ACS Publications. Most Trusted. Most Cited. Most Read
Predominant (6,5) Single-Walled Carbon Nanotube Growth on a Copper-Promoted Iron Catalyst
My Activity

Figure 1Loading Img
    Communication

    Predominant (6,5) Single-Walled Carbon Nanotube Growth on a Copper-Promoted Iron Catalyst
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Biotechnology and Chemical Technology, School of Science and Technology, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland, A. M. Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia, Department of Applied Physics, School of Science and Technology, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland, NanoMaterials Group, Department of Applied Physics, and Center for New Materials, School of Science and Technology, Aalto University, P.O. Box 15100, FI-00076 Aalto, Finland, and VTT Biotechnology, P.O. Box 1000, FI-02044, Espoo, Finland
    †Department of Biotechnology and Chemical Technology, Aalto University.
    ‡A. M. Prokhorov General Physics Institute.
    §Department of Applied Physics, Aalto University.
    ∥NanoMaterials Group, Department of Applied Physics, and Center for New Materials, Aalto University.
    ⊥VTT Biotechnology.
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2010, 132, 40, 13994–13996
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja106609y
    Published September 21, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We have developed a magnesia (MgO)-supported iron−copper (FeCu) catalyst to accomplish the growth of single-walled carbon nanotubes (SWNTs) using carbon monoxide (CO) as the carbon source at ambient pressure. The FeCu catalyst system facilitates the growth of small-diameter SWNTs with a narrow diameter distribution. UV−vis−NIR optical absorption spectra and photoluminescence excitation (PLE) mapping were used to evaluate the relative quantities of the different (n,m) species. We have also demonstrated that the addition of Cu to the Fe catalyst can also cause a remarkable increase in the yield of SWNTs. Finally, a growth mechanism for the FeCu-catalyzed synthesis of SWNTs has been proposed.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental details of the catalyst preparation and the carbon nanotube growth as well as characterizations. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 166 publications.

    1. Satoru Shiina, Tennpei Murohashi, Koyo Ishibashi, Xing He, Takashi Koretsune, Zheng Liu, Wataru Terashima, Yuichiro K. Kato, Kazutoshi Inoue, Mitsuhiro Saito, Yuichi Ikuhara, Toshiaki Kato. Synthesis of Ultrahigh-Purity (6,5) Carbon Nanotubes Using a Trimetallic Catalyst. ACS Nano 2024, 18 (35) , 23979-23990. https://doi.org/10.1021/acsnano.4c01475
    2. Yishen Liu, Yang Li, Seyoung Koo, Yao Sun, Yixuan Liu, Xing Liu, Yanna Pan, Zhiyun Zhang, Mingxia Du, Siyu Lu, Xue Qiao, Jianfeng Gao, Xiaobo Wang, Zixin Deng, Xianli Meng, Yuling Xiao, Jong Seung Kim, Xuechuan Hong. Versatile Types of Inorganic/Organic NIR-IIa/IIb Fluorophores: From Strategic Design toward Molecular Imaging and Theranostics. Chemical Reviews 2022, 122 (1) , 209-268. https://doi.org/10.1021/acs.chemrev.1c00553
    3. Patricio Limon, Alan Miralrio, Rodolfo Gómez-Balderas, Miguel Castro. Small Transition-Metal Mixed Clusters as Activators of the C–O Bond. FenCum–CO (n + m = 6): A Theoretical Approach. The Journal of Physical Chemistry A 2021, 125 (36) , 7940-7955. https://doi.org/10.1021/acs.jpca.1c05919
    4. Maoshuai He, Shuchen Zhang, Jin Zhang. Horizontal Single-Walled Carbon Nanotube Arrays: Controlled Synthesis, Characterizations, and Applications. Chemical Reviews 2020, 120 (22) , 12592-12684. https://doi.org/10.1021/acs.chemrev.0c00395
    5. Feng Yang, Meng Wang, Daqi Zhang, Juan Yang, Ming Zheng, Yan Li. Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization. Chemical Reviews 2020, 120 (5) , 2693-2758. https://doi.org/10.1021/acs.chemrev.9b00835
    6. Xiaojun Wei, Takeshi Tanaka, Shilong Li, Mayumi Tsuzuki, Guowei Wang, Zhihui Yao, Linhai Li, Yohei Yomogida, Atsushi Hirano, Huaping Liu, Hiromichi Kataura. Photoluminescence Quantum Yield of Single-Wall Carbon Nanotubes Corrected for the Photon Reabsorption Effect. Nano Letters 2020, 20 (1) , 410-417. https://doi.org/10.1021/acs.nanolett.9b04095
    7. Feng Yang, Haofei Zhao, Xiaowei Wang, Xu Liu, Qidong Liu, Xiyan Liu, Chuanhong Jin, Rongming Wang, Yan Li. Atomic Scale Stability of Tungsten–Cobalt Intermetallic Nanocrystals in Reactive Environment at High Temperature. Journal of the American Chemical Society 2019, 141 (14) , 5871-5879. https://doi.org/10.1021/jacs.9b00473
    8. Rahul Rao, Cary L. Pint, Ahmad E. Islam, Robert S. Weatherup, Stephan Hofmann, Eric R. Meshot, Fanqi Wu, Chongwu Zhou, Nicholas Dee, Placidus B. Amama, Jennifer Carpena-Nuñez, Wenbo Shi, Desiree L. Plata, Evgeni S. Penev, Boris I. Yakobson, Perla B. Balbuena, Christophe Bichara, Don N. Futaba, Suguru Noda, Homin Shin, Keun Su Kim, Benoit Simard, Francesca Mirri, Matteo Pasquali, Francesco Fornasiero, Esko I. Kauppinen, Michael Arnold, Baratunde A. Cola, Pavel Nikolaev, Sivaram Arepalli, Hui-Ming Cheng, Dmitri N. Zakharov, Eric A. Stach, Jin Zhang, Fei Wei, Mauricio Terrones, David B. Geohegan, Benji Maruyama, Shigeo Maruyama, Yan Li, W. Wade Adams, A. John Hart. Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano 2018, 12 (12) , 11756-11784. https://doi.org/10.1021/acsnano.8b06511
    9. Arun Kumar, Yulia Kostikov, Beate Orberger, Gilbert Daniel Nessim, Gino Mariotto. Natural Laterite as a Catalyst Source for the Growth of Carbon Nanotubes and Nanospheres. ACS Applied Nano Materials 2018, 1 (11) , 6046-6054. https://doi.org/10.1021/acsanm.8b01117
    10. Yongping Liao, Hua Jiang, Nan Wei, Patrik Laiho, Qiang Zhang, Sabbir A. Khan, Esko I. Kauppinen. Direct Synthesis of Colorful Single-Walled Carbon Nanotube Thin Films. Journal of the American Chemical Society 2018, 140 (31) , 9797-9800. https://doi.org/10.1021/jacs.8b05151
    11. Bilu Liu, Fanqi Wu, Hui Gui, Ming Zheng, and Chongwu Zhou . Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes. ACS Nano 2017, 11 (1) , 31-53. https://doi.org/10.1021/acsnano.6b06900
    12. Po-I Wang, Chou-Yi Tsai, Yung-Jou Hsiao, Jyh-Chiang Jiang, and Der-Jang Liaw . High-Purity Semiconducting Single-Walled Carbon Nanotubes via Selective Dispersion in Solution Using Fully Conjugated Polytriarylamines. Macromolecules 2016, 49 (22) , 8520-8529. https://doi.org/10.1021/acs.macromol.6b01991
    13. Pan Li and Jin Zhang . CVD Growth of Carbon Nanotube Forest with Selective Wall-Number from Fe–Cu Catalyst. The Journal of Physical Chemistry C 2016, 120 (20) , 11163-11169. https://doi.org/10.1021/acs.jpcc.5b12602
    14. Feng Yang, Xiao Wang, Daqi Zhang, Kuo Qi, Juan Yang, Zhi Xu, Meihui Li, Xiulan Zhao, Xuedong Bai, and Yan Li . Growing Zigzag (16,0) Carbon Nanotubes with Structure-Defined Catalysts. Journal of the American Chemical Society 2015, 137 (27) , 8688-8691. https://doi.org/10.1021/jacs.5b04403
    15. Shuchen Zhang, Yue Hu, Juanxia Wu, Dan Liu, Lixing Kang, Qiuchen Zhao, and Jin Zhang . Selective Scission of C–O and C–C Bonds in Ethanol Using Bimetal Catalysts for the Preferential Growth of Semiconducting SWNT Arrays. Journal of the American Chemical Society 2015, 137 (3) , 1012-1015. https://doi.org/10.1021/ja510845j
    16. Debosruti Dutta, R. Mohan Sankaran, and Venkat R. Bhethanabotla . Predicting the Chiral Enrichment of Metallic SWCNTs on Ni–Cu Bimetallic Surfaces. Chemistry of Materials 2014, 26 (17) , 4943-4950. https://doi.org/10.1021/cm501167z
    17. Dai-Ming Tang, Chang Liu, Wan-Jing Yu, Li-Li Zhang, Peng-Xiang Hou, Jin-Cheng Li, Feng Li, Yoshio Bando, Dmitri Golberg, and Hui-Ming Cheng . Structural Changes in Iron Oxide and Gold Catalysts during Nucleation of Carbon Nanotubes Studied by In Situ Transmission Electron Microscopy. ACS Nano 2014, 8 (1) , 292-301. https://doi.org/10.1021/nn403927y
    18. Yujun He, Jin Zhang, Dongqi Li, Jiangtao Wang, Qiong Wu, Yang Wei, Lina Zhang, Jiaping Wang, Peng Liu, Qunqing Li, Shoushan Fan, and Kaili Jiang . Evaluating Bandgap Distributions of Carbon Nanotubes via Scanning Electron Microscopy Imaging of the Schottky Barriers. Nano Letters 2013, 13 (11) , 5556-5562. https://doi.org/10.1021/nl403158x
    19. Bilu Liu, Jia Liu, Xiaomin Tu, Jialu Zhang, Ming Zheng, and Chongwu Zhou . Chirality-Dependent Vapor-Phase Epitaxial Growth and Termination of Single-Wall Carbon Nanotubes. Nano Letters 2013, 13 (9) , 4416-4421. https://doi.org/10.1021/nl402259k
    20. Alexander I. Chernov, Pavel V. Fedotov, Alexandr V. Talyzin, Inma Suarez Lopez, Ilya V. Anoshkin, Albert G. Nasibulin, Esko I. Kauppinen, and Elena D. Obraztsova . Optical Properties of Graphene Nanoribbons Encapsulated in Single-Walled Carbon Nanotubes. ACS Nano 2013, 7 (7) , 6346-6353. https://doi.org/10.1021/nn4024152
    21. Yutaka Maeda, Junki Higo, Yuri Amagai, Jun Matsui, Kei Ohkubo, Yusuke Yoshigoe, Masahiro Hashimoto, Kazuhiro Eguchi, Michio Yamada, Tadashi Hasegawa, Yoshinori Sato, Jing Zhou, Jing Lu, Tokuji Miyashita, Shunichi Fukuzumi, Tatsuya Murakami, Kazuyuki Tohji, Shigeru Nagase, and Takeshi Akasaka . Helicity-Selective Photoreaction of Single-Walled Carbon Nanotubes with Organosulfur Compounds in the Presence of Oxygen. Journal of the American Chemical Society 2013, 135 (16) , 6356-6362. https://doi.org/10.1021/ja402199n
    22. Hong Wang, Li Wei, Fang Ren, Qiang Wang, Lisa D. Pfefferle, Gary L. Haller, and Yuan Chen . Chiral-Selective CoSO4/SiO2 Catalyst for (9,8) Single-Walled Carbon Nanotube Growth. ACS Nano 2013, 7 (1) , 614-626. https://doi.org/10.1021/nn3047633
    23. Maoshuai He, Bilu Liu, Alexander I. Chernov, Elena D. Obraztsova, Inkeri Kauppi, Hua Jiang, Ilya Anoshkin, Filippo Cavalca, Thomas W. Hansen, Jakob B. Wagner, Albert. G. Nasibulin, Esko I. Kauppinen, Juha Linnekoski, Marita Niemelä, and Juha Lehtonen . Growth Mechanism of Single-Walled Carbon Nanotubes on Iron–Copper Catalyst and Chirality Studies by Electron Diffraction. Chemistry of Materials 2012, 24 (10) , 1796-1801. https://doi.org/10.1021/cm300308k
    24. Diego A. Gómez-Gualdrón, Gilbert D. McKenzie, Juan F. J. Alvarado, and Perla B. Balbuena . Dynamic Evolution of Supported Metal Nanocatalyst/Carbon Structure during Single-Walled Carbon Nanotube Growth. ACS Nano 2012, 6 (1) , 720-735. https://doi.org/10.1021/nn204215c
    25. Bernhard C. Bayer, Martin Fouquet, Raoul Blume, Christoph T. Wirth, Robert S. Weatherup, Ken Ogata, Axel Knop-Gericke, Robert Schlögl, Stephan Hofmann, and John Robertson . Co-Catalytic Solid-State Reduction Applied to Carbon Nanotube Growth. The Journal of Physical Chemistry C 2012, 116 (1) , 1107-1113. https://doi.org/10.1021/jp210137u
    26. Hiroki Ago, Takafumi Ayagaki, Yui Ogawa, and Masaharu Tsuji . Ultrahigh-Vacuum-Assisted Control of Metal Nanoparticles for Horizontally Aligned Single-Walled Carbon Nanotubes with Extraordinary Uniform Diameters. The Journal of Physical Chemistry C 2011, 115 (27) , 13247-13253. https://doi.org/10.1021/jp2038448
    27. Bing Yu, Chang Liu, Peng-Xiang Hou, Ying Tian, Shisheng Li, Bilu Liu, Feng Li, Esko I. Kauppinen, and Hui-Ming Cheng . Bulk Synthesis of Large Diameter Semiconducting Single-Walled Carbon Nanotubes by Oxygen-Assisted Floating Catalyst Chemical Vapor Deposition. Journal of the American Chemical Society 2011, 133 (14) , 5232-5235. https://doi.org/10.1021/ja2008278
    28. Zhen Zhu, Hua Jiang, Toma Susi, Albert G. Nasibulin, and Esko I. Kauppinen . The Use of NH3 to Promote the Production of Large-Diameter Single-Walled Carbon Nanotubes with a Narrow (n,m) Distribution. Journal of the American Chemical Society 2011, 133 (5) , 1224-1227. https://doi.org/10.1021/ja1087634
    29. Fangqian Han, Hao An, Qianru Wu, Jifu Bi, Feng Ding, Maoshuai He. Exploiting supported vanadium catalyst for single-walled carbon nanotube synthesis. Journal of Materials Science & Technology 2025, 225 , 240-246. https://doi.org/10.1016/j.jmst.2024.11.037
    30. Fangqian Han, Linhai Li, Liu Qian, Yan Gao, Qianru Wu, Zhen Wang, Huaping Liu, Jin Zhang, Maoshuai He. High‐Temperature Growth of Chirality‐Enriched, Highly Crystalline Carbon Nanotubes for Efficient Single‐Chirality Separation. Advanced Functional Materials 2025, 35 (14) https://doi.org/10.1002/adfm.202419702
    31. Xuan Lv, Linhai Li, Zhaoyang Han, Qianru Wu, Fangfang Cheng, Mengyu Wang, Guodong Xu, Huaping Liu, Maoshuai He. Yttrium-catalyzed growth of enriched (6, 4) and (6, 5) carbon nanotubes for their high-efficiency separation. Chemical Engineering Journal 2025, 507 , 160630. https://doi.org/10.1016/j.cej.2025.160630
    32. Luke Ma, Yanyan Deng, Xueliang Pei, Zhengren Huang, Qing Huang. Catalytic Conversion of Residual Carbon in Precursor-Derived SiC into Carbon Nanotubes Using Metal Nickel and Mechanism Analysis. Silicon 2025, 17 (4) , 851-860. https://doi.org/10.1007/s12633-025-03245-3
    33. Jaekwang Lee, Heesoo Lee. Valence State and Catalytic Activity of Ni-Fe Oxide Embedded in Carbon Nanotube Catalysts. Nanomaterials 2024, 14 (24) , 2004. https://doi.org/10.3390/nano14242004
    34. Xinyu Zhang, Xiuxia Wang, Linxi Zhu, Yi Yu, Hongfeng Yang, Shuchen Zhang, Yue Hu, Shaoming Huang. Evolution of catalyst design for controlled synthesis of chiral single-walled carbon nanotubes. Chemical Communications 2024, 60 (49) , 6222-6238. https://doi.org/10.1039/D4CC01227E
    35. Yahan Li, Linhai Li, Hua Jiang, Liu Qian, Maoshuai He, Duanliang Zhou, Kaili Jiang, Huaping Liu, Xiaofan Qin, Yan Gao, Qianru Wu, Xinyan Chi, Zhibo Li, Jin Zhang. An efficient approach toward production of near-zigzag single-chirality carbon nanotubes. Science Advances 2024, 10 (14) https://doi.org/10.1126/sciadv.adn6519
    36. Xiaofan Qin, Yahui Li, Alexander I. Chernov, Maoshuai He, Wenyue Zhao, Yan Gao, Yahan Li, Song Qiu, Qingwen Li. Towards the preparation of single-walled carbon nanotubes with average diameter of 1.2 nm. Carbon 2024, 224 , 119059. https://doi.org/10.1016/j.carbon.2024.119059
    37. Sandip Mandal, Sudip Maity, Pavan K. Gupta, Abhishek Mahato. Fischer–Tropsch Conversion of H2 Lean Syngas Over Mesoporous Silica–Carbon Composite Supported and Cu Promoted Fe Catalysts. Catalysis Letters 2024, 154 (3) , 963-973. https://doi.org/10.1007/s10562-023-04358-3
    38. Ziting Guo, Qingmei Xiao, Jinchao Huang, Shengwen Zhong. Conductive single-walled carbon nanotubes synthesized using a Fe–Mo/MgO catalyst for LiNi 0.5 Co 0.2 Mn 0.3 O 2 lithium-ion batteries. New Journal of Chemistry 2023, 48 (1) , 384-393. https://doi.org/10.1039/D3NJ04345B
    39. Yan Gao, Fangqian Han, Yahan Li, Xiaofan Qin, Dong Li, Qianru Wu, Guangyi Lin, Xiuyun Zhang, Maoshuai He. Supported catalysts derived from cobalt phyllosilicates for chemical vapor deposition growth of single-walled carbon nanotubes. Carbon 2023, 215 , 118491. https://doi.org/10.1016/j.carbon.2023.118491
    40. Qianru Wu, Xuan Lv, Ningning Xu, Liantao Xin, Guangyi Lin, Kezheng Chen, Maoshuai He. Upcycling plastic polymers into single-walled carbon nanotubes from a magnesia supported iron catalyst. Carbon 2023, 215 , 118492. https://doi.org/10.1016/j.carbon.2023.118492
    41. Tim Yick, Varun Shenoy Gangoli, Alvin Orbaek White. Comparing Ultralong Carbon Nanotube Growth from Methane over Mono- and Bi-Metallic Iron Chloride Catalysts. Nanomaterials 2023, 13 (15) , 2172. https://doi.org/10.3390/nano13152172
    42. Feng Zhang, Lili Zhang, Hua Jiang, Xin Li, Fengning Liu, Zhong-Hai Ji, Peng-Xiang Hou, Shuyu Guo, Hui-Ming Cheng, Esko I. Kauppinen, Chang Liu, Feng Ding. Growth of high-density single-wall carbon nanotubes with a uniform structure using a CoRu catalyst. Carbon 2023, 209 , 118011. https://doi.org/10.1016/j.carbon.2023.118011
    43. Julia Ackermann, Jan Stegemann, Tim Smola, Eline Reger, Sebastian Jung, Anne Schmitz, Svenja Herbertz, Luise Erpenbeck, Karsten Seidl, Sebastian Kruss. High Sensitivity Near‐Infrared Imaging of Fluorescent Nanosensors. Small 2023, 19 (14) https://doi.org/10.1002/smll.202206856
    44. Xiu-Xian Lim, Siew-Chun Low, Wen-Da Oh. A critical review of heterogeneous catalyst design for carbon nanotubes synthesis: Functionalities, performances, and prospects. Fuel Processing Technology 2023, 241 , 107624. https://doi.org/10.1016/j.fuproc.2022.107624
    45. Haomin Wang, Shuo Li, Haojie Lu, Mengjia Zhu, Huarun Liang, Xunen Wu, Yingying Zhang. Carbon‐Based Flexible Devices for Comprehensive Health Monitoring. Small Methods 2023, 7 (2) https://doi.org/10.1002/smtd.202201340
    46. Ziwei Xu, Feng Ding. Catalyst geometry dependent single-walled carbon nanotube formation from polyaromatic hydrocarbon molecule: Pt(111) surface versus Pt nanoparticle. Carbon 2023, 201 , 483-490. https://doi.org/10.1016/j.carbon.2022.09.053
    47. Yang Wang, Lu Qiu, Lili Zhang, Dai-Ming Tang, Ruixue Ma, Cui-Lan Ren, Feng Ding, Chang Liu, Hui-Ming Cheng. Growth mechanism of carbon nanotubes from Co-W-C alloy catalyst revealed by atmospheric environmental transmission electron microscopy. Science Advances 2022, 8 (49) https://doi.org/10.1126/sciadv.abo5686
    48. Shulan Hao, Liu Qian, Qianru Wu, Dong Li, Fangqian Han, Lihu Feng, Liantao Xin, Tao Yang, Shiying Wang, Jin Zhang, Maoshuai He. Subnanometer Single-Walled carbon nanotube growth from Fe-Containing Layered double hydroxides. Chemical Engineering Journal 2022, 446 , 137087. https://doi.org/10.1016/j.cej.2022.137087
    49. Marianna V. Kharlamova, Maria G. Burdanova, Maksim I. Paukov, Christian Kramberger. Synthesis, Sorting, and Applications of Single-Chirality Single-Walled Carbon Nanotubes. Materials 2022, 15 (17) , 5898. https://doi.org/10.3390/ma15175898
    50. Chen Ma, Yumin Liu, Lili Zhang, Liu Qian, Yiming Zhao, Ying Tian, Qianru Wu, Dong Li, Nan Zhao, Xueting Zhang, Liantao Xin, Huaping Liu, Pengxiang Hou, Chang Liu, Maoshuai He, Jin Zhang. Bulk growth and separation of single-walled carbon nanotubes from rhenium catalyst. Nano Research 2022, 15 (7) , 5775-5780. https://doi.org/10.1007/s12274-022-4248-z
    51. Xiaojun Wei, Shilong Li, Wenke Wang, Xiao Zhang, Weiya Zhou, Sishen Xie, Huaping Liu. Recent Advances in Structure Separation of Single‐Wall Carbon Nanotubes and Their Application in Optics, Electronics, and Optoelectronics. Advanced Science 2022, 9 (14) https://doi.org/10.1002/advs.202200054
    52. Fangqian Han, Liu Qian, Qianru Wu, Dong Li, Shulan Hao, Lihu Feng, Liantao Xin, Tao Yang, Jin Zhang, Maoshuai He. Narrow-chirality distributed single-walled carbon nanotube synthesized from oxide promoted Fe–SiC catalyst. Carbon 2022, 191 , 146-152. https://doi.org/10.1016/j.carbon.2022.01.052
    53. Haomin Wang, Huimin Wang, Shuchen Zhang, Yong Zhang, Kailun Xia, Zhe Yin, Mingchao Zhang, Xiaoping Liang, Haojie Lu, Shuo Li, Jin Zhang, Yingying Zhang. Carbothermal shock enabled facile and fast growth of carbon nanotubes in a second. Nano Research 2022, 15 (3) , 2576-2581. https://doi.org/10.1007/s12274-021-3762-8
    54. Qianru Wu, Lu Qiu, Lili Zhang, Huaping Liu, Ruixue Ma, Piao Xie, Runluan Liu, Pengxiang Hou, Feng Ding, Chang Liu, Maoshuai He. Temperature-dependent selective nucleation of single-walled carbon nanotubes from stabilized catalyst nanoparticles. Chemical Engineering Journal 2022, 431 , 133487. https://doi.org/10.1016/j.cej.2021.133487
    55. Nan Zhao, Qianru Wu, Xiuyun Zhang, Tao Yang, Dong Li, Xueting Zhang, Chen Ma, Runluan Liu, Liantao Xin, Maoshuai He. Chemical vapor deposition growth of single-walled carbon nanotubes from plastic polymers. Carbon 2022, 187 , 29-34. https://doi.org/10.1016/j.carbon.2021.10.067
    56. Takahiro Maruyama. Carbon Nanotube Growth Mechanisms. 2022, 57-87. https://doi.org/10.1007/978-3-030-91346-5_53
    57. Ziwei Xu. Catalyst Dependent Single-Walled Carbon Nanotube Formation from Polyaromatic Hydrocarbon Molecule: Pt(111) Surface Versus Pt Nanoparticle. SSRN Electronic Journal 2022, 32 https://doi.org/10.2139/ssrn.4151705
    58. Maria G. Burdanova, Alexey P. Tsapenko, Marianna V. Kharlamova, Esko I. Kauppinen, Boris P. Gorshunov, Junichiro Kono, James Lloyd‐Hughes. A Review of the Terahertz Conductivity and Photoconductivity of Carbon Nanotubes and Heteronanotubes. Advanced Optical Materials 2021, 9 (24) https://doi.org/10.1002/adom.202101042
    59. WenQian Chen, Xiaoxu Fu, Wei-Ping Chan, Andrei Veksha, Grzegorz Lisak. Carbon nanosheet-carbon nanocage encapsulated Cu composite from chemical vapor deposition of real-world plastic waste for tailored CO2 conversion to various products. Applied Materials Today 2021, 25 , 101207. https://doi.org/10.1016/j.apmt.2021.101207
    60. . Carbon Nanotubes. 2021, 1-110. https://doi.org/10.1039/9781788019637-00001
    61. Xue Zhao, Xinrui Zhang, Qidong Liu, Zeyao Zhang, Yan Li. Growth of Single-walled Carbon Nanotubes on Substrates Using Carbon Monoxide as Carbon Source. Chemical Research in Chinese Universities 2021, 37 (5) , 1125-1129. https://doi.org/10.1007/s40242-021-1277-1
    62. Xusheng Yang, Xin Zhao, Tianhui Liu, Feng Yang. Precise Synthesis of Carbon Nanotubes and One‐Dimensional Hybrids from Templates †. Chinese Journal of Chemistry 2021, 39 (6) , 1726-1744. https://doi.org/10.1002/cjoc.202000673
    63. Qianru Wu, Hao Zhang, Chen Ma, Dong Li, Liantao Xin, Xueting Zhang, Nan Zhao, Maoshuai He. SiO2-promoted growth of single-walled carbon nanotubes on an alumina supported catalyst. Carbon 2021, 176 , 367-373. https://doi.org/10.1016/j.carbon.2021.01.143
    64. Ziwei Xu, Feng Ding. Catalyst particle size dependent carbon nanotube cloning. Carbon 2021, 175 , 69-76. https://doi.org/10.1016/j.carbon.2020.12.085
    65. Hong Wang, Guibin Gu, Qiang Chen, Xuefei Feng, Yuan Chen. Cobalt sulfide catalysts for single-walled carbon nanotube synthesis. Diamond and Related Materials 2021, 114 , 108288. https://doi.org/10.1016/j.diamond.2021.108288
    66. Deniz Ürk, Fevzi Çakmak Cebeci, Mustafa Lütfi Öveçoğlu, Hülya Cebeci. Structure-controlled growth of vertically-aligned carbon nanotube forests using iron–nickel bimetallic catalysts. Materials Advances 2021, 2 (6) , 2021-2030. https://doi.org/10.1039/D0MA00826E
    67. Xue Zhao, Xiyan Liu, Feng Yang, Qidong Liu, Zeyao Zhang, Yan Li. Graphene oxide-supported cobalt tungstate as catalyst precursor for selective growth of single-walled carbon nanotubes. Inorganic Chemistry Frontiers 2021, 8 (4) , 940-946. https://doi.org/10.1039/D0QI01114B
    68. Takahiro Maruyama. Carbon Nanotube Growth Mechanisms. 2021, 1-31. https://doi.org/10.1007/978-3-319-70614-6_53-1
    69. Marianna V. Kharlamova, Dominik Eder. Carbon Nanotubes. 2020, 107-147. https://doi.org/10.1002/9781119429418.ch4
    70. Jennifer Carpena‐Núñez, Rahul Rao, Donghun Kim, Ksenia V. Bets, Dmitri N. Zakharov, J. Anibal Boscoboinik, Eric A. Stach, Boris I. Yakobson, Michael Tsapatsis, Dario Stacchiola, Benji Maruyama. Zeolite Nanosheets Stabilize Catalyst Particles to Promote the Growth of Thermodynamically Unfavorable, Small‐Diameter Carbon Nanotubes. Small 2020, 16 (38) https://doi.org/10.1002/smll.202002120
    71. Yang Hu, Liu Zhu, Yong Peng, Jiecai Fu, Xia Deng, Junwei Zhang, Hong Zhang, Chaoshuai Guan, Abdul Karim, Xixiang Zhang. Atomic Self‐reconstruction of Catalyst Dominated Growth Mechanism of Graphite Structures. ChemCatChem 2020, 12 (5) , 1316-1324. https://doi.org/10.1002/cctc.201902087
    72. Haomin Wang, Shuo Li, Yiliang Wang, Huimin Wang, Xinyi Shen, Mingchao Zhang, Haojie Lu, Maoshuai He, Yingying Zhang. Bioinspired Fluffy Fabric with In Situ Grown Carbon Nanotubes for Ultrasensitive Wearable Airflow Sensor. Advanced Materials 2020, 32 (11) https://doi.org/10.1002/adma.201908214
    73. Maoshuai He, Ying Wang, Xiuyun Zhang, Hao Zhang, Yanan Meng, Danhong Shang, Han Xue, Dong Li, Zhijian Wu. Stability of iron-containing nanoparticles for selectively growing single-walled carbon nanotubes. Carbon 2020, 158 , 795-801. https://doi.org/10.1016/j.carbon.2019.11.056
    74. Benwu Xin, Wenke Gao, Zhonghai Ji, Shuchen Zhang, Liantao Xin, Lifen Zhao, Han Xue, Qianru Wu, Lili Zhang, Chang Liu, Jin Zhang, Maoshuai He. Carbon fiber-promoted activation of catalyst for efficient growth of single-walled carbon nanotubes. Carbon 2020, 156 , 410-415. https://doi.org/10.1016/j.carbon.2019.09.089
    75. Maoshuai He, Xiao Wang, Shuchen Zhang, Hua Jiang, Filippo Cavalca, Hongzhi Cui, Jakob B. Wagner, Thomas W. Hansen, Esko Kauppinen, Jin Zhang, Feng Ding. Growth kinetics of single-walled carbon nanotubes with a (2 n , n ) chirality selection. Science Advances 2019, 5 (12) https://doi.org/10.1126/sciadv.aav9668
    76. Timofei V. Eremin, Petr A. Obraztsov, Vladimir A. Velikanov, Tatiana V. Shubina, Elena D. Obraztsova. Many-particle excitations in non-covalently doped single-walled carbon nanotubes. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-50333-7
    77. Maoshuai He, Dong Li, Tao Yang, Danhong Shang, Alexander I. Chernov, Pavel V. Fedotov, Elena D. Obraztsova, Qing Liu, Hua Jiang, Esko Kauppinen. A robust CoxMg1-xO catalyst for predominantly growing (6, 5) single-walled carbon nanotubes. Carbon 2019, 153 , 389-395. https://doi.org/10.1016/j.carbon.2019.07.050
    78. Han Xue, Liantao Xin, Ziwei Xu, Ruiqin Bai, Qianru Wu, Benwu Xin, Xiuyun Zhang, Hongzhi Cui, Fushan Chen, Maoshuai He. Iridium-catalyzed growth of single-walled carbon nanotubes with a bicentric diameter distribution. Materials Chemistry Frontiers 2019, 3 (9) , 1882-1887. https://doi.org/10.1039/C9QM00267G
    79. Qianru Wu, Zhonghai Ji, Liantao Xin, Dong Li, Lili Zhang, Chang Liu, Tao Yang, Zhijie Wen, Haomin Wang, Benwu Xin, Han Xue, Fushan Chen, Ziwei Xu, Hongzhi Cui, Maoshuai He. Iron silicide-catalyzed growth of single-walled carbon nanotubes with a narrow diameter distribution. Carbon 2019, 149 , 139-143. https://doi.org/10.1016/j.carbon.2019.04.059
    80. Manishkumar D. Yadav, Ashwin W. Patwardhan, Jyeshtharaj B. Joshi, Kinshuk Dasgupta. Selective synthesis of metallic and semi-conducting single-walled carbon nanotube by floating catalyst chemical vapour deposition. Diamond and Related Materials 2019, 97 , 107432. https://doi.org/10.1016/j.diamond.2019.05.017
    81. Yunlei Fu, Xiuyun Zhang, Chunfeng Lao, Danhong Shang, Maoshuai He. Laser Irradiation-Hindered Growth of Small-Diameter Single-Walled Carbon Nanotubes by Chemical Vapor Deposition. Journal of Nanomaterials 2019, 2019 , 1-7. https://doi.org/10.1155/2019/4380435
    82. Maoshuai He, Shuchen Zhang, Qianru Wu, Han Xue, Benwu Xin, Dan Wang, Jin Zhang. Designing Catalysts for Chirality‐Selective Synthesis of Single‐Walled Carbon Nanotubes: Past Success and Future Opportunity. Advanced Materials 2019, 31 (9) https://doi.org/10.1002/adma.201800805
    83. Salomé Forel, Alice Castan, Hakim Amara, Ileana Florea, Frédéric Fossard, Laure Catala, Christophe Bichara, Talal Mallah, Vincent Huc, Annick Loiseau, Costel-Sorin Cojocaru. Tuning bimetallic catalysts for a selective growth of SWCNTs. Nanoscale 2019, 11 (9) , 4091-4100. https://doi.org/10.1039/C8NR09589B
    84. Abdulaziz S. R. Bati, LePing Yu, Munkhbayar Batmunkh, Joseph G. Shapter. Synthesis, purification, properties and characterization of sorted single-walled carbon nanotubes. Nanoscale 2018, 10 (47) , 22087-22139. https://doi.org/10.1039/C8NR07379A
    85. Dmitry V. Krasnikov, Vladimir L. Kuznetsov, Anatoly I. Romanenko, Alexander N. Shmakov. Side reaction in catalytic CVD growth of carbon nanotubes: Surface pyrolysis of a hydrocarbon precursor with the formation of lateral carbon deposits. Carbon 2018, 139 , 105-117. https://doi.org/10.1016/j.carbon.2018.06.033
    86. Yann Magnin, Hakim Amara, François Ducastelle, Annick Loiseau, Christophe Bichara. Entropy-driven stability of chiral single-walled carbon nanotubes. Science 2018, 362 (6411) , 212-215. https://doi.org/10.1126/science.aat6228
    87. Saeed Motaragheb Jafarpour, Stefan E. Schulz, Sascha Hermann. Tuning of diameter and electronic type of CCVD grown SWCNTs: A comparative study on Co-Mo and Co-Ru bimetallic catalyst systems. Diamond and Related Materials 2018, 89 , 18-27. https://doi.org/10.1016/j.diamond.2018.06.015
    88. Lei Liu, Yuhong Liu, Yongjian Ai, Jifan Li, Junjie Zhou, Zhibo Fan, Hongjie Bao, Ruihang Jiang, Zenan Hu, Jingting Wang, Ke Jing, Yue Wang, Qionglin Liang, Hongbin Sun. Pd-CuFe Catalyst for Transfer Hydrogenation of Nitriles: Controllable Selectivity to Primary Amines and Secondary Amines. iScience 2018, 8 , 61-73. https://doi.org/10.1016/j.isci.2018.09.010
    89. Xiao Wang, Maoshuai He, Feng Ding. Chirality-controlled synthesis of single-walled carbon nanotubes—From mechanistic studies toward experimental realization. Materials Today 2018, 21 (8) , 845-860. https://doi.org/10.1016/j.mattod.2018.06.001
    90. Hongjie Bao, Yunong Li, Lei Liu, Yongjian Ai, Junjie Zhou, Li Qi, Ruihang Jiang, Zenan Hu, Jingting Wang, Hongbin Sun, Qionglin Liang. Ultrafine FeCu Alloy Nanoparticles Magnetically Immobilized in Amine‐Rich Silica Spheres for Dehalogenation‐Proof Hydrogenation of Nitroarenes. Chemistry – A European Journal 2018, 24 (54) , 14418-14424. https://doi.org/10.1002/chem.201801942
    91. Maoshuai He, Tao Yang, Danhong Shang, Benwu Xin, Alexander I. Chernov, Elena D. Obraztsova, Jani Sainio, Na Wei, Hongzhi Cui, Hua Jiang, Esko Kauppinen. High temperature growth of single-walled carbon nanotubes with a narrow chirality distribution by tip-growth mode. Chemical Engineering Journal 2018, 341 , 344-350. https://doi.org/10.1016/j.cej.2018.02.051
    92. Maoshuai He, Xiao Wang, Lili Zhang, Qianru Wu, Xiaojie Song, Alexander I. Chernov, Pavel V. Fedotov, Elena D. Obraztsova, Jani Sainio, Hua Jiang, Hongzhi Cui, Feng Ding, Esko Kauppinen. Anchoring effect of Ni2+ in stabilizing reduced metallic particles for growing single-walled carbon nanotubes. Carbon 2018, 128 , 249-256. https://doi.org/10.1016/j.carbon.2017.11.093
    93. Xiulan Zhao, Feng Yang, Junhan Chen, Li Ding, Xiyan Liu, Fengrui Yao, Meihui Li, Daqi Zhang, Zeyao Zhang, Xu Liu, Juan Yang, Kaihui Liu, Yan Li. Selective growth of chirality-enriched semiconducting carbon nanotubes by using bimetallic catalysts from salt precursors. Nanoscale 2018, 10 (15) , 6922-6927. https://doi.org/10.1039/C7NR07855B
    94. Maoshuai He, Yann Magnin, Hua Jiang, Hakim Amara, Esko I. Kauppinen, Annick Loiseau, Christophe Bichara. Growth modes and chiral selectivity of single-walled carbon nanotubes. Nanoscale 2018, 10 (14) , 6744-6750. https://doi.org/10.1039/C7NR09539B
    95. Dawid Janas. Towards monochiral carbon nanotubes: a review of progress in the sorting of single-walled carbon nanotubes. Materials Chemistry Frontiers 2018, 2 (1) , 36-63. https://doi.org/10.1039/C7QM00427C
    96. Xiulan Zhao, Shuchen Zhang, Zhenxing Zhu, Jin Zhang, Fei Wei, Yan Li. Catalysts for single-wall carbon nanotube synthesis—From surface growth to bulk preparation. MRS Bulletin 2017, 42 (11) , 809-818. https://doi.org/10.1557/mrs.2017.240
    97. A. Castan, S. Forel, L. Catala, I. Florea, F. Fossard, F. Bouanis, A. Andrieux-Ledier, S. Mazerat, T. Mallah, V. Huc, A. Loiseau, C.S. Cojocaru. New method for the growth of single-walled carbon nanotubes from bimetallic nanoalloy catalysts based on Prussian blue analog precursors. Carbon 2017, 123 , 583-592. https://doi.org/10.1016/j.carbon.2017.07.058
    98. Ying Wang, Wei Song, Menggai Jiao, Zhijian Wu, Stephan Irle. Importance of oxygen in single-walled carbon nanotube growth: Insights from QM/MD simulations. Carbon 2017, 121 , 292-300. https://doi.org/10.1016/j.carbon.2017.06.005
    99. Bo Hou, Cheng Wu, Taiki Inoue, Shohei Chiashi, Rong Xiang, Shigeo Maruyama. Extended alcohol catalytic chemical vapor deposition for efficient growth of single-walled carbon nanotubes thinner than (6,5). Carbon 2017, 119 , 502-510. https://doi.org/10.1016/j.carbon.2017.04.045
    100. Juan-Manuel Aguiar-Hualde, Yann Magnin, Hakim Amara, Christophe Bichara. Probing the role of carbon solubility in transition metal catalyzing single-walled carbon nanotubes growth. Carbon 2017, 120 , 226-232. https://doi.org/10.1016/j.carbon.2017.05.035
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2010, 132, 40, 13994–13996
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja106609y
    Published September 21, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    3076

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.