ACS Publications. Most Trusted. Most Cited. Most Read
A Chelator-Free Multifunctional [64Cu]CuS Nanoparticle Platform for Simultaneous Micro-PET/CT Imaging and Photothermal Ablation Therapy
My Activity

Figure 1Loading Img
    Article

    A Chelator-Free Multifunctional [64Cu]CuS Nanoparticle Platform for Simultaneous Micro-PET/CT Imaging and Photothermal Ablation Therapy
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Experimental Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States, and Department of Pharmaceutical Sciences, Texas Southern University, Houston, Texas 77004, United States
    †The University of Texas MD Anderson Cancer Center.
    ‡Texas Southern University.
    §On leave from the Department of Nuclear Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P. R. China.
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2010, 132, 43, 15351–15358
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja106855m
    Published October 13, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We synthesized and evaluated a novel class of chelator-free [64Cu]CuS nanoparticles (NPs) suitable both for PET imaging and as photothermal coupling agents for photothermal ablation. These [64Cu]CuS NPs are simple to make, possess excellent stability, and allow robust noninvasive micro-PET imaging. Furthermore, the CuS NPs display strong absorption in the near-infrared (NIR) region (peak at 930 nm); passive targeting prefers the tumor site, and mediated ablation of U87 tumor cells occurs upon exposure to NIR light both in vitro and in vivo after either intratumoral or intravenous injection. The combination of small diameter (∼11 nm), strong NIR absorption, and integration of 64Cu as a structural component makes these [64Cu]CuS NPs ideally suited for multifunctional molecular imaging and therapy.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Complete refs 17 and 31; NMR, XRD, HRTEM, and DLS characterization data for CuS NPs; stability and radiolabeling efficiency of CuS NPs; and results of in vitro PTA therapy studies. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 639 publications.

    1. Sonali Gupta, Bijaideep Dutta, S. B. Shelar, Asnit Gangwar, K. Bhattacharyya, K. K. Bairwa, P. A. Hassan, K. C. Barick. Polyphosphate-Mediated Crystallographic and Colloidal Stabilization of CuS Nanoparticles: Enhanced NIR-Responsive Chemo-Photothermal Efficacy. ACS Applied Bio Materials 2024, 7 (10) , 6641-6655. https://doi.org/10.1021/acsabm.4c00838
    2. Kazuki Onishi, Yasuaki Tokudome, Kohei Kariya, Takuma Kurokawa, Hidenobu Murata, Atsushi Nakahira. Synthesis of Hydrophilic Poly(vinylpyrrolidone)/CuS Free-Standing Thin Films Exhibiting Photothermal Conversion. ACS Applied Materials & Interfaces 2024, 16 (13) , 16903-16911. https://doi.org/10.1021/acsami.4c02345
    3. Mao Zong, Chang Yu, Jiaqing Li, Dan Sun, Jiayin Wang, Ziyao Mo, Chuwei Qin, Disi Yang, Zhaoyang Zhang, Qinghong Zeng, Chengyue Li, Kangsheng Ma, Hu Wan, Jianhong Li, Shun He. Redox and Near-Infrared Light-Responsive Nanoplatform for Enhanced Pesticide Delivery and Pest Control in Rice: Construction, Efficacy, and Potential Mechanisms. ACS Applied Materials & Interfaces 2023, 15 (35) , 41351-41361. https://doi.org/10.1021/acsami.3c08413
    4. Jiaojiao Tao, Bingjie Wang, Yu Dong, XiangYan Chen, Shuang Li, Tianze Jiang, Xia Zhao. Photothermal and Acid-Responsive Fucoidan-CuS Bubble Pump Microneedles for Combined CDT/PTT/CT Treatment of Melanoma. ACS Applied Materials & Interfaces 2023, 15 (34) , 40267-40279. https://doi.org/10.1021/acsami.3c08368
    5. Huilin Chen, Qingyuan Hu, Wenjie Li, Xiaoming Cai, Liang Mao, Ruibin Li. Approaches to Nanoparticle Labeling: A Review of Fluorescent, Radiological, and Metallic Techniques. Environment & Health 2023, 1 (2) , 75-89. https://doi.org/10.1021/envhealth.3c00034
    6. Pengyu Gao, Guotai Li, Zhiguo Wang, Hui Zhang, Yansheng Shan, Xin Yuan, Qiang Shi, Xue Dou, Qihui Zhou, Quanchen Xu. Protease-Loaded CuS Nanoparticles with Synergistic Photothermal/Dynamic Therapy against F. nucleatum-Induced Periodontitis. ACS Applied Materials & Interfaces 2023, 15 (27) , 32215-32225. https://doi.org/10.1021/acsami.3c04534
    7. Kang Zhang, Junming Zhang, Ailing Yang. Photoheating Effects of CuS@PEI_GQDs Nanoshells under Near-Infrared Laser and Sunlight Irradiation. Crystal Growth & Design 2023, 23 (3) , 1697-1708. https://doi.org/10.1021/acs.cgd.2c01274
    8. Bingjie Wang, Wenshang Zhang, Qi Pan, Jiaojiao Tao, Shuang Li, Tianze Jiang, Xia Zhao. Hyaluronic Acid-Based CuS Nanoenzyme Biodegradable Microneedles for Treating Deep Cutaneous Fungal Infection without Drug Resistance. Nano Letters 2023, 23 (4) , 1327-1336. https://doi.org/10.1021/acs.nanolett.2c04539
    9. Huihui Lv, Yuchao Zhu, Jinping Xue, Xiao Jia, Juanjuan Chen. Targeted Drug Delivery System Based on Copper Sulfide for Synergistic Near-Infrared Photothermal Therapy/Photodynamic Therapy/Chemotherapy of Triple Negative Breast Cancer. Langmuir 2022, 38 (50) , 15766-15775. https://doi.org/10.1021/acs.langmuir.2c02667
    10. Luo Zhang, Yiheng Dai, Shuojiong Pan, Yizheng Tan, Chenxing Sun, Muqing Cao, Huaping Xu. Copper-Selenocysteine Quantum Dots for NIR-II Photothermally Enhanced Chemodynamic Therapy. ACS Applied Bio Materials 2022, 5 (4) , 1794-1803. https://doi.org/10.1021/acsabm.2c00150
    11. Ren Cai, Huandong Xiang, Dan Yang, Keng-Te Lin, Yuanzheng Wu, Ruyi Zhou, Zhanjun Gu, Liang Yan, Yuliang Zhao, Weihong Tan. Plasmonic AuPt@CuS Heterostructure with Enhanced Synergistic Efficacy for Radiophotothermal Therapy. Journal of the American Chemical Society 2021, 143 (39) , 16113-16127. https://doi.org/10.1021/jacs.1c06652
    12. Kai Chen, Weijia Fang, Qingyuan Zhang, Xinyue Jiang, Yan Chen, Wenjuan Xu, Qingming Shen, Pengfei Sun, Wei Huang. Tunable NIR Absorption Property of a Dithiolene Nickel Complex: A Promising NIR-II Absorption Material for Photothermal Therapy. ACS Applied Bio Materials 2021, 4 (5) , 4406-4412. https://doi.org/10.1021/acsabm.1c00168
    13. Darius Rohleder, Philipp Vana. Near-Infrared-Triggered Photothermal Aggregation of Polymer-Grafted Gold Nanorods in a Simulated Blood Fluid. Biomacromolecules 2021, 22 (4) , 1614-1624. https://doi.org/10.1021/acs.biomac.1c00077
    14. Tao Zhang, Jian-Wei Cao, Xue Jiang, Juan Chen, Teng Wang, Kai-Jie Chen. Band Gap Modulation Enabled by TCNQ Loading in a Ru-Based Metal–Organic Framework for Enhanced Near-Infrared Absorption and Photothermal Conversion. Crystal Growth & Design 2021, 21 (2) , 729-734. https://doi.org/10.1021/acs.cgd.0c01447
    15. Mengqi Sun, Xiaoqi Fu, Kexun Chen, Hui Wang. Dual-Plasmonic Gold@Copper Sulfide Core–Shell Nanoparticles: Phase-Selective Synthesis and Multimodal Photothermal and Photocatalytic Behaviors. ACS Applied Materials & Interfaces 2020, 12 (41) , 46146-46161. https://doi.org/10.1021/acsami.0c13420
    16. Fangfang Chen, Lili Teng, Chang Lu, Cheng Zhang, Qiming Rong, Yan Zhao, Yue Yang, Youjuan Wang, Guosheng Song, Xiaobing Zhang. Activatable Magnetic/Photoacoustic Nanoplatform for Redox-Unlocked Deep-Tissue Molecular Imaging In Vivo via Prussian Blue Nanoprobe. Analytical Chemistry 2020, 92 (19) , 13452-13461. https://doi.org/10.1021/acs.analchem.0c02859
    17. Wensheng Xie, Zhenhu Guo, Qin Gao, Dan Wang, Kang Liang, Zi Gu, Ling Yun Zhao. Manganese-Doped Layered Double Hydroxide: A Biodegradable Theranostic Nanoplatform with Tumor Microenvironment Response for Magnetic Resonance Imaging-Guided Photothermal Therapy. ACS Applied Bio Materials 2020, 3 (9) , 5845-5855. https://doi.org/10.1021/acsabm.0c00564
    18. Elizângela H. Fragal, Vanessa H. Fragal, Gabriela H. Da Silva, Suely P. C. Gonçalves, Diego S. T. Martinez, Adley F. Rubira, Rafael Silva. Enhancing Near-Infrared Photothermal Efficiency of Biocompatible Flame-Synthesized Carbon Nano-Onions with Metal Dopants and Silica Coating. ACS Applied Bio Materials 2020, 3 (9) , 5984-5994. https://doi.org/10.1021/acsabm.0c00643
    19. Qinglian Hu, Zemin Huang, Yukun Duan, Zhengwei Fu, Bin Liu. Reprogramming Tumor Microenvironment with Photothermal Therapy. Bioconjugate Chemistry 2020, 31 (5) , 1268-1278. https://doi.org/10.1021/acs.bioconjchem.0c00135
    20. Changchang Zhang, Wenjie Sun, Yue Wang, Fang Xu, Jiao Qu, Jindong Xia, Mingwu Shen, Xiangyang Shi. Gd-/CuS-Loaded Functional Nanogels for MR/PA Imaging-Guided Tumor-Targeted Photothermal Therapy. ACS Applied Materials & Interfaces 2020, 12 (8) , 9107-9117. https://doi.org/10.1021/acsami.9b23413
    21. Xiangli Li, Zheng Cai, Li-Ping Jiang, Zhimei He, Jun-Jie Zhu. Metal–Ligand Coordination Nanomaterials for Biomedical Imaging. Bioconjugate Chemistry 2020, 31 (2) , 332-339. https://doi.org/10.1021/acs.bioconjchem.9b00642
    22. Lanfang Ren, Xijian Liu, Tao Ji, Guoying Deng, Fengjiao Liu, Haikuan Yuan, Jing Yu, Junqing Hu, Jie Lu. “All-in-One” Theranostic Agent with Seven Functions Based on Bi-Doped Metal Chalcogenide Nanoflowers. ACS Applied Materials & Interfaces 2019, 11 (49) , 45467-45478. https://doi.org/10.1021/acsami.9b16962
    23. Aldo Isaac Martínez-Banderas, Antonio Aires, Marta Quintanilla, Jorge A. Holguín-Lerma, Claudia Lozano-Pedraza, Francisco J. Teran, Julián A. Moreno, Jose E. Perez, Boon S. Ooi, Timothy Ravasi, Jasmeen S. Merzaban, Aitziber L. Cortajarena, Jürgen Kosel. Iron-Based Core–Shell Nanowires for Combinatorial Drug Delivery and Photothermal and Magnetic Therapy. ACS Applied Materials & Interfaces 2019, 11 (47) , 43976-43988. https://doi.org/10.1021/acsami.9b17512
    24. Sixiang Shi, Xiaofei Wen, Tingting Li, Xiaoxia Wen, Qizhen Cao, Xinli Liu, Yiyao Liu, Mark D. Pagel, Chun Li. Thermosensitive Biodegradable Copper Sulfide Nanoparticles for Real-Time Multispectral Optoacoustic Tomography. ACS Applied Bio Materials 2019, 2 (8) , 3203-3211. https://doi.org/10.1021/acsabm.9b00133
    25. Yang Liu, Min Ji, Peng Wang. Recent Advances in Small Copper Sulfide Nanoparticles for Molecular Imaging and Tumor Therapy. Molecular Pharmaceutics 2019, 16 (8) , 3322-3332. https://doi.org/10.1021/acs.molpharmaceut.9b00273
    26. Khalilalrahman Dehvari, Jyun-Dong Li, Jia-Yaw Chang. Bovine Serum Albumin-Templated Synthesis of Manganese-Doped Copper Selenide Nanoparticles for Boosting Targeted Delivery and Synergistic Photothermal and Photodynamic Therapy. ACS Applied Bio Materials 2019, 2 (7) , 3019-3029. https://doi.org/10.1021/acsabm.9b00339
    27. Yuanyuan Qiu, Miao Lin, Gaoxian Chen, Chenchen Fan, Mingwang Li, Xiajing Gu, Shan Cong, Zhigang Zhao, Lei Fu, Xiaohong Fang, Zeyu Xiao. Photodegradable CuS SERS Probes for Intraoperative Residual Tumor Detection, Ablation, and Self-Clearance. ACS Applied Materials & Interfaces 2019, 11 (26) , 23436-23444. https://doi.org/10.1021/acsami.9b00469
    28. Xiao Shao, Tianyong Zhang, Bin Li, Minghao Zhou, Xiaoyuan Ma, Jingchao Wang, Shuang Jiang. Chiroptical Activity of Type II Core/Shell Cu2S/CdSe Nanocrystals. Inorganic Chemistry 2019, 58 (9) , 6534-6543. https://doi.org/10.1021/acs.inorgchem.9b00769
    29. Ying Liu, Chunling Hu, Sainan Liu, Xueyan Zhao, Maolin Pang, Jun Lin. Ion-Doped Poly(2-Nitro-1,4-Phenylenediamine) Hollow Nanospheres for Photothermal Therapy. ACS Applied Nano Materials 2019, 2 (4) , 2106-2111. https://doi.org/10.1021/acsanm.9b00086
    30. Xiaomei Dai, Yunjian Yu, Xiaosong Wei, Xijuan Dai, Xiaozhuang Duan, Cong Yu, Xinge Zhang, Chaoxing Li. Peptide-Conjugated CuS Nanocomposites for NIR-Triggered Ablation of Pseudomonas aeruginosa Biofilm. ACS Applied Bio Materials 2019, 2 (4) , 1614-1622. https://doi.org/10.1021/acsabm.9b00033
    31. Xin Li, Jiaguo Yu, Mietek Jaroniec, Xiaobo Chen. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chemical Reviews 2019, 119 (6) , 3962-4179. https://doi.org/10.1021/acs.chemrev.8b00400
    32. Yeneng Dai, Jinzhong Su, Kun Wu, Wenkang Ma, Bing Wang, Meixing Li, Pengfei Sun, Qingming Shen, Qi Wang, Quli Fan. Multifunctional Thermosensitive Liposomes Based on Natural Phase-Change Material: Near-Infrared Light-Triggered Drug Release and Multimodal Imaging-Guided Cancer Combination Therapy. ACS Applied Materials & Interfaces 2019, 11 (11) , 10540-10553. https://doi.org/10.1021/acsami.8b22748
    33. Stephanie C. Smith, Whitney Bryks, Andrea R. Tao. Supramolecular Assembly of Single-Source Metal–Chalcogenide Nanocrystal Precursors. Langmuir 2019, 35 (8) , 2887-2897. https://doi.org/10.1021/acs.langmuir.8b01043
    34. Hua Shi, Yidan Sun, Runqi Yan, Shunli Liu, Li Zhu, Song Liu, Yuzhang Feng, Peng Wang, Jian He, Zhengyang Zhou, Deju Ye. Magnetic Semiconductor Gd-Doping CuS Nanoparticles as Activatable Nanoprobes for Bimodal Imaging and Targeted Photothermal Therapy of Gastric Tumors. Nano Letters 2019, 19 (2) , 937-947. https://doi.org/10.1021/acs.nanolett.8b04179
    35. Yue Qiao, Yuan Ping, Hongbo Zhang, Bo Zhou, Fengyong Liu, Yinhui Yu, Tingting Xie, Wanli Li, Danni Zhong, Yuezhou Zhang, Ke Yao, Hélder A. Santos, Min Zhou. Laser-Activatable CuS Nanodots to Treat Multidrug-Resistant Bacteria and Release Copper Ion to Accelerate Healing of Infected Chronic Nonhealing Wounds. ACS Applied Materials & Interfaces 2019, 11 (4) , 3809-3822. https://doi.org/10.1021/acsami.8b21766
    36. Simin Zhang, Yuang Shi, Ting He, Bing Ni, Chaozhong Li, Xun Wang. Ultrathin Tungsten Bronze Nanowires with Efficient Photo-to-Thermal Conversion Behavior. Chemistry of Materials 2018, 30 (24) , 8727-8731. https://doi.org/10.1021/acs.chemmater.8b04437
    37. Lili Cui, Chiyi Xiong, Min Zhou, Sixiang Shi, Diana S-L. Chow, Chun Li. Integrin αvβ3-Targeted [64Cu]CuS Nanoparticles for PET/CT Imaging and Photothermal Ablation Therapy. Bioconjugate Chemistry 2018, 29 (12) , 4062-4071. https://doi.org/10.1021/acs.bioconjchem.8b00690
    38. Ben Shi, Qinglong Yan, Jie Tang, Kai Xin, Jichao Zhang, Ying Zhu, Ge Xu, Rongchen Wang, Jian Chen, Wei Gao, Tianli Zhu, Jiye Shi, Chunhai Fan, Chunchang Zhao, He Tian. Hydrogen Sulfide-Activatable Second Near-Infrared Fluorescent Nanoassemblies for Targeted Photothermal Cancer Therapy. Nano Letters 2018, 18 (10) , 6411-6416. https://doi.org/10.1021/acs.nanolett.8b02767
    39. Xiangmei Liu, Tianshe Yang, Yifan Han, Liang Zou, Huiran Yang, Jiayang Jiang, Shujuan Liu, Qiang Zhao, Wei Huang. In Situ Growth of CuS/SiO2-Based Multifunctional Nanotherapeutic Agents for Combined Photodynamic/Photothermal Cancer Therapy. ACS Applied Materials & Interfaces 2018, 10 (37) , 31008-31018. https://doi.org/10.1021/acsami.8b10339
    40. Qing-Lan Li, Yao Sun, Li Ren, Xin Wang, Chen Wang, Lin Li, Ying-Wei Yang, Xianghui Yu, Jihong Yu. Supramolecular Nanosystem Based on Pillararene-Capped CuS Nanoparticles for Targeted Chemo-Photothermal Therapy. ACS Applied Materials & Interfaces 2018, 10 (35) , 29314-29324. https://doi.org/10.1021/acsami.8b09330
    41. Na Li, Qiaoqiao Sun, Zhengze Yu, Xiaonan Gao, Wei Pan, Xiuyan Wan, Bo Tang. Nuclear-Targeted Photothermal Therapy Prevents Cancer Recurrence with Near-Infrared Triggered Copper Sulfide Nanoparticles. ACS Nano 2018, 12 (6) , 5197-5206. https://doi.org/10.1021/acsnano.7b06870
    42. Xiaoxia Han, Ju Huang, Xiangxiang Jing, Dayan Yang, Han Lin, Zhigang Wang, Pan Li, Yu Chen. Oxygen-Deficient Black Titania for Synergistic/Enhanced Sonodynamic and Photoinduced Cancer Therapy at Near Infrared-II Biowindow. ACS Nano 2018, 12 (5) , 4545-4555. https://doi.org/10.1021/acsnano.8b00899
    43. Tong Shu, Qiming Shen, Lei Su, Xueji Zhang, Michael J. Serpe. In Situ Synthesis of CuS Nanoparticle-Doped Poly(N-isopropylacrylamide)-Based Microgels for Near-Infrared Triggered Photothermal Therapy. ACS Applied Nano Materials 2018, 1 (4) , 1776-1783. https://doi.org/10.1021/acsanm.8b00216
    44. Qing-Lan Li, Duo Wang, Yuanzheng Cui, Zhiying Fan, Li Ren, Dongdong Li, Jihong Yu. AIEgen-Functionalized Mesoporous Silica Gated by Cyclodextrin-Modified CuS for Cell Imaging and Chemo-Photothermal Cancer Therapy. ACS Applied Materials & Interfaces 2018, 10 (15) , 12155-12163. https://doi.org/10.1021/acsami.7b14566
    45. Benqing Zhou, Ruizhi Wang, Feng Chen, Lingzhou Zhao, Peng Wang, Xin Li, István Bányai, Qiang Ouyang, Xiangyang Shi, and Mingwu Shen . 99mTc-Labeled RGD–Polyethylenimine Conjugates with Entrapped Gold Nanoparticles in the Cavities for Dual-Mode SPECT/CT Imaging of Hepatic Carcinoma. ACS Applied Materials & Interfaces 2018, 10 (7) , 6146-6154. https://doi.org/10.1021/acsami.7b17107
    46. Wubshet Mekonnen Girma, Shin-Hwa Tzing, Po-Jen Tseng, Chih-Ching Huang, Yong-Chien Ling, and Jia-Yaw Chang . Synthesis of Cisplatin(IV) Prodrug-Tethered CuFeS2 Nanoparticles in Tumor-Targeted Chemotherapy and Photothermal Therapy. ACS Applied Materials & Interfaces 2018, 10 (5) , 4590-4602. https://doi.org/10.1021/acsami.7b19640
    47. Hoang D. Lu, Leon Z. Wang, Brian K. Wilson, Simon A. McManus, Jenny Jumai’an, Prashanth K. Padakanti, Abass Alavi, Robert H. Mach, and Robert K. Prud’homme . Copper Loading of Preformed Nanoparticles for PET-Imaging Applications. ACS Applied Materials & Interfaces 2018, 10 (4) , 3191-3199. https://doi.org/10.1021/acsami.7b07242
    48. Yue Qiao, Fei Ma, Chao Liu, Bo Zhou, Qiaolin Wei, Wanlin Li, Danni Zhong, Yangyang Li, and Min Zhou . Near-Infrared Laser-Excited Nanoparticles To Eradicate Multidrug-Resistant Bacteria and Promote Wound Healing. ACS Applied Materials & Interfaces 2018, 10 (1) , 193-206. https://doi.org/10.1021/acsami.7b15251
    49. Taeshik Kim, Hongje Jang, Seongchan Kim, Jong-Hwan Lee, Sung-Yon Kim, Noo Li Jeon, Joon Myong Song, and Dal-Hee Min . Synthesis of Fluorescent Au Nanocrystals–Silica Hybrid Nanocomposite (FLASH) with Enhanced Optical Features for Bioimaging and Photodynamic Activity. Langmuir 2018, 34 (1) , 173-178. https://doi.org/10.1021/acs.langmuir.7b02562
    50. Shuwei Liu, Lu Wang, Min Lin, Dandan Wang, Ziqi Song, Shuyao Li, Rui Ge, Xue Zhang, Yi Liu, Zhimin Li, Hongchen Sun, Bai Yang, and Hao Zhang . Cu(II)-Doped Polydopamine-Coated Gold Nanorods for Tumor Theranostics. ACS Applied Materials & Interfaces 2017, 9 (51) , 44293-44306. https://doi.org/10.1021/acsami.7b13643
    51. Guojun Chen, Ben Ma, Yuyuan Wang, Ruosen Xie, Chun Li, Kefeng Dou, and Shaoqin Gong . CuS-Based Theranostic Micelles for NIR-Controlled Combination Chemotherapy and Photothermal Therapy and Photoacoustic Imaging. ACS Applied Materials & Interfaces 2017, 9 (48) , 41700-41711. https://doi.org/10.1021/acsami.7b14083
    52. Xianwen Wang, Fei Li, Xu Yan, Yan Ma, Zhao-Hua Miao, Liang Dong, Huajian Chen, Yang Lu, and Zhengbao Zha . Ambient Aqueous Synthesis of Ultrasmall Ni0.85Se Nanoparticles for Noninvasive Photoacoustic Imaging and Combined Photothermal-Chemotherapy of Cancer. ACS Applied Materials & Interfaces 2017, 9 (48) , 41782-41793. https://doi.org/10.1021/acsami.7b15780
    53. Daniela Y. Santiesteban, Diego S. Dumani, Daniel Profili, and Stanislav Y. Emelianov . Copper Sulfide Perfluorocarbon Nanodroplets as Clinically Relevant Photoacoustic/Ultrasound Imaging Agents. Nano Letters 2017, 17 (10) , 5984-5989. https://doi.org/10.1021/acs.nanolett.7b02105
    54. Pengfei Sun, Pengcheng Yuan, Gaina Wang, Weixing Deng, Sichao Tian, Chao Wang, Xiaomei Lu, Wei Huang, and Quli Fan . High Density Glycopolymers Functionalized Perylene Diimide Nanoparticles for Tumor-Targeted Photoacoustic Imaging and Enhanced Photothermal Therapy. Biomacromolecules 2017, 18 (10) , 3375-3386. https://doi.org/10.1021/acs.biomac.7b01029
    55. Sida Shen, Dawei Jiang, Liang Cheng, Yu Chao, Kaiqi Nie, Ziliang Dong, Christopher J. Kutyreff, Jonathan W. Engle, Peng Huang, Weibo Cai, and Zhuang Liu . Renal-Clearable Ultrasmall Coordination Polymer Nanodots for Chelator-Free 64Cu-Labeling and Imaging-Guided Enhanced Radiotherapy of Cancer. ACS Nano 2017, 11 (9) , 9103-9111. https://doi.org/10.1021/acsnano.7b03857
    56. Peijun Tang, Xueqin Jiang, Yangyang Wang, Huanjun Chen, Yu Shrike Zhang, Panpan Gao, Hao Wang, Xuemeng Li, and Jianhua Zhou . Plasmonic Nanoprobe of (Gold Triangular Nanoprism Core)/(Polyaniline Shell) for Real-Time Three-Dimensional pH Imaging of Anterior Chamber. Analytical Chemistry 2017, 89 (18) , 9758-9766. https://doi.org/10.1021/acs.analchem.7b01623
    57. Sajid Fazal, Bindhu Paul-Prasanth, Shantikumar V. Nair, and Deepthy Menon . Theranostic Iron Oxide/Gold Ion Nanoprobes for MR Imaging and Noninvasive RF Hyperthermia. ACS Applied Materials & Interfaces 2017, 9 (34) , 28260-28272. https://doi.org/10.1021/acsami.7b08939
    58. Hyo Sung Jung, Jae-Hong Lee, Kyutae Kim, Seyoung Koo, Peter Verwilst, Jonathan L. Sessler, Chulhun Kang, and Jong Seung Kim . A Mitochondria-Targeted Cryptocyanine-Based Photothermogenic Photosensitizer. Journal of the American Chemical Society 2017, 139 (29) , 9972-9978. https://doi.org/10.1021/jacs.7b04263
    59. Claudia Coughlan, Maria Ibáñez, Oleksandr Dobrozhan, Ajay Singh, Andreu Cabot, and Kevin M. Ryan . Compound Copper Chalcogenide Nanocrystals. Chemical Reviews 2017, 117 (9) , 5865-6109. https://doi.org/10.1021/acs.chemrev.6b00376
    60. Jia-nan Liu, Wenbo Bu, and Jianlin Shi . Chemical Design and Synthesis of Functionalized Probes for Imaging and Treating Tumor Hypoxia. Chemical Reviews 2017, 117 (9) , 6160-6224. https://doi.org/10.1021/acs.chemrev.6b00525
    61. Wei Guo, Zhenyu Qiu, Chongshen Guo, Dandan Ding, Tianchan Li, Fei Wang, Jianzhe Sun, Nannan Zheng, and Shaoqin Liu . Multifunctional Theranostic Agent of Cu2(OH)PO4 Quantum Dots for Photoacoustic Image-Guided Photothermal/Photodynamic Combination Cancer Therapy. ACS Applied Materials & Interfaces 2017, 9 (11) , 9348-9358. https://doi.org/10.1021/acsami.6b15703
    62. Yongguang Yin, Zhiqiang Tan, Ligang Hu, Sujuan Yu, Jingfu Liu, and Guibin Jiang . Isotope Tracers To Study the Environmental Fate and Bioaccumulation of Metal-Containing Engineered Nanoparticles: Techniques and Applications. Chemical Reviews 2017, 117 (5) , 4462-4487. https://doi.org/10.1021/acs.chemrev.6b00693
    63. Paul A. Ellison, Feng Chen, Shreya Goel, Todd E. Barnhart, Robert J. Nickles, Onofre T. DeJesus, and Weibo Cai . Intrinsic and Stable Conjugation of Thiolated Mesoporous Silica Nanoparticles with Radioarsenic. ACS Applied Materials & Interfaces 2017, 9 (8) , 6772-6781. https://doi.org/10.1021/acsami.6b14049
    64. Yi Xie, Wenhui Chen, Giovanni Bertoni, Ilka Kriegel, Mo Xiong, Neng Li, Mirko Prato, Andreas Riedinger, Ayyappan Sathya, and Liberato Manna . Tuning and Locking the Localized Surface Plasmon Resonances of CuS (Covellite) Nanocrystals by an Amorphous CuPdxS Shell. Chemistry of Materials 2017, 29 (4) , 1716-1723. https://doi.org/10.1021/acs.chemmater.6b05184
    65. Bryan Ronain Smith and Sanjiv Sam Gambhir . Nanomaterials for In Vivo Imaging. Chemical Reviews 2017, 117 (3) , 901-986. https://doi.org/10.1021/acs.chemrev.6b00073
    66. Ruichan Lv, Piaoping Yang, Bo Hu, Jiating Xu, Wenting Shang, and Jie Tian . In Situ Growth Strategy to Integrate Up-Conversion Nanoparticles with Ultrasmall CuS for Photothermal Theranostics. ACS Nano 2017, 11 (1) , 1064-1072. https://doi.org/10.1021/acsnano.6b07990
    67. Xiaoxiao Tan, Jinping Wang, Xiaojuan Pang, Li Liu, Qi Sun, Qing You, Fengping Tan, and Nan Li . Indocyanine Green-Loaded Silver Nanoparticle@Polyaniline Core/Shell Theranostic Nanocomposites for Photoacoustic/Near-Infrared Fluorescence Imaging-Guided and Single-Light-Triggered Photothermal and Photodynamic Therapy. ACS Applied Materials & Interfaces 2016, 8 (51) , 34991-35003. https://doi.org/10.1021/acsami.6b11262
    68. Rubel Chakravarty, Sudipta Chakraborty, Raghumani Singh Ningthoujam, K. V. Vimalnath Nair, K. Shitaljit Sharma, Anand Ballal, Apurav Guleria, Amit Kunwar, Haladhar Dev Sarma, Rajesh Kumar Vatsa, and Ashutosh Dash . Industrial-Scale Synthesis of Intrinsically Radiolabeled 64CuS Nanoparticles for Use in Positron Emission Tomography (PET) Imaging of Cancer. Industrial & Engineering Chemistry Research 2016, 55 (48) , 12407-12419. https://doi.org/10.1021/acs.iecr.6b03405
    69. Li-Jian Chen, Shao-Kai Sun, Yong Wang, Cheng-Xiong Yang, Shu-Qi Wu, and Xiu-Ping Yan . Activatable Multifunctional Persistent Luminescence Nanoparticle/Copper Sulfide Nanoprobe for in Vivo Luminescence Imaging-Guided Photothermal Therapy. ACS Applied Materials & Interfaces 2016, 8 (48) , 32667-32674. https://doi.org/10.1021/acsami.6b10702
    70. Weitao Yang, Weisheng Guo, Wenjun Le, Guoxian Lv, Fuhe Zhang, Lei Shi, Xiuli Wang, Jun Wang, Sheng Wang, Jin Chang, and Bingbo Zhang . Albumin-Bioinspired Gd:CuS Nanotheranostic Agent for In Vivo Photoacoustic/Magnetic Resonance Imaging-Guided Tumor-Targeted Photothermal Therapy. ACS Nano 2016, 10 (11) , 10245-10257. https://doi.org/10.1021/acsnano.6b05760
    71. Whitney Bryks, Eduardo Lupi, Charles Ngo, and Andrea R. Tao . Digenite Nanosheets Synthesized by Thermolysis of Layered Copper-Alkanethiolate Frameworks. Journal of the American Chemical Society 2016, 138 (41) , 13717-13725. https://doi.org/10.1021/jacs.6b08264
    72. Rui Ge, Xing Li, Min Lin, Dandan Wang, Shuyao Li, Shuwei Liu, Qi Tang, Yi Liu, Jinlan Jiang, Lidi Liu, Hongchen Sun, Hao Zhang, and Bai Yang . Fe3O4@polydopamine Composite Theranostic Superparticles Employing Preassembled Fe3O4 Nanoparticles as the Core. ACS Applied Materials & Interfaces 2016, 8 (35) , 22942-22952. https://doi.org/10.1021/acsami.6b07997
    73. Isabel Ortiz de Solorzano, Martín Prieto, Gracia Mendoza, Teresa Alejo, Silvia Irusta, Victor Sebastian, and Manuel Arruebo . Microfluidic Synthesis and Biological Evaluation of Photothermal Biodegradable Copper Sulfide Nanoparticles. ACS Applied Materials & Interfaces 2016, 8 (33) , 21545-21554. https://doi.org/10.1021/acsami.6b05727
    74. Chen Zhang, Wenbo Bu, Dalong Ni, Changjing Zuo, Chao Cheng, Qing Li, Linlin Zhang, Zheng Wang, and Jianlin Shi . A Polyoxometalate Cluster Paradigm with Self-Adaptive Electronic Structure for Acidity/Reducibility-Specific Photothermal Conversion. Journal of the American Chemical Society 2016, 138 (26) , 8156-8164. https://doi.org/10.1021/jacs.6b03375
    75. Zhao-Hua Miao, Hui Wang, Huanjie Yang, Zhenglin Li, Liang Zhen, and Cheng-Yan Xu . Glucose-Derived Carbonaceous Nanospheres for Photoacoustic Imaging and Photothermal Therapy. ACS Applied Materials & Interfaces 2016, 8 (25) , 15904-15910. https://doi.org/10.1021/acsami.6b03652
    76. Min Zhou, Mei Tian, and Chun Li . Copper-Based Nanomaterials for Cancer Imaging and Therapy. Bioconjugate Chemistry 2016, 27 (5) , 1188-1199. https://doi.org/10.1021/acs.bioconjchem.6b00156
    77. Kuei-Chang Li, Hsun-Chen Chu, Yow Lin, Hsing-Yu Tuan, and Yu-Chen Hu . PEGylated Copper Nanowires as a Novel Photothermal Therapy Agent. ACS Applied Materials & Interfaces 2016, 8 (19) , 12082-12090. https://doi.org/10.1021/acsami.6b04579
    78. Zhengjie Zhou, Yitong Wang, Yang Yan, Qiang Zhang, and Yiyun Cheng . Dendrimer-Templated Ultrasmall and Multifunctional Photothermal Agents for Efficient Tumor Ablation. ACS Nano 2016, 10 (4) , 4863-4872. https://doi.org/10.1021/acsnano.6b02058
    79. Haixia Rao, Weihai Sun, Senyun Ye, Weibo Yan, Yunlong Li, Haitao Peng, Zhiwei Liu, Zuqiang Bian, and Chunhui Huang . Solution-Processed CuS NPs as an Inorganic Hole-Selective Contact Material for Inverted Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces 2016, 8 (12) , 7800-7805. https://doi.org/10.1021/acsami.5b12776
    80. Ana Espinosa, Riccardo Di Corato, Jelena Kolosnjaj-Tabi, Patrice Flaud, Teresa Pellegrino, and Claire Wilhelm . Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment. ACS Nano 2016, 10 (2) , 2436-2446. https://doi.org/10.1021/acsnano.5b07249
    81. Kenny Mebrouk, Franck Camerel, Olivier Jeannin, Benoit Heinrich, Bertrand Donnio, and Marc Fourmigué . High Photothermal Activity within Neutral Nickel Dithiolene Complexes Derived from Imidazolium-Based Ionic Liquids. Inorganic Chemistry 2016, 55 (3) , 1296-1303. https://doi.org/10.1021/acs.inorgchem.5b02648
    82. Yuan Yong, Xiaju Cheng, Tao Bao, Mian Zu, Liang Yan, Wenyan Yin, Cuicui Ge, Dongliang Wang, Zhanjun Gu, and Yuliang Zhao . Tungsten Sulfide Quantum Dots as Multifunctional Nanotheranostics for In Vivo Dual-Modal Image-Guided Photothermal/Radiotherapy Synergistic Therapy. ACS Nano 2015, 9 (12) , 12451-12463. https://doi.org/10.1021/acsnano.5b05825
    83. Andreas Riedinger, Tommaso Avellini, Alberto Curcio, Mattia Asti, Yi Xie, Renyong Tu, Sergio Marras, Alice Lorenzoni, Sara Rubagotti, Michele Iori, Pier Cesare Capponi, Annibale Versari, Liberato Manna, Ettore Seregni, and Teresa Pellegrino . Post-Synthesis Incorporation of 64Cu in CuS Nanocrystals to Radiolabel Photothermal Probes: A Feasible Approach for Clinics. Journal of the American Chemical Society 2015, 137 (48) , 15145-15151. https://doi.org/10.1021/jacs.5b07973
    84. Yi Xie, Giovanni Bertoni, Andreas Riedinger, Ayyappan Sathya, Mirko Prato, Sergio Marras, Renyong Tu, Teresa Pellegrino, and Liberato Manna . Nanoscale Transformations in Covellite (CuS) Nanocrystals in the Presence of Divalent Metal Cations in a Mild Reducing Environment. Chemistry of Materials 2015, 27 (21) , 7531-7537. https://doi.org/10.1021/acs.chemmater.5b03892
    85. Zhen Liu, Xianjun Liu, Yingda Du, Jinsong Ren, and Xiaogang Qu . Using Plasmonic Copper Sulfide Nanocrystals as Smart Light-Driven Sterilants. ACS Nano 2015, 9 (10) , 10335-10346. https://doi.org/10.1021/acsnano.5b04380
    86. Pingyu Zhang, Huaiyi Huang, Juanjuan Huang, Hongmin Chen, Jinquan Wang, Kangqiang Qiu, Donglei Zhao, Liangnian Ji, and Hui Chao . Noncovalent Ruthenium(II) Complexes–Single-Walled Carbon Nanotube Composites for Bimodal Photothermal and Photodynamic Therapy with Near-Infrared Irradiation. ACS Applied Materials & Interfaces 2015, 7 (41) , 23278-23290. https://doi.org/10.1021/acsami.5b07510
    87. Jing Zhang, Huijie Feng, Jiaqin Yang, Qing Qin, Hongmin Fan, Caiying Wei, and Wenjun Zheng . Solvothermal Synthesis of Three-Dimensional Hierarchical CuS Microspheres from a Cu-Based Ionic Liquid Precursor for High-Performance Asymmetric Supercapacitors. ACS Applied Materials & Interfaces 2015, 7 (39) , 21735-21744. https://doi.org/10.1021/acsami.5b04452
    88. Feng Chen, Shreya Goel, Hector F. Valdovinos, Haiming Luo, Reinier Hernandez, Todd E. Barnhart, and Weibo Cai . In Vivo Integrity and Biological Fate of Chelator-Free Zirconium-89-Labeled Mesoporous Silica Nanoparticles. ACS Nano 2015, 9 (8) , 7950-7959. https://doi.org/10.1021/acsnano.5b00526
    89. Su-Wen Hsu, Charles Ngo, Whitney Bryks, and Andrea R. Tao . Shape Focusing During the Anisotropic Growth of CuS Triangular Nanoprisms. Chemistry of Materials 2015, 27 (14) , 4957-4963. https://doi.org/10.1021/acs.chemmater.5b01223
    90. Min Zhou, Junjie Li, Su Liang, Anil K. Sood, Dong Liang, and Chun Li . CuS Nanodots with Ultrahigh Efficient Renal Clearance for Positron Emission Tomography Imaging and Image-Guided Photothermal Therapy. ACS Nano 2015, 9 (7) , 7085-7096. https://doi.org/10.1021/acsnano.5b02635
    91. Fuping Gao, Pengju Cai, Wenjiang Yang, Jingquan Xue, Liang Gao, Ru Liu, Yaling Wang, Yawei Zhao, Xiao He, Lina Zhao, Guodong Huang, Fasheng Wu, Yuliang Zhao, Zhifang Chai, and Xueyun Gao . Ultrasmall [64Cu]Cu Nanoclusters for Targeting Orthotopic Lung Tumors Using Accurate Positron Emission Tomography Imaging. ACS Nano 2015, 9 (5) , 4976-4986. https://doi.org/10.1021/nn507130k
    92. Feng Chen, Hao Hong, Shreya Goel, Stephen A. Graves, Hakan Orbay, Emily B. Ehlerding, Sixiang Shi, Charles P. Theuer, Robert J. Nickles, and Weibo Cai . In Vivo Tumor Vasculature Targeting of CuS@MSN Based Theranostic Nanomedicine. ACS Nano 2015, 9 (4) , 3926-3934. https://doi.org/10.1021/nn507241v
    93. Hong-Yin Wang, Xian-Wu Hua, Fu-Gen Wu, Bolin Li, Peidang Liu, Ning Gu, Zhifei Wang, and Zhan Chen . Synthesis of Ultrastable Copper Sulfide Nanoclusters via Trapping the Reaction Intermediate: Potential Anticancer and Antibacterial Applications. ACS Applied Materials & Interfaces 2015, 7 (13) , 7082-7092. https://doi.org/10.1021/acsami.5b01214
    94. Shengyang Yang, Shasha Sun, Chen Zhou, Guiyang Hao, Jinbin Liu, Saleh Ramezani, Mengxiao Yu, Xiankai Sun, and Jie Zheng . Renal Clearance and Degradation of Glutathione-Coated Copper Nanoparticles. Bioconjugate Chemistry 2015, 26 (3) , 511-519. https://doi.org/10.1021/acs.bioconjchem.5b00003
    95. Xiaoqing Jia, Xiaojun Cai, Yu Chen, Shige Wang, Huixiong Xu, Kun Zhang, Ming Ma, Huixia Wu, Jianlin Shi, and Hangrong Chen . Perfluoropentane-Encapsulated Hollow Mesoporous Prussian Blue Nanocubes for Activated Ultrasound Imaging and Photothermal Therapy of Cancer. ACS Applied Materials & Interfaces 2015, 7 (8) , 4579-4588. https://doi.org/10.1021/am507443p
    96. Wei Feng, Xiaojun Zhou, Wei Nie, Liang Chen, Kexin Qiu, Yanzhong Zhang, and Chuanglong He . Au/Polypyrrole@Fe3O4 Nanocomposites for MR/CT Dual-Modal Imaging Guided-Photothermal Therapy: An in Vitro Study. ACS Applied Materials & Interfaces 2015, 7 (7) , 4354-4367. https://doi.org/10.1021/am508837v
    97. Shunhao Wang, Andreas Riedinger, Hongbo Li, Changhui Fu, Huiyu Liu, Linlin Li, Tianlong Liu, Longfei Tan, Markus J. Barthel, Giammarino Pugliese, Francesco De Donato, Marco Scotto D’Abbusco, Xianwei Meng, Liberato Manna, Huan Meng, and Teresa Pellegrino . Plasmonic Copper Sulfide Nanocrystals Exhibiting Near-Infrared Photothermal and Photodynamic Therapeutic Effects. ACS Nano 2015, 9 (2) , 1788-1800. https://doi.org/10.1021/nn506687t
    98. Xiaolian Sun, Weibo Cai, and Xiaoyuan Chen . Positron Emission Tomography Imaging Using Radiolabeled Inorganic Nanomaterials. Accounts of Chemical Research 2015, 48 (2) , 286-294. https://doi.org/10.1021/ar500362y
    99. Travis M. Shaffer, Matthew A. Wall, Stefan Harmsen, Valerie A. Longo, Charles Michael Drain, Moritz F. Kircher, and Jan Grimm . Silica Nanoparticles as Substrates for Chelator-free Labeling of Oxophilic Radioisotopes. Nano Letters 2015, 15 (2) , 864-868. https://doi.org/10.1021/nl503522y
    100. Ruichan Lv, Piaoping Yang, Fei He, Shili Gai, Guixin Yang, and Jun Lin . Hollow Structured Y2O3:Yb/Er–CuxS Nanospheres with Controllable Size for Simultaneous Chemo/Photothermal Therapy and Bioimaging. Chemistry of Materials 2015, 27 (2) , 483-496. https://doi.org/10.1021/cm503647k
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2010, 132, 43, 15351–15358
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja106855m
    Published October 13, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    11k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.