ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Scope and Limitations of Cyclopropanations with Sulfur Ylides

View Author Information
Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 München, Germany
Cite this: J. Am. Chem. Soc. 2010, 132, 50, 17894–17900
Publication Date (Web):November 29, 2010
https://doi.org/10.1021/ja1084749
Copyright © 2010 American Chemical Society

    Article Views

    4926

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (788 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    The rates of the reactions of the stabilized and semistabilized sulfur ylides 1ag with benzhydrylium ions (2ae) and Michael acceptors (2fv) have been determined by UV−vis spectroscopy in DMSO at 20 °C. The second-order rate constants (log k2) of these reactions correlate linearly with the electrophilicity parameters E of the electrophiles 2 as required by the correlation log k2 = s(N + E), which allowed us to calculate the nucleophile-specific parameters N and s for the sulfur ylides 1ag. The rate constants for the cyclopropanation reactions of sulfur ylides with Michael acceptors lie on the same correlation line as the rate constants for the reactions of sulfur ylides with carbocations. This observation is in line with a stepwise mechanism for the cyclopropanation reactions in which the first step, nucleophilic attack of the sulfur ylides at the Michael acceptors, is rate determining. As the few known pKaH values for sulfur ylides correlate poorly with their nucleophilic reactivities, the data reported in this work provide the first quantitative approach to sulfur ylide reactivity.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Details of the kinetic experiments, synthetic procedures, and NMR spectra of all characterized compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 76 publications.

    1. Gregory L. Beutner, David T. George. Opportunities for the Application and Advancement of the Corey–Chaykovsky Cyclopropanation. Organic Process Research & Development 2023, 27 (1) , 10-41. https://doi.org/10.1021/acs.oprd.2c00315
    2. Yiming Zhou, Ning Li, Wei Cai, You Huang. Asymmetric Sequential Corey–Chaykovsky Cyclopropanation/Cloke–Wilson Rearrangement for the Synthesis of 2,3-Dihydrofurans. Organic Letters 2021, 23 (22) , 8755-8760. https://doi.org/10.1021/acs.orglett.1c03225
    3. Fengkai Qiu, Yu Cao, Linghui Zeng, Chong Zhang, Liping Fu, Jiankang Zhang, Huajian Zhu, Jiaan Shao. (2 + 1 + 1 + 1)-Annulation Reactions of Aryldiazonium Tetrafluoroborates with Sulfur Ylides to Polysubstituted Pyrazoles. The Journal of Organic Chemistry 2021, 86 (13) , 8997-9006. https://doi.org/10.1021/acs.joc.1c00949
    4. Manuel Orlandi, Margarita Escudero-Casao, Giulia Licini. Nucleophilicity Prediction via Multivariate Linear Regression Analysis. The Journal of Organic Chemistry 2021, 86 (4) , 3555-3564. https://doi.org/10.1021/acs.joc.0c02952
    5. Alejandro Puet, Gema Domínguez, F. Javier Cañada, Javier Pérez-Castells. Amino Acid-Based Synthesis and Glycosidase Inhibition of Cyclopropane-Containing Iminosugars. ACS Omega 2020, 5 (49) , 31821-31830. https://doi.org/10.1021/acsomega.0c04589
    6. Jiaan Shao, Wenteng Chen, Zhimin Ying, Shuangrong Liu, Feng Luo, Lili Ou. Sulfur Ylide Initiated [4 + 1]/[4 + 2] Annulation Reactions: A One-Pot Approach to Dibenzofuran Acrylate Derivatives. Organic Letters 2019, 21 (16) , 6370-6373. https://doi.org/10.1021/acs.orglett.9b02260
    7. Ierasia Triandafillidi, Anatoli Savvidou, Christoforos G. Kokotos. Synthesis of γ-Lactones Utilizing Ketoacids and Trimethylsulfoxonium Iodide. Organic Letters 2019, 21 (14) , 5533-5537. https://doi.org/10.1021/acs.orglett.9b01852
    8. Patrick Cyr, Joël Flynn-Robitaille, Patrick Boissarie, Anne Marinier. Mild and Diazo-Free Synthesis of Trifluoromethyl-Cyclopropanes Using Sulfonium Ylides. Organic Letters 2019, 21 (7) , 2265-2268. https://doi.org/10.1021/acs.orglett.9b00557
    9. Rohit Kumar Varshnaya, Prabal Banerjee. Lewis Acid-Catalyzed [3+3] Annulation of Donor–Acceptor Cyclopropanes and Indonyl Alcohols: One Step Synthesis of Substituted Carbazoles with Promising Photophysical Properties. The Journal of Organic Chemistry 2019, 84 (3) , 1614-1623. https://doi.org/10.1021/acs.joc.8b02733
    10. Yue Shen, Jun Chai, Gaosheng Yang, Wenlong Chen, Zhuo Chai. Stereocontrolled Synthesis of trans/cis-2,3-Disubstituted Cyclopropane-1,1-diesters and Applications in the Syntheses of Furanolignans. The Journal of Organic Chemistry 2018, 83 (20) , 12549-12558. https://doi.org/10.1021/acs.joc.8b01798
    11. Tanner C. Jankins, Robert R. Fayzullin, Eugene Khaskin. Three-Component [1 + 1 + 1] Cyclopropanation with Ruthenium(II). Organometallics 2018, 37 (15) , 2609-2617. https://doi.org/10.1021/acs.organomet.8b00361
    12. Qing-Zhu Li, Xiang Zhang, Rong Zeng, Qing-Song Dai, Yue Liu, Xu-Dong Shen, Hai-Jun Leng, Kai-Chuan Yang, Jun-Long Li. Direct Sulfide-Catalyzed Enantioselective Cyclopropanations of Electron-Deficient Dienes and Bromides. Organic Letters 2018, 20 (12) , 3700-3704. https://doi.org/10.1021/acs.orglett.8b01537
    13. Zhen Li, Harish Jangra, Quan Chen, Peter Mayer, Armin R. Ofial, Hendrik Zipse, Herbert Mayr. Kinetics and Mechanism of Oxirane Formation by Darzens Condensation of Ketones: Quantification of the Electrophilicities of Ketones. Journal of the American Chemical Society 2018, 140 (16) , 5500-5515. https://doi.org/10.1021/jacs.8b01657
    14. Dominik S. Allgäuer, Harish Jangra, Haruyasu Asahara, Zhen Li, Quan Chen, Hendrik Zipse, Armin R. Ofial, and Herbert Mayr . Quantification and Theoretical Analysis of the Electrophilicities of Michael Acceptors. Journal of the American Chemical Society 2017, 139 (38) , 13318-13329. https://doi.org/10.1021/jacs.7b05106
    15. Jonathan A. Spencer, Craig Jamieson, and Eric P. A. Talbot . One-Pot, Three-Step Synthesis of Cyclopropylboronic Acid Pinacol Esters from Synthetically Tractable Propargylic Silyl Ethers. Organic Letters 2017, 19 (14) , 3891-3894. https://doi.org/10.1021/acs.orglett.7b01778
    16. Zhen Li, Quan Chen, Peter Mayer, and Herbert Mayr . Nucleophilicity Parameters of Arylsulfonyl-Substituted Halomethyl Anions. The Journal of Organic Chemistry 2017, 82 (4) , 2011-2017. https://doi.org/10.1021/acs.joc.6b02844
    17. Saloua Chelli, Konstantin Troshin, Peter Mayer, Sami Lakhdar, Armin R. Ofial, and Herbert Mayr . Nucleophilicity Parameters of Stabilized Iodonium Ylides for Characterizing Their Synthetic Potential. Journal of the American Chemical Society 2016, 138 (32) , 10304-10313. https://doi.org/10.1021/jacs.6b05768
    18. Dominik S. Allgäuer, Peter Mayer, and Herbert Mayr . Nucleophilicity Parameters of Pyridinium Ylides and Their Use in Mechanistic Analyses. Journal of the American Chemical Society 2013, 135 (40) , 15216-15224. https://doi.org/10.1021/ja407885h
    19. Ona Illa, Mariam Namutebi, Chandreyee Saha, Mehrnoosh Ostovar, C. Chun Chen, Mairi F. Haddow, Sophie Nocquet-Thibault, Matteo Lusi, Eoghan M. McGarrigle, and Varinder K. Aggarwal . Practical and Highly Selective Sulfur Ylide-Mediated Asymmetric Epoxidations and Aziridinations Using a Cheap and Readily Available Chiral Sulfide: Extensive Studies To Map Out Scope, Limitations, and Rationalization of Diastereo- and Enantioselectivities. Journal of the American Chemical Society 2013, 135 (32) , 11951-11966. https://doi.org/10.1021/ja405073w
    20. Liang-Qiu Lu, Jia-Rong Chen, and Wen-Jing Xiao . Development of Cascade Reactions for the Concise Construction of Diverse Heterocyclic Architectures. Accounts of Chemical Research 2012, 45 (8) , 1278-1293. https://doi.org/10.1021/ar200338s
    21. Omar Robles, Sergio O. Serna-Saldívar, Janet A. Gutiérrez-Uribe, and Daniel Romo . Cyclopropanations of Olefin-Containing Natural Products for Simultaneous Arming and Structure Activity Studies. Organic Letters 2012, 14 (6) , 1394-1397. https://doi.org/10.1021/ol300105q
    22. Liang-Qiu Lu, Zhi-Hui Ming, Jing An, Chao Li, Jia-Rong Chen, and Wen-Jing Xiao . Enantioselective Cascade Reactions of Stable Sulfur Ylides and Nitroolefins through an Axial-to-Central Chirality Transfer Strategy. The Journal of Organic Chemistry 2012, 77 (2) , 1072-1080. https://doi.org/10.1021/jo202324f
    23. Lizhu Gao, Geum-Sook Hwang, and Do Hyun Ryu . Oxazaborolidinium Ion-Catalyzed Cyclopropanation of α-Substituted Acroleins: Enantioselective Synthesis of Cyclopropanes Bearing Two Chiral Quaternary Centers. Journal of the American Chemical Society 2011, 133 (51) , 20708-20711. https://doi.org/10.1021/ja209270e
    24. Roland Appel and Herbert Mayr . Quantification of the Electrophilic Reactivities of Aldehydes, Imines, and Enones. Journal of the American Chemical Society 2011, 133 (21) , 8240-8251. https://doi.org/10.1021/ja200820m
    25. Jiefeng Hu, Man Tang, Jing Wang, Zhu Wu, Alexandra Friedrich, Todd B. Marder. Photocatalyzed Borylcyclopropanation of Alkenes with a (Diborylmethyl)iodide Reagent. Angewandte Chemie 2023, 135 (38) https://doi.org/10.1002/ange.202305175
    26. Jiefeng Hu, Man Tang, Jing Wang, Zhu Wu, Alexandra Friedrich, Todd B. Marder. Photocatalyzed Borylcyclopropanation of Alkenes with a (Diborylmethyl)iodide Reagent. Angewandte Chemie International Edition 2023, 62 (38) https://doi.org/10.1002/anie.202305175
    27. Miguel García-Castro, Federico Moya-Utrera, Francisco Sarabia. Transition metal-free [2,3]-sigmatropic rearrangement in the reaction of sulfur ylides with allenoates. Organic & Biomolecular Chemistry 2023, 21 (30) , 6096-6102. https://doi.org/10.1039/D3OB00657C
    28. Babasaheb Sopan Gore, Jeh-Jeng Wang. Visible-light-induced oxidant/additive-free atom-economic synthesis of multifunctionalized cyclopropanes via energy transfer. Chemical Communications 2023, 59 (39) , 5878-5881. https://doi.org/10.1039/D3CC01021J
    29. Sami Lakhdar. Mayr Linear Free Energy Relationship: A Powerful Tool for Understanding Aminocatalyzed Reactions. 2023, 679-700. https://doi.org/10.1002/9783527832217.ch21
    30. Huifang Ma, Jie Liang, Keyume Ablajan. One-pot synthesis of multisubstituted spirocyclopropanes mediated by α-picoline. New Journal of Chemistry 2022, 46 (41) , 19857-19862. https://doi.org/10.1039/D2NJ04102B
    31. Le Li, Robert J. Mayer, David S. Stephenson, Peter Mayer, Armin R. Ofial, Herbert Mayr. Quantification of the Electrophilicities of Diazoalkanes: Kinetics and Mechanism of Azo Couplings with Enamines and Sulfonium Ylides. Chemistry – A European Journal 2022, 28 (55) https://doi.org/10.1002/chem.202201376
    32. Akram Bagherinejad, Abdolali Alizadeh. A review of the synthetic strategies toward spirobarbiturate-fused 3- to 7-membered rings. Organic & Biomolecular Chemistry 2022, 20 (36) , 7188-7215. https://doi.org/10.1039/D2OB01326F
    33. Jie Zhang, Xue Song, Zhi-Chao Chen, Wei Du, Ying-Chun Chen. Phosphine-catalysed intermolecular cyclopropanation reaction between benzyl bromides and activated alkenes. New Journal of Chemistry 2022, 46 (34) , 16382-16386. https://doi.org/10.1039/D2NJ03417D
    34. Dipanjali Pathak, Sanjib Deuri, Prodeep Phukan. Nucleophilicity and CO2 fixation ability of phosphorus, nitrogen and sulfur ylides: insights on stereoelectronic factors from DFT study. Journal of Chemical Sciences 2021, 133 (4) https://doi.org/10.1007/s12039-021-01983-6
    35. Jie Huang, Shaofa Sun, Ping Ma, Jian Wang, Kevin Lee, Yalan Xing, Yang Wu, Gangqiang Wang. Highly diastereoselective spiro-cyclopropanation of 2-arylidene-1,3-indanediones and dimethylsulfonium ylides. New Journal of Chemistry 2021, 45 (40) , 18776-18780. https://doi.org/10.1039/D1NJ02886C
    36. Robert J. Mayer, Patrick W. A. Allihn, Nathalie Hampel, Peter Mayer, Stephan A. Sieber, Armin R. Ofial. Electrophilic reactivities of cyclic enones and α,β-unsaturated lactones. Chemical Science 2021, 12 (13) , 4850-4865. https://doi.org/10.1039/D0SC06628A
    37. Hideaki Ikeda, Kohei Nishi, Hayato Tsurugi, Kazushi Mashima. Chromium-catalyzed cyclopropanation of alkenes with bromoform in the presence of 2,3,5,6-tetramethyl-1,4-bis(trimethylsilyl)-1,4-dihydropyrazine. Chemical Science 2020, 11 (14) , 3604-3609. https://doi.org/10.1039/D0SC00964D
    38. Wenteng Chen, Feng Luo, You Wu, Jie Cen, Jiaan Shao, Yongping Yu. Efficient access to fluorescent benzofuro[3,2- b ]carbazoles via TFA-promoted cascade annulations of sulfur ylides, 2-hydroxy-β-nitrostyrenes and indoles. Organic Chemistry Frontiers 2020, 7 (6) , 873-878. https://doi.org/10.1039/D0QO00137F
    39. Armands Kazia, Renate Melngaile, Anatoly Mishnev, Janis Veliks. Johnson–Corey–Chaykovsky fluorocyclopropanation of double activated alkenes: scope and limitations. Organic & Biomolecular Chemistry 2020, 18 (7) , 1384-1388. https://doi.org/10.1039/C9OB02712B
    40. John A. Milligan, Kevin L. Burns, Anthony V. Le, Viktor C. Polites, Zheng‐Jun Wang, Gary A. Molander, Christopher B. Kelly. Radical‐Polar Crossover Annulation: A Platform for Accessing Polycyclic Cyclopropanes. Advanced Synthesis & Catalysis 2020, 362 (1) , 242-247. https://doi.org/10.1002/adsc.201901051
    41. Robert J. Mayer, Armin R. Ofial. Nucleophilie von Glutathion als Bindeglied zur Reaktivität von Michael‐Akzeptoren. Angewandte Chemie 2019, 131 (49) , 17868-17872. https://doi.org/10.1002/ange.201909803
    42. Robert J. Mayer, Armin R. Ofial. Nucleophilicity of Glutathione: A Link to Michael Acceptor Reactivities. Angewandte Chemie International Edition 2019, 58 (49) , 17704-17708. https://doi.org/10.1002/anie.201909803
    43. Hisanori Nambu, Yuta Onuki, Naoki Ono, Kiyoshi Tsuge, Takayuki Yakura. Ring-opening cyclization of spirocyclopropanes with stabilized sulfonium ylides for the construction of a chromane skeleton. Chemical Communications 2019, 55 (46) , 6539-6542. https://doi.org/10.1039/C9CC03023A
    44. David Pierrot, Michel Rajzmann, Yannick Carissan, Jean Rodriguez, Damien Bonne, Yoann Coquerel. Experimental and theoretical studies of (4 + 1) annulations between α‐oxoketenes and stable phosphorous, nitrogen, or sulfur ylides. Journal of Physical Organic Chemistry 2019, 32 (6) https://doi.org/10.1002/poc.3939
    45. Janis Veliks, Armands Kazia. Fluoromethylene Transfer from Diarylfluoromethylsulfonium Salts: Synthesis of Fluorinated Epoxides. Chemistry – A European Journal 2019, 25 (15) , 3786-3789. https://doi.org/10.1002/chem.201900349
    46. Xuebin Yan, Pei Shao, Xixi Song, Chaofei Zhang, Chang Lu, Songtao Liu, Yanli Li. Chemoselective syntheses of spirodihydrofuryl and spirocyclopropyl barbiturates via cascade reactions of barbiturate-based olefins and acetylacetone. Organic & Biomolecular Chemistry 2019, 17 (10) , 2684-2690. https://doi.org/10.1039/C9OB00004F
    47. Yu Xiang, Xing Fan, Pei‐Jun Cai, Zhi‐Xiang Yu. Understanding Regioselectivities of Corey–Chaykovsky Reactions of Dimethylsulfoxonium Methylide (DMSOM) and Dimethylsulfonium Methylide (DMSM) toward Enones: A DFT Study. European Journal of Organic Chemistry 2019, 2019 (2-3) , 582-590. https://doi.org/10.1002/ejoc.201801216
    48. Guang‐Long Wu, Qin‐Pei Wu. Metal‐Free Multicomponent Reaction for Synthesis of 4,5‐Disubstituted 1,2,3‐( NH )‐Triazoles. Advanced Synthesis & Catalysis 2018, 360 (10) , 1949-1953. https://doi.org/10.1002/adsc.201701587
    49. Guang‐Long Wu, Qin‐Pei Wu. A Domino Reaction of Pyridinium Salts: Efficient Synthesis of 4,5‐Disubstituted 1,2,3‐( NH )‐Triazoles. ChemistrySelect 2018, 3 (18) , 5212-5215. https://doi.org/10.1002/slct.201800669
    50. Richard C. Larock, Li Zhang. Formation of Alkanes and Arenes by Ring‐forming Reactions. 2018, 1-111. https://doi.org/10.1002/9781118662083.cot01-004
    51. Jinhui Shen, Yang Yang, Xiaoli Hou, Wenlei Zeng, Aimin Yu, Xiaowei Zhao, Xiangtai Meng. Darzens reaction of thioisatins and sulfonium salts: approach to the synthesis of thiochromenone derivatives with anticancer potency. Organic & Biomolecular Chemistry 2018, 16 (18) , 3487-3494. https://doi.org/10.1039/C8OB00402A
    52. Bing-Jie Nie, Li-Hui Wu, Ruo-Fei Hu, Yang Sun, Jing Wu, Ping He, Nian-Yu Huang. Synthesis of cyclopropa[ c ]indeno[1,2- b ]quinolines through a MCR/Staudinger/aza-Wittig sequence. Synthetic Communications 2017, 47 (15) , 1368-1374. https://doi.org/10.1080/00397911.2017.1328065
    53. Alberto López‐Rodríguez, Gema Domínguez, Javier Pérez‐Castells. Microwave‐Mediated Sulfonium Ylide Cyclopropanation. Stereoselective Synthesis of Cyclopropa[c]pentalenes. ChemistrySelect 2017, 2 (8) , 2565-2568. https://doi.org/10.1002/slct.201700432
    54. Quan Chen, Peter Mayer, Herbert Mayr. Ethenesulfonyl Fluoride: The Most Perfect Michael Acceptor Ever Found?. Angewandte Chemie International Edition 2016, 55 (41) , 12664-12667. https://doi.org/10.1002/anie.201601875
    55. Quan Chen, Peter Mayer, Herbert Mayr. Ethensulfonylfluorid: der beste je entdeckte Michael‐Akzeptor?. Angewandte Chemie 2016, 128 (41) , 12854-12858. https://doi.org/10.1002/ange.201601875
    56. Xiang-Suo Meng, Shan Jiang, Xiao-Yun Xu, Qiang-Xian Wu, Yu-Cheng Gu, De-Qing Shi. Stabilized Sulfur Ylide Mediated Cyclopropanations and Formal [4+1] Cycloadditions of 3-Acyl-2 H -chromenones and Their Imines. European Journal of Organic Chemistry 2016, 2016 (28) , 4778-4781. https://doi.org/10.1002/ejoc.201600759
    57. Leema Dutta, Meenakshi Sharma, Pulak J. Bhuyan. Regioisomeric synthesis of dihydrofuro[2,3-d]pyrimidines in a diastereoselective manner involving nitrogen ylides in one-pot three-component reaction. Tetrahedron 2016, 72 (42) , 6654-6660. https://doi.org/10.1016/j.tet.2016.08.084
    58. Rohit Kumar Varshnaya, Prabal Banerjee. Construction of Isoxazolidines through Formal [3+2] Cycloaddition Reactions of in situ Generated Nitrosocarbonyls with Donor-Acceptor Cyclopropanes: Synthesis of α-Amino γ-Butyrolactones. European Journal of Organic Chemistry 2016, 2016 (23) , 4059-4066. https://doi.org/10.1002/ejoc.201600582
    59. Liang‐Qiu Lu, Xiao‐Feng Wu. Zinc‐Catalyzed Oxidation Reactions. 2015, 33-56. https://doi.org/10.1002/9783527675944.ch3
    60. Zhengkun Yu. Catalytic Carbon–Sulfur Bond Activation and Transformations. 2014, 317-345. https://doi.org/10.1002/9781118788981.ch4
    61. Dominik S. Allgäuer, Herbert Mayr. Electrophilicities of 1,2-Disubstituted Ethylenes. European Journal of Organic Chemistry 2014, 2014 (14) , 2956-2963. https://doi.org/10.1002/ejoc.201301779
    62. Tibor-Gabor Kocsor, Noemi Deak, Dumitru Ghereg, Gabriela Nemes, Jean Escudié, Heinz Gornitzka, Sonia Ladeira, Annie Castel. Comparison of reactivity of phosphagermaallene Tip(t-Bu)GeCPMes* towards sulfur ylides. Journal of Organometallic Chemistry 2014, 755 , 120-124. https://doi.org/10.1016/j.jorganchem.2014.01.003
    63. Meng-Yang Chang, Chieh-Kai Chan, Yi-Chia Chen. Synthesis of diarylcyclopropyl spirocyclic ketones. Tetrahedron 2014, 70 (15) , 2529-2536. https://doi.org/10.1016/j.tet.2014.02.056
    64. Jian-Bo Zhu, Hao Chen, Lijia Wang, Yong Tang. Stereospecific synthesis of highly functionalized benzo[3.1.0]bicycloalkanes via multistep cascade reactions. Org. Chem. Front. 2014, 1 (8) , 965-968. https://doi.org/10.1039/C4QO00134F
    65. Jian-Bo Zhu, Hao Chen, Saihu Liao, Yu-Xue Li, Yong Tang. A sidearm-assisted phosphine for catalytic ylide intramolecular cyclopropanation. Org. Chem. Front. 2014, 1 (9) , 1035-1039. https://doi.org/10.1039/C4QO00232F
    66. Francisco Corral-Bautista, Herbert Mayr. Quantification of the Nucleophilic Reactivities of Ethyl Arylacetate Anions. European Journal of Organic Chemistry 2013, 2013 (20) , 4255-4261. https://doi.org/10.1002/ejoc.201300265
    67. Yongxian Sun, Gaosheng Yang, Yue Shen, Zan Hua, Zhuo Chai. Stereoselective cyclopropanation of α-bromochalcone with diethyl malonate promoted by K2CO3. Tetrahedron 2013, 69 (13) , 2733-2739. https://doi.org/10.1016/j.tet.2013.02.011
    68. Liandi Wang, Wei He, Zhengkun Yu. Transition-metal mediated carbon–sulfur bond activation and transformations. Chem. Soc. Rev. 2013, 42 (2) , 599-621. https://doi.org/10.1039/C2CS35323G
    69. Lian-Gang Zhuo, Wei Liao, Zhi-Xiang Yu. A Frontier Molecular Orbital Theory Approach to Understanding the Mayr Equation and to Quantifying Nucleophilicity and Electrophilicity by Using HOMO and LUMO Energies. Asian Journal of Organic Chemistry 2012, 1 (4) , 336-345. https://doi.org/10.1002/ajoc.201200103
    70. R. A. McClelland. Carbocations. 2012, 213-228. https://doi.org/10.1002/9781119941910.ch7
    71. Haruyasu Asahara, Herbert Mayr. Electrophilicities of Bissulfonyl Ethylenes. Chemistry - An Asian Journal 2012, 7 (6) , 1401-1407. https://doi.org/10.1002/asia.201101046
    72. Ryosuke Saijo, Masami Kawase. The use of sulfur ylides in the synthesis of 3-alkyl(aryl)thio-4-trifluoromethylpyrroles from mesoionic 4-trifluoroacetyl-1,3-oxazolium-5-olates. Tetrahedron Letters 2012, 53 (22) , 2782-2785. https://doi.org/10.1016/j.tetlet.2012.03.130
    73. Kun Li, Jian Hu, Hui Liu, Xiaofeng Tong. Amine-catalyzed formal (3 + 3) annulations of 2-(acetoxymethyl)buta-2,3-dienoate with sulfur ylides: synthesis of 4H-pyrans bearing a vinyl sulfide group. Chemical Communications 2012, 48 (23) , 2900. https://doi.org/10.1039/c2cc30242j
    74. Herbert Mayr, Sami Lakhdar, Biplab Maji, Armin R Ofial. A quantitative approach to nucleophilic organocatalysis. Beilstein Journal of Organic Chemistry 2012, 8 , 1458-1478. https://doi.org/10.3762/bjoc.8.166
    75. Peter Haiss, Klaus-Peter Zeller. Concerning the deprotonation of the trimethylsulfonium ion by the dimethylsulfinyl anion. Organic & Biomolecular Chemistry 2011, 9 (22) , 7748. https://doi.org/10.1039/c1ob05889d
    76. Anna K. Croft, Erika Davies. Reaction mechanisms: polar reactions. Annual Reports Section "B" (Organic Chemistry) 2011, 107 , 287. https://doi.org/10.1039/c1oc90005f

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect