Cui, Yao He. Multi-modal anti-counterfeiting and encryption enabled through silicon-based materials featuring pH-responsive fluorescence and room-temperature phosphorescence. Nano Research 2020, 13 (6) , 1614-1619. https://doi.org/10.1007/s12274-020-2781-1
    57. Vincent Villemot, Matthieu Hamel, Robert B. Pansu, Isabelle Leray, Guillaume H. V. Bertrand. Unravelling the true MOF-5 luminescence. RSC Advances 2020, 10 (31) , 18418-18422. https://doi.org/10.1039/D0RA02509G
    58. Nicolás Artemio Rodríguez, Rodrigo Parra, Enrique San Román, María Alejandra Grela. A simple computational model for MOF-5W absorption and photoluminescence to distinguish MOF-5 from its hydrolysis products. Journal of Materials Science 2020, 55 (15) , 6588-6597. https://doi.org/10.1007/s10853-020-04442-8
    59. Yan Liu, Shi‐Xin Lin, Ru‐Jie Niu, Quan Liu, Wen‐Hua Zhang, David J. Young. Zinc and Cadmium Complexes of Pyridinemethanol Carboxylates: Metal Carboxylate Zwitterions and Metal–Organic Frameworks. ChemPlusChem 2020, 85 (5) , 832-837. https://doi.org/10.1002/cplu.202000175
    60. Partha Pratim Bag, Pathik Sahoo. Designing Metal-Organic Frameworks Based Photocatalyst for Specific Photocatalytic Reactions: A Crystal Engineering Approach. 2020, 141-186. https://doi.org/10.1007/978-3-030-17638-9_6
    61. Ipsita Mondal, Shouvik Chattopadhyay. Development of multi-metallic complexes using metal-salen complexes as building blocks. Journal of Coordination Chemistry 2019, 72 (19-21) , 3183-3209. https://doi.org/10.1080/00958972.2019.1695048
    62. Tianyu Du, Hui Jiang, Xuemei Wang. The effect of AIE and ACQ on MOFs' sensing performance. Inorganic Chemistry Communications 2019, 107 , 107452. https://doi.org/10.1016/j.inoche.2019.107452
    63. Cihan Gecgel, Utku Bulut Simsek, Belgin Gozmen, Meral Turabik. Comparison of MIL-101(Fe) and amine-functionalized MIL-101(Fe) as photocatalysts for the removal of imidacloprid in aqueous solution. Journal of the Iranian Chemical Society 2019, 16 (8) , 1735-1748. https://doi.org/10.1007/s13738-019-01647-w
    64. Zhouqing Xu, Jiwei Wang, Huijun Li, Yan Wang. Coating sponge with multifunctional and porous metal-organic framework for oil spill remediation. Chemical Engineering Journal 2019, 370 , 1181-1187. https://doi.org/10.1016/j.cej.2019.03.288
    65. Liyu Chen, Qiang Xu. Metal-Organic Framework Composites for Catalysis. Matter 2019, 1 (1) , 57-89. https://doi.org/10.1016/j.matt.2019.05.018
    66. Stephen Adie Adalikwu, Venkata Suresh Mothika, Arpan Hazra, Tapas Kumar Maji. Polar functional groups anchored to a 2D MOF template for the stabilization of Pd(0) nps for the catalytic C–C coupling reaction. Dalton Transactions 2019, 48 (21) , 7117-7121. https://doi.org/10.1039/C8DT04766A
    67. Guillaume Maurin-Pasturel, Ekaterina Mamontova, Maria A. Palacios, Jérôme Long, Joachim Allouche, Jean-Charles Dupin, Yannick Guari, Joulia Larionova. Gold@Prussian blue analogue core–shell nanoheterostructures: their optical and magnetic properties. Dalton Transactions 2019, 48 (18) , 6205-6216. https://doi.org/10.1039/C9DT00141G
    68. A. Zazueta-Raynaud, A. Cordova-Rubio, R. Lopez-Delgado, J E. Pelayo-Ceja, R. C. Carrillo-Torres, R. Sanchez-Zeferino, M. E. Alvarez-Ramos, A. Ayon. ZnS and ZnO nanocomposite for near white light tuning applications. 2019, 1-3. https://doi.org/10.1109/DTIP.2019.8752671
    69. Qi Tang, Li Ma, Fabing Yan, Mengyu Gan, Xiurong Li, Feifei Cao, Menghan Ye, Yanfang Zhai, You Zhou. Designed cross-linking nanoporous Zn0.76Co0.24S @C-ZIF-Zn0.76Co0.24S core-shell nanosheet arrays on nickle foam for battery-type electrodes with high performance electrochemical energy storage. Synthetic Metals 2019, 250 , 136-145. https://doi.org/10.1016/j.synthmet.2019.02.014
    70. José P. Leite, Luís Gales. Fluorescence properties of the amyloid indicator dye thioflavin T in constrained environments. Dyes and Pigments 2019, 160 , 64-70. https://doi.org/10.1016/j.dyepig.2018.07.049
    71. Rongbin Lin, Shumin Li, Jingyun Wang, Jiapeng Xu, Chunhui Xu, Jin Wang, Chunxia Li, Zhengquan Li. Facile generation of carbon quantum dots in MIL-53(Fe) particles as localized electron acceptors for enhancing their photocatalytic Cr( vi ) reduction. Inorganic Chemistry Frontiers 2018, 5 (12) , 3170-3177. https://doi.org/10.1039/C8QI01164H
    72. Yunhong Pi, Xiyi Li, Qibin Xia, Junliang Wu, Yingwei Li, Jing Xiao, Zhong Li. Adsorptive and photocatalytic removal of Persistent Organic Pollutants (POPs) in water by metal-organic frameworks (MOFs). Chemical Engineering Journal 2018, 337 , 351-371. https://doi.org/10.1016/j.cej.2017.12.092
    73. Lijun Zhang, Guanglin Xia, Yuqin Huang, Chenyun Wei, Yiwei Yu, Dalin Sun, Xuebin Yu. MnO quantum dots embedded in carbon nanotubes as excellent anode for lithium-ion batteries. Energy Storage Materials 2018, 10 , 160-167. https://doi.org/10.1016/j.ensm.2017.01.007
    74. A. A. Lysova, D. G. Samsonenko, D. N. Dybtsev, V. P. Fedin. Cadmium(ii) terephthalates based on trinuclear units {Cd3(bdc)3}: control of coordination structure dimensionality and luminescence properties. Russian Chemical Bulletin 2017, 66 (9) , 1580-1588. https://doi.org/10.1007/s11172-017-1927-0
    75. Guillaume Maurin‐Pasturel, Jérôme Long, Maria A. Palacios, Christian Guérin, Clarence Charnay, Marc‐Georg Willinger, Alexander A. Trifonov, Joulia Larionova, Yannick Guari. Engineered Au Core@Prussian Blue Analogous Shell Nanoheterostructures: Their Magnetic and Optical Properties. Chemistry – A European Journal 2017, 23 (31) , 7483-7496. https://doi.org/10.1002/chem.201605903
    76. Yanjun Hao, Linxu Xu, Jingyu Lei, Fang Cui, Tieyu Cui, Caiyu Qu. Self-catalytic Synthesis of ZnO Nanoparticles@SiO 2 Composites with Controllable Fluorescence. Chemistry Letters 2017, 46 (4) , 426-429. https://doi.org/10.1246/cl.161042
    77. Tianyu Du, Chunqiu Zhao, Fawad ur Rehman, Lanmei Lai, Xiaoqi Li, Yi Sun, Shouhua Luo, Hui Jiang, Ning Gu, Matthias Selke, Xuemei Wang. In Situ Multimodality Imaging of Cancerous Cells Based on a Selective Performance of Fe 2+ -Adsorbed Zeolitic Imidazolate Framework-8. Advanced Functional Materials 2017, 27 (5) , 1603926. https://doi.org/10.1002/adfm.201603926
    78. Jiping Tu, Xiaoliang Zeng, Fujian Xu, Xi Wu, Yunfei Tian, Xiandeng Hou, Zhou Long. Microwave-induced fast incorporation of titanium into UiO-66 metal–organic frameworks for enhanced photocatalytic properties. Chemical Communications 2017, 53 (23) , 3361-3364. https://doi.org/10.1039/C7CC00076F
    79. Hong Cai, Li-Li Xu, He-Yun Lai, Jing-Yi Liu, Seik Weng Ng, Dan Li. A highly emissive and stable zinc( ii ) metal–organic framework as a host–guest chemopalette for approaching white-light-emission. Chemical Communications 2017, 53 (56) , 7917-7920. https://doi.org/10.1039/C7CC03350H
    80. Suvendu Sekhar Mondal, Maximilian Hovestadt, Subarna Dey, Carolin Paula, Sebastian Glomb, Alexandra Kelling, Uwe Schilde, Christoph Janiak, Martin Hartmann, Hans-Jürgen Holdt. Synthesis of a partially fluorinated ZIF-8 analog for ethane/ethene separation. CrystEngComm 2017, 19 (39) , 5882-5891. https://doi.org/10.1039/C7CE01438D
    81. Jiao Zhao, Qi Wang, Chunyi Sun, Tiantian Zheng, Likai Yan, Mengting Li, Kuizhan Shao, Xinlong Wang, Zhongmin Su. A hexanuclear cobalt metal–organic framework for efficient CO 2 reduction under visible light. Journal of Materials Chemistry A 2017, 5 (24) , 12498-12505. https://doi.org/10.1039/C7TA02611K
    82. Chong-Chen Wang, Xue-Dong Du, Jin Li, Xin-Xing Guo, Peng Wang, Jia Zhang. Photocatalytic Cr(VI) reduction in metal-organic frameworks: A mini-review. Applied Catalysis B: Environmental 2016, 193 , 198-216. https://doi.org/10.1016/j.apcatb.2016.04.030
    83. Gang Xu, Guo Cong Guo, Ming Shui Yao, Zhi Hua Fu, Guan E. Wang. Functional Linkers for Electron-Conducting MOFs. 2016, 421-462. https://doi.org/10.1002/9783527693078.ch14
    84. Valentina N. Panchenko, Maria N. Timofeeva, Sung Hwa Jhung. Acid-base properties and catalytic activity of metal-organic frameworks: A view from spectroscopic and semiempirical methods. Catalysis Reviews 2016, 58 (2) , 209-307. https://doi.org/10.1080/01614940.2016.1128193
    85. Jordi Aguilera-Sigalat, Darren Bradshaw. Synthesis and applications of metal-organic framework–quantum dot (QD@MOF) composites. Coordination Chemistry Reviews 2016, 307 , 267-291. https://doi.org/10.1016/j.ccr.2015.08.004
    86. Rafael Ballesteros-Garrido, André P. da Costa, Pedro Atienzar, Mercedes Alvaro, Carlos Baleizão, Hermenegildo García. Electroluminescence response promoted by dispersion and interaction of perylene-3,4,9,10-tetracarboxylic dianhydride inside MOF5. RSC Advances 2016, 6 (42) , 35191-35196. https://doi.org/10.1039/C6RA00535G
    87. Yonghai Song, Changting Wei, Juan He, Xia Li, Xingping Lu, Li Wang. Porous Co nanobeads/rGO nanocomposites derived from rGO/Co-metal organic frameworks for glucose sensing. Sensors and Actuators B: Chemical 2015, 220 , 1056-1063. https://doi.org/10.1016/j.snb.2015.06.052
    88. Li Wang, Yingzhen Xie, Changting Wei, Xingping Lu, Xia Li, Yonghai Song. Hierarchical NiO Superstructures/Foam Ni Electrode Derived from Ni Metal-Organic Framework Flakes on Foam Ni for Glucose Sensing. Electrochimica Acta 2015, 174 , 846-852. https://doi.org/10.1016/j.electacta.2015.06.086
    89. Sibo Wang, Xinchen Wang. Multifunctional Metal–Organic Frameworks for Photocatalysis. Small 2015, 11 (26) , 3097-3112. https://doi.org/10.1002/smll.201500084
    90. Liang Xiao, Ya Xiong, Shuanghong Tian, Chun He, Qingxian Su, Zhanhao Wen. One-dimensional coordination supramolecular polymer [Cu(bipy)(SO4)]n as an adsorbent for adsorption and kinetic separation of anionic dyes. Chemical Engineering Journal 2015, 265 , 157-163. https://doi.org/10.1016/j.cej.2014.11.134
    91. Mark D. Allendorf, Vitalie Stavila. Crystal engineering, structure–function relationships, and the future of metal–organic frameworks. CrystEngComm 2015, 17 (2) , 229-246. https://doi.org/10.1039/C4CE01693A
    92. Tian-Wei Duan, Bing Yan. Lanthanide ions (Eu 3+ , Tb 3+ , Sm 3+ , Dy 3+ ) activated ZnO embedded zinc 2,5-pyridinedicarboxylic metal–organic frameworks for luminescence application. Journal of Materials Chemistry C 2015, 3 (12) , 2823-2830. https://doi.org/10.1039/C4TC02893G
    93. Lanlan Shen, Lu Yang, Yong Fan, Li Wang, Jianing Xu. Construction of a series of lanthanide metal–organic frameworks: synthesis, structure, luminescence and white light emission. CrystEngComm 2015, 17 (48) , 9363-9369. https://doi.org/10.1039/C5CE01718A
    94. N. A. Rodríguez, R. Parra, M. A. Grela. Structural characterization, optical properties and photocatalytic activity of MOF-5 and its hydrolysis products: implications on their excitation mechanism. RSC Advances 2015, 5 (89) , 73112-73118. https://doi.org/10.1039/C5RA11182J
    95. En-Long Zhou, Peng Huang, Chao Qin, Kui-Zhan Shao, Zhong-Min Su. A stable luminescent anionic porous metal–organic framework for moderate adsorption of CO 2 and selective detection of nitro explosives. Journal of Materials Chemistry A 2015, 3 (14) , 7224-7228. https://doi.org/10.1039/C5TA00231A
    96. Ai-Xue Yan, Shuang Yao, Yang-Guang Li, Zhi-Ming Zhang, Ying Lu, Wei-Lin Chen, En-Bo Wang. Incorporating Polyoxometalates into a Porous MOF Greatly Improves Its Selective Adsorption of Cationic Dyes. Chemistry - A European Journal 2014, 20 (23) , 6927-6933. https://doi.org/10.1002/chem.201400175
    97. Guillaume Maurin-Pasturel, Jérôme Long, Yannick Guari, Franck Godiard, Marc-Georg Willinger, Christian Guerin, Joulia Larionova. Nanosized Heterostructures of Au@Prussian Blue Analogues: Towards Multifunctionality at the Nanoscale. Angewandte Chemie 2014, 126 (15) , 3953-3957. https://doi.org/10.1002/ange.201310443
    98. Guillaume Maurin-Pasturel, Jérôme Long, Yannick Guari, Franck Godiard, Marc-Georg Willinger, Christian Guerin, Joulia Larionova. Nanosized Heterostructures of Au@Prussian Blue Analogues: Towards Multifunctionality at the Nanoscale. Angewandte Chemie International Edition 2014, 53 (15) , 3872-3876. https://doi.org/10.1002/anie.201310443
    99. Bing An, Ruimin Zhou, Dongbin Dang, Junli Wang, Hui Pan, Yan Bai. Structural versatility and luminescent properties in d10 metal ion polymers with 1,4-naphthalenedicarboxylate acid and 4,4′-dipyridyl N,N′-dioxide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014, 122 , 392-399. https://doi.org/10.1016/j.saa.2013.11.046
    100. Pawan Kumar, Akash Deep, A. K. Paul, L. M. Bharadwaj. Bioconjugation of MOF-5 for molecular sensing. Journal of Porous Materials 2014, 21 (1) , 99-104. https://doi.org/10.1007/s10934-013-9752-9
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect