ACS Publications. Most Trusted. Most Cited. Most Read
Anchor Group versus Conjugation: Toward the Gap-State Engineering of Functionalized ZnO(101̅0) Surface for Optoelectronic Applications
My Activity

Figure 1Loading Img
    Article

    Anchor Group versus Conjugation: Toward the Gap-State Engineering of Functionalized ZnO(101̅0) Surface for Optoelectronic Applications
    Click to copy article linkArticle link copied!

    View Author Information
    Theory@Elettra Group, Democritos Simulation Center, CNR-IOM Istituto Officina dei Materiali, I-34012 Trieste, Italy
    Centro S3, CNR-Istituto di Nanoscienze, I-41125 Modena, Italy
    § Dipartimento di Fisica, Università di Modena e Reggio Emilia, I-41125 Modena, Italy
    CNR-IMEM, Parco Area delle Scienze, 37A, I-43100 Parma, Italy
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2011, 133, 15, 5893–5899
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja1101008
    Published March 28, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Molecular sensitization of the single-crystal ZnO (101̅0) surface through absorption of the catechol chromophore is investigated by means of density functional approaches. The resulting type II staggered interface is recovered in agreement with experiments, and its origin is traced back to the presence of molecular-related states in the gap of metal−oxide electronic structure. A systematic analysis carried out for further catecholate adsorbates allows us to identify the basic mechanisms that dictate the energy position of the gap states. The peculiar level alignment is demonstrated to be originated from the simultaneous interplay among the specific anchoring group, the backbone conjugation, and the lateral functional groups. The picture derived from our results provides efficient strategies for tuning the lineup between molecular and oxide states in hybrid interfaces with potential impact for ZnO-based optoelectronic applications.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Convergence accuracy tests on slab thickness (section S1) and DFT+U correction (section S2), details on electronic structure analysis (section S3), and total energies and atomic coordinates of optimized molecular structures (section S4). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 101 publications.

    1. Takat B. Rawal, Micholas D. Smith, Ali Ozcan, Jeremy C. Smith, Laurene Tetard, Swadeshmukul Santra, Loukas Petridis. Role of Capping Agents in the Synthesis of Salicylate-Capped Zinc Oxide Nanoparticles. ACS Applied Nano Materials 2020, 3 (10) , 9951-9960. https://doi.org/10.1021/acsanm.0c01972
    2. Takat B. Rawal, Ali Ozcan, Shih-Hsien Liu, Sai Venkatesh Pingali, Oguz Akbilgic, Laurene Tetard, Hugh O’Neill, Swadeshmukul Santra, Loukas Petridis. Interaction of Zinc Oxide Nanoparticles with Water: Implications for Catalytic Activity. ACS Applied Nano Materials 2019, 2 (7) , 4257-4266. https://doi.org/10.1021/acsanm.9b00714
    3. Kseniia Zimmermann, Frank Dissinger, Davide Cammi, Angelina Jaros, Florian Meierhofer, Siegfried R. Waldvogel, Tobias Voss. Shifting the Photoresponse of ZnO Nanowires into the Visible Spectral Range by Surface Functionalization with Tailor-Made Carbon Nanodots. The Journal of Physical Chemistry C 2018, 122 (51) , 29479-29487. https://doi.org/10.1021/acs.jpcc.8b09308
    4. Dennis Franke, Michael Lorke, Th Frauenheim, A. L. Rosa. Hybrid Density-Functional Theory Calculations of Electronic and Optical Properties of Mercaptocarboxylic Acids on ZnO(101̅0) Surfaces. The Journal of Physical Chemistry C 2018, 122 (43) , 24838-24842. https://doi.org/10.1021/acs.jpcc.8b08412
    5. Ivana Vukoje, Tijana Kovač, Jasna Džunuzović, Enis Džunuzović, Davor Lončarević, S. Phillip Ahrenkiel, and Jovan M. Nedeljković . Photocatalytic Ability of Visible-Light-Responsive TiO2 Nanoparticles. The Journal of Physical Chemistry C 2016, 120 (33) , 18560-18569. https://doi.org/10.1021/acs.jpcc.6b04293
    6. Duncan John Mowbray and Annapaola Migani . Optical Absorption Spectra and Excitons of Dye-Substrate Interfaces: Catechol on TiO2(110). Journal of Chemical Theory and Computation 2016, 12 (6) , 2843-2852. https://doi.org/10.1021/acs.jctc.6b00217
    7. Athanasios Tamvakos, Kiprono Korir, Dimitrios Tamvakos, Davide Calestani, Giancarlo Cicero, and Daniele Pullini . NO2 Gas Sensing Mechanism of ZnO Thin-Film Transducers: Physical Experiment and Theoretical Correlation Study. ACS Sensors 2016, 1 (4) , 406-412. https://doi.org/10.1021/acssensors.6b00051
    8. Federico Raffone, Francesca Risplendi, and Giancarlo Cicero . A New Theoretical Insight Into ZnO NWs Memristive Behavior. Nano Letters 2016, 16 (4) , 2543-2547. https://doi.org/10.1021/acs.nanolett.6b00085
    9. Kezhen Qi, Filip Zasada, Witold Piskorz, Paulina Indyka, Joanna Gryboś, Mateusz Trochowski, Marta Buchalska, Marcin Kobielusz, Wojciech Macyk, and Zbigniew Sojka . Self-Sensitized Photocatalytic Degradation of Colorless Organic Pollutants Attached to Rutile Nanorods—Experimental and Theoretical DFT+D Studies. The Journal of Physical Chemistry C 2016, 120 (10) , 5442-5456. https://doi.org/10.1021/acs.jpcc.5b10983
    10. Francesca Risplendi and Giancarlo Cicero . Co-Adsorbent Effect on the Sensitization of TiO2 and ZnO Surfaces: A Theoretical Study. The Journal of Physical Chemistry C 2015, 119 (49) , 27348-27353. https://doi.org/10.1021/acs.jpcc.5b11113
    11. Duncan J. Mowbray and Annapaola Migani . Using G0W0 Level Alignment to Identify Catechol’s Structure on TiO2(110). The Journal of Physical Chemistry C 2015, 119 (34) , 19634-19641. https://doi.org/10.1021/acs.jpcc.5b05392
    12. Leena George, Subrahmanyam Sappati, Prasenjit Ghosh, and R. Nandini Devi . Surface Site Modulations by Conjugated Organic Molecules To Enhance Visible Light Activity of ZnO Nanostructures in Photocatalytic Water Splitting. The Journal of Physical Chemistry C 2015, 119 (6) , 3060-3067. https://doi.org/10.1021/jp511996z
    13. Wei Lin, Johannes Walter, Alexandra Burger, Harald Maid, Andreas Hirsch, Wolfgang Peukert, and Doris Segets . A General Approach To Study the Thermodynamics of Ligand Adsorption to Colloidal Surfaces Demonstrated by Means of Catechols Binding to Zinc Oxide Quantum Dots. Chemistry of Materials 2015, 27 (1) , 358-369. https://doi.org/10.1021/cm504080d
    14. K. K. Korir, A. Catellani, and G. Cicero . Ethanol Gas Sensing Mechanism in ZnO Nanowires: An ab Initio Study. The Journal of Physical Chemistry C 2014, 118 (42) , 24533-24537. https://doi.org/10.1021/jp507478s
    15. Arrigo Calzolari, Alice Ruini, and Alessandra Catellani . Transparent Conductive Oxides as Near-IR Plasmonic Materials: The Case of Al-Doped ZnO Derivatives. ACS Photonics 2014, 1 (8) , 703-709. https://doi.org/10.1021/ph500118y
    16. G. F. Arnaud, V. De Renzi, U. del Pennino, R. Biagi, V. Corradini, A. Calzolari, A. Ruini, and A. Catellani . Nitrocatechol/ZnO Interface: The Role of Dipole in a Dye/Metal-Oxide Model System. The Journal of Physical Chemistry C 2014, 118 (8) , 3910-3917. https://doi.org/10.1021/jp410376r
    17. Matías E. Aguirre, G. Custo, Marcio S. Goes, Paulo R. Bueno, G. Zampieri, and María A. Grela . Critical Water Effect on the Plasmon Band and Visible Light Activity of Au/ZnO Nanocomposites. The Journal of Physical Chemistry C 2014, 118 (4) , 2018-2027. https://doi.org/10.1021/jp410304q
    18. Qian-Lin Tang and Qing-Hong Luo . Adsorption of CO2 at ZnO: A Surface Structure Effect from DFT+U Calculations. The Journal of Physical Chemistry C 2013, 117 (44) , 22954-22966. https://doi.org/10.1021/jp407970a
    19. Wenhua Zhang, Liang Cao, Li Wan, Linyun Liu, and Faqiang Xu . A Photoelectron Spectroscopy Study on the Interfacial Chemistry and Electronic Structure of Terephthalic Acid Adsorption on TiO2(110)-(1×1) Surface. The Journal of Physical Chemistry C 2013, 117 (41) , 21351-21358. https://doi.org/10.1021/jp406631x
    20. Supriya Saha, Sunandan Sarkar, Sougata Pal, and Pranab Sarkar . Tuning the Energy Levels of ZnO/ZnS Core/Shell Nanowires To Design an efficient Nanowire-Based Dye-Sensitized Solar Cell. The Journal of Physical Chemistry C 2013, 117 (31) , 15890-15900. https://doi.org/10.1021/jp402611j
    21. Jin Chang, Rasin Ahmed, Hongxia Wang, Hongwei Liu, Renzhi Li, Peng Wang, and Eric R. Waclawik . ZnO Nanocones with High-Index {101̅1} Facets for Enhanced Energy Conversion Efficiency of Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2013, 117 (27) , 13836-13844. https://doi.org/10.1021/jp402742n
    22. Cunku Dong, Xin Li, Wei Zhao, Pengfei Jin, and Jingyao Qi . Theoretical Analysis of Built-in Interfacial Electric Dipole Field in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2013, 117 (18) , 9092-9103. https://doi.org/10.1021/jp312834n
    23. Daniel Finkelstein-Shapiro, Sarah Hurst Petrosko, Nada M. Dimitrijevic, David Gosztola, Kimberly A. Gray, Tijana Rajh, Pilarisetty Tarakeshwar, and Vladimiro Mujica . CO2 Preactivation in Photoinduced Reduction via Surface Functionalization of TiO2 Nanoparticles. The Journal of Physical Chemistry Letters 2013, 4 (3) , 475-479. https://doi.org/10.1021/jz3020327
    24. Nunzio Roberto D’Amico, Giovanni Cantele, and Domenico Ninno . First-Principles Calculations of Clean and Defected ZnO Surfaces. The Journal of Physical Chemistry C 2012, 116 (40) , 21391-21400. https://doi.org/10.1021/jp306785z
    25. Arrigo Calzolari, Alice Ruini, and Alessandra Catellani . Surface Effects on Catechol/Semiconductor Interfaces. The Journal of Physical Chemistry C 2012, 116 (32) , 17158-17163. https://doi.org/10.1021/jp307117h
    26. Yan Cao, Elena Galoppini, Pavel Ivanoff Reyes, Ziqing Duan, and Yicheng Lu . Morphology Effects on the Biofunctionalization of Nanostructured ZnO. Langmuir 2012, 28 (21) , 7947-7951. https://doi.org/10.1021/la3006037
    27. Claudia Caddeo, Giuliano Malloci, Gian-Marco Rignanese, Luciano Colombo, and Alessandro Mattoni . Electronic Properties of Hybrid Zinc Oxide–Oligothiophene Nanostructures. The Journal of Physical Chemistry C 2012, 116 (14) , 8174-8180. https://doi.org/10.1021/jp212283z
    28. Bonggeun Shong and Stacey F. Bent . Transition in the Molecular Orientation of Phenol Adsorbates on the Ge(100)-2 × 1 Surface. The Journal of Physical Chemistry C 2012, 116 (14) , 7925-7930. https://doi.org/10.1021/jp3009767
    29. Sung-Hoon Lee, Jongseob Kim, Ki-Ha Hong, Jaikwang Shin, Sungjin Kim, and Kinam Kim . Surface Ferromagnetic p-Type ZnO Nanowires through Charge Transfer Doping. ACS Applied Materials & Interfaces 2012, 4 (3) , 1365-1370. https://doi.org/10.1021/am201633x
    30. Naveen Kosar, Tariq Mahmood, Muhammad Adnan, Mohammed Salim Akhter, Mohammad Z. Ahmed, M. Raja. Exploration of sensing behavior B3O3 quantum dot toward methyl halides; a quantum chemical approach. Computational and Theoretical Chemistry 2024, 1239 , 114783. https://doi.org/10.1016/j.comptc.2024.114783
    31. Jamal Mohammadian, Shahriar Osfouri, Tahmineh Jalali, Ahmad Jamekhorshid. Electrochemical impedance spectroscopy analysis of dye-sensitized solar cells composed of electrospun composite photoanodes: A comparative study of natural and synthetic sensitizers. Optik 2024, 303 , 171730. https://doi.org/10.1016/j.ijleo.2024.171730
    32. Takeshi Shinkai, Jonas Karl Christopher N. Agutaya, Biplab Manna, Matthias Boepple, Masaru Iwai, Keigo Masumoto, Kanako Koga, Koki Kawanami, Yusui Nakamura, Armando T. Quitain, Koichi Suematsu, Yusuke Inomata, Nicolae Barsan, Tetsuya Kida. Ethanol sensing mechanism of ZnO nanorods revealed by DRIFT spectroscopy and DFT calculations. Journal of Materials Chemistry A 2024, 12 (13) , 7564-7576. https://doi.org/10.1039/D3TA06486G
    33. Mario Mäkinen, Timo Weckman, Kari Laasonen. Modelling the growth reaction pathways of zincone ALD/MLD hybrid thin films: a DFT study. Physical Chemistry Chemical Physics 2024, 97 https://doi.org/10.1039/D4CP00249K
    34. Yizhen Song, Paulo C. D. Mendes, Sergey M. Kozlov. Tunable properties and composition of ZnO films supported on metal surfaces. Journal of Materials Chemistry A 2023, 11 (25) , 13665-13676. https://doi.org/10.1039/D3TA01940C
    35. Dandan Zhou, Youxi Wang, Yuniu Sun, Jiefu Zhang, Dan Wang, Zhenyu Li, Xiang Shao. Adsorption structures of catechol on the ZnO(10-10) surface. Applied Surface Science 2023, 610 , 155504. https://doi.org/10.1016/j.apsusc.2022.155504
    36. Anna Ciechan, Piotr Bogusławski. Theory of the sp–d coupling of transition metal impurities with free carriers in ZnO. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-83258-1
    37. Kyle R. Stoltz, Elena Echeverria, Amrit Kaphle, Aaron J. Austin, Parameswar Harikumar, Andrew J. Yost, David N. McIlroy, Mario F. Borunda. Optimization of the U parameter in CoO groupings in ZnO ( 10 1 ¯ 0 ) and ( 11 2 ¯ 0 ) surfaces: A DFT+U and UPS study. Computational Materials Science 2021, 198 , 110700. https://doi.org/10.1016/j.commatsci.2021.110700
    38. Sadman Sakib, Fatemeh Bakhshandeh, Sudip Saha, Leyla Soleymani, Igor Zhitomirsky. Surface Functionalization of Metal Oxide Semiconductors with Catechol Ligands for Enhancing Their Photoactivity. Solar RRL 2021, 5 (10) https://doi.org/10.1002/solr.202100512
    39. Lei Zhang, Shuai Lin. Cosensitization-based halide perovskite in aqueous solution: A photoelectrochemical and first-principles investigation. Materials Research Bulletin 2021, 141 , 111358. https://doi.org/10.1016/j.materresbull.2021.111358
    40. Manuel M. Balmeo, John Symon C. Dizon, Melvin John F. Empizo, Erick John Carlo D. Solibet, Verdad C. Agulto, Arnel A. Salvador, Nobuhiko Sarukura, Hiroshi Nakanishi, Hideaki Kasai, Allan Abraham B. Padama. Density functional theory-based investigation of hydrogen adsorption on zinc oxide ( 10 1 ¯ 0 ) surface: Revisited. Surface Science 2021, 703 , 121726. https://doi.org/10.1016/j.susc.2020.121726
    41. Jian Wang, Junlin Zhong, Jinghai Yang, Xin Qu, Yukai Zhang, Ming Gao, Jian Cao, Xiaoyan Liu, Qi Zhang, Jihui Lang, Lili Yang. The influence of ZnO loading amount on the photocatalytic performance of Fe 3 O 4 @SiO 2 @ZnO–Ag composites toward the degradation of organic pollutants and hydrogen evolution. New Journal of Chemistry 2021, 585 https://doi.org/10.1039/D1NJ03195C
    42. Md Nurul Huda Liton, Abu Kalam Mohammad Farid Ul Islam, Md Kamruzzaman, Md Khalilur Rahman Khan, Md Al Helal, Md Mozibur Rahman. Dual acceptor (N, Cu) doping effects on the electronic and optical properties of ZnO. Materials Chemistry and Physics 2020, 242 , 122463. https://doi.org/10.1016/j.matchemphys.2019.122463
    43. Arrigo Calzolari, Giancarlo Cicero, Alessandra Catellani. Ab Initio Simulations of Semiconductor Surfaces and Interfaces. 2020, 119-153. https://doi.org/10.1007/978-3-030-46906-1_5
    44. Subrahmanyam Sappati, Leena George, Vincent Paul Swamy, R. Nandini Devi, Prasenjit Ghosh. Descriptors to Predict Dye‐Sensitized Semiconductor Based Photocatalyst for Hydrogen Evolution Reaction. ChemCatChem 2019, 11 (24) , 6460-6466. https://doi.org/10.1002/cctc.201901924
    45. Raphael Schlesinger, Fabio Bussolotti, Jinpeng Yang, Sergey Sadofev, Antje Vollmer, Sylke Blumstengel, Satoshi Kera, Nobuo Ueno, Norbert Koch. Gap states induce soft Fermi level pinning upon charge transfer at ZnO/molecular acceptor interfaces. Physical Review Materials 2019, 3 (7) https://doi.org/10.1103/PhysRevMaterials.3.074601
    46. A Ciechan, P Bogusławski. Calculated optical properties of Co in ZnO: internal and ionization transitions. Journal of Physics: Condensed Matter 2019, 31 (25) , 255501. https://doi.org/10.1088/1361-648X/ab119d
    47. Lei Zhang, Shuai Lin. Effect of novel anchoring groups on the electronic and optical properties of water-splitting metal-free dye molecules: A first-principles investigation. Chemical Physics 2019, 522 , 84-90. https://doi.org/10.1016/j.chemphys.2019.02.020
    48. O. Volnianska, P. Bogusławski. Green luminescence and calculated optical properties of Cu ions in ZnO. Journal of Alloys and Compounds 2019, 782 , 1024-1030. https://doi.org/10.1016/j.jallcom.2018.12.252
    49. Yuan Chen, Hao Fan, Elena Galoppini. Click Chemistry and Nitrogen‐Containing Heterocycles Formed in Surface Functionalization Reactions. 2019, 1-46. https://doi.org/10.1002/9780470682531.pat0924
    50. L. Zhang, Q. Wang. Binding Mode of Malonic Acid on the IrO2 Surface. Journal of Structural Chemistry 2019, 60 (1) , 7-12. https://doi.org/10.1134/S0022476619010025
    51. Leena George, Subrahmanyam Sappati, Prasenjit Ghosh, R. Nandini Devi. Sensitizing with short conjugated molecules: Multimodal anchoring on ZnO nanoparticles for enhanced electron transfer characteristics, stability and H 2 evolution. Catalysis Today 2018, 309 , 89-97. https://doi.org/10.1016/j.cattod.2017.09.052
    52. Alexandra Burger, Andreas Kunzmann, Rubén D. Costa, Rubitha Srikantharajah, Wolfgang Peukert, Dirk M. Guldi, Andreas Hirsch. Synergy of Catechol‐Functionalized Zinc Oxide Nanorods and Porphyrins in Layer‐by‐Layer Assemblies. Chemistry – A European Journal 2018, 24 (31) , 7896-7905. https://doi.org/10.1002/chem.201705327
    53. A. Ciechan, P. Bogusławski. Transition metal ions in ZnO: Effects of intrashell coulomb repulsion on electronic properties. Optical Materials 2018, 79 , 264-268. https://doi.org/10.1016/j.optmat.2018.03.038
    54. Lei Zhang, Qiaoyi Wang. Spectroscopic and first principles investigation on 4-[(4-pyridinylmethylene)amino]-benzoic acid bearing pyridyl and carboxyl anchoring groups. Journal of Molecular Structure 2018, 1155 , 389-393. https://doi.org/10.1016/j.molstruc.2017.11.020
    55. Jiang-Tao Liu, Ming-Fei Wang, Zhi-Hua Gao, Zhi-Jun Zuo, Wei Huang. The role of catalysts in the decomposition of phenoxy compounds in coal: A density functional theory study. Applied Surface Science 2018, 428 , 541-548. https://doi.org/10.1016/j.apsusc.2017.09.170
    56. T.E. Sandoval, S.F. Bent. Adsorption of Multifunctional Organic Molecules at a Surface: First Step in Molecular Layer Deposition. 2018, 523-537. https://doi.org/10.1016/B978-0-12-409547-2.13139-7
    57. Alexandra Burger, Rubitha Srikantharajah, Wolfgang Peukert, Andreas Hirsch. Individualization and Stabilization of Zinc Oxide Nanorods by Covalent Functionalization with Positively Charged Catechol Derivatives. Chemistry – A European Journal 2017, 23 (68) , 17257-17268. https://doi.org/10.1002/chem.201702109
    58. Pino D’Amico, Arrigo Calzolari, Alice Ruini, Alessandra Catellani. New energy with ZnS: novel applications for a standard transparent compound. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-17156-w
    59. O. Volnianska. Magnetic properties of isolated Re ion and Re-Re complex in ZnO studied by GGA+U approach. Journal of Magnetism and Magnetic Materials 2017, 441 , 436-442. https://doi.org/10.1016/j.jmmm.2017.06.017
    60. W.M. Mulwa, B.F. Dejene, M.O. Onani, C.N.M. Ouma. Effect of Cu 2+ doping on the structural, electronic and optical properties of ZnAl 2 O 4 : A combined experimental and DFT+ U study. Journal of Luminescence 2017, 184 , 7-16. https://doi.org/10.1016/j.jlumin.2016.12.008
    61. Alessandra Catellani, Arrigo Calzolari. Codoping and Interstitial Deactivation in the Control of Amphoteric Li Dopant in ZnO for the Realization of p-Type TCOs. Materials 2017, 10 (4) , 332. https://doi.org/10.3390/ma10040332
    62. Taniya Manzoor, Summera Asmi, Saba Niaz, Altaf Hussain Pandith. Computational studies on optoelectronic and charge transfer properties of some perylene-based donor-π-acceptor systems for dye sensitized solar cell applications. International Journal of Quantum Chemistry 2017, 117 (5) , e25332. https://doi.org/10.1002/qua.25332
    63. , , , Arrigo Calzolari, Alessandra Catellani. Doping, co-doping, and defect effects on the plasmonic activity of ZnO-based transparent conductive oxides. 2017, 101050G. https://doi.org/10.1117/12.2250736
    64. Raphael Schlesinger. Results and Discussion. 2017, 91-180. https://doi.org/10.1007/978-3-319-46624-8_5
    65. Federico Raffone, Giancarlo Cicero. Does platinum play a role in the resistance switching of ZnO nanowire-based devices?. Solid State Ionics 2017, 299 , 93-95. https://doi.org/10.1016/j.ssi.2016.10.020
    66. Kezhen Qi, Hanshu Qi, Yubo Xie, Yan Wang. Enhanced Photocatalytic Performance of ZnO through Coupling with Carbon Materials. General Chemistry 2017, 3 (1) , 113. https://doi.org/10.21127/yaoyigc20160008
    67. Marco Laurenti, Stefano Stassi, Giancarlo Canavese, Valentina Cauda. Surface Engineering of Nanostructured ZnO Surfaces. Advanced Materials Interfaces 2017, 4 (2) https://doi.org/10.1002/admi.201600758
    68. Anthony Consiglio, Zhiting Tian. Importance of the Hubbard correction on the thermal conductivity calculation of strongly correlated materials: a case study of ZnO. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep36875
    69. J. Papierska, A. Ciechan, P. Bogusławski, M. Boshta, M. M. Gomaa, E. Chikoidze, Y. Dumont, A. Drabińska, H. Przybylińska, A. Gardias, J. Szczytko, A. Twardowski, M. Tokarczyk, G. Kowalski, B. Witkowski, K. Sawicki, W. Pacuski, M. Nawrocki, J. Suffczyński. Fe dopant in ZnO: 2+ versus 3+ valency and ion-carrier s , p − d exchange interaction. Physical Review B 2016, 94 (22) https://doi.org/10.1103/PhysRevB.94.224414
    70. Rogério Almeida Gouvêa, Efrácio Mamani Flores, Sérgio da Silva Cava, Mário Lúcio Moreira. A first-principles investigation on the luminescence emissions of BaZrO3 obtained by microwave-assisted hydrothermal method. Journal of Luminescence 2016, 180 , 73-80. https://doi.org/10.1016/j.jlumin.2016.07.023
    71. K. K. Korir, A. Catellani, G. Cicero. Tailoring oxygen vacancies at ZnO(11¯00) surface: An ab initio study. Journal of Applied Physics 2016, 120 (12) https://doi.org/10.1063/1.4962861
    72. Filippo Fabbri, Lucia Nasi, Paolo Fedeli, Patrizia Ferro, Giancarlo Salviati, Roberto Mosca, Arrigo Calzolari, Alessandra Catellani. S-induced modifications of the optoelectronic properties of ZnO mesoporous nanobelts. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep27948
    73. Winfred M. Mulwa, Cecil N.M. Ouma, Martin O. Onani, Francis B. Dejene. Energetic, electronic and optical properties of lanthanide doped TiO2: An ab initio LDA+U study. Journal of Solid State Chemistry 2016, 237 , 129-137. https://doi.org/10.1016/j.jssc.2016.02.003
    74. Lei Zhang, Jacqueline M. Cole. Can nitro groups really anchor onto TiO 2 ? Case study of dye-to-TiO 2 adsorption using azo dyes with NO 2 substituents. Physical Chemistry Chemical Physics 2016, 18 (28) , 19062-19069. https://doi.org/10.1039/C6CP02294D
    75. Eun Jin Son, Jae Hong Kim, Kayoung Kim, Chan Beum Park. Quinone and its derivatives for energy harvesting and storage materials. Journal of Materials Chemistry A 2016, 4 (29) , 11179-11202. https://doi.org/10.1039/C6TA03123D
    76. Hussein Awada, Leila Mezzasalma, Sylvie Blanc, Delphine Flahaut, Christine Dagron‐Lartigau, Joël Lyskawa, Patrice Woisel, Antoine Bousquet, Laurent Billon. Biomimetic Mussel Adhesive Inspired Anchor to Design ZnO@Poly(3‐Hexylthiophene) Hybrid Core@Corona Nanoparticles. Macromolecular Rapid Communications 2015, 36 (16) , 1486-1491. https://doi.org/10.1002/marc.201500184
    77. Tatjana D. Savić, Mirjana I. Čomor, Nadica D. Abazović, Zoran V. Šaponjić, Milena T. Marinović-Cincović, Dušan Ž. Veljković, Snežana D. Zarić, Ivana A. Janković. Anatase nanoparticles surface modified with fused ring salicylate-type ligands (1-hydroxy-2-naphthoic acids): A combined DFT and experimental study. Journal of Alloys and Compounds 2015, 630 , 226-235. https://doi.org/10.1016/j.jallcom.2015.01.041
    78. Tarek T. Ali, Katabathini Narasimharao, Ivan P. Parkin, Claire J. Carmalt, Sanjayan Sathasivam, Sulaiman N. Basahel, Salem M. Bawaked, Shaeel A. Al-Thabaiti. Effect of pretreatment temperature on the photocatalytic activity of microwave irradiated porous nanocrystalline ZnO. New Journal of Chemistry 2015, 39 (1) , 321-332. https://doi.org/10.1039/C4NJ01465K
    79. Matías E. Aguirre, Gonzalo Perelstein, Armin Feldhoff, Adriana Condó, Alfredo J. Tolley, María A. Grela. The spontaneous room temperature reduction of HAuCl 4 in ethylene glycol in the presence of ZnO: a simple strategy to obtain stable Au/ZnO nanostructures exhibiting strong surface plasmon resonance and efficient electron storage properties. New Journal of Chemistry 2015, 39 (2) , 909-914. https://doi.org/10.1039/C4NJ01663G
    80. Alessandra Catellani, Alice Ruini, Marco Buongiorno Nardelli, Arrigo Calzolari. Unconventional co-existence of plasmon and thermoelectric activity in In:ZnO nanowires. RSC Advances 2015, 5 (56) , 44865-44872. https://doi.org/10.1039/C5RA06199G
    81. Tianshi Zhang, Patrick Wojtal, Oleg Rubel, Igor Zhitomirsky. Density functional theory and experimental studies of caffeic acid adsorption on zinc oxide and titanium dioxide nanoparticles. RSC Advances 2015, 5 (129) , 106877-106885. https://doi.org/10.1039/C5RA21511K
    82. Alessandra Catellani, Alice Ruini, Arrigo Calzolari. Optoelectronic properties and color chemistry of native point defects in Al:ZnO transparent conductive oxide. Journal of Materials Chemistry C 2015, 3 (32) , 8419-8424. https://doi.org/10.1039/C5TC01699A
    83. Luis A. Agapito, Stefano Curtarolo, Marco Buongiorno Nardelli. Reformulation of DFT + U as a Pseudohybrid Hubbard Density Functional for Accelerated Materials Discovery. Physical Review X 2015, 5 (1) https://doi.org/10.1103/PhysRevX.5.011006
    84. F. Fabbri, M. Villani, A. Catellani, A. Calzolari, G. Cicero, D. Calestani, G. Calestani, A. Zappettini, B. Dierre, T. Sekiguchi, G. Salviati. Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures. Scientific Reports 2014, 4 (1) https://doi.org/10.1038/srep05158
    85. Tatjana D. Savić, Mirjana I. Čomor, Jovan M. Nedeljković, Dušan Ž. Veljković, Snežana D. Zarić, Vesna M. Rakić, Ivana A. Janković. The effect of substituents on the surface modification of anatase nanoparticles with catecholate-type ligands: a combined DFT and experimental study. Physical Chemistry Chemical Physics 2014, 16 (38) , 20796-20805. https://doi.org/10.1039/C4CP02197E
    86. L.N. Bai, S. Wang, H.M. Sun, Q. Jiang, J.S. Lian. Disordered ZnO nanoparticles with extremely intense deep-level emission and enhanced photocatalytic activity. Applied Surface Science 2014, 313 , 888-895. https://doi.org/10.1016/j.apsusc.2014.06.103
    87. A. Dominguez, M. Lorke, A. L. Schoenhalz, A. L. Rosa, Th. Frauenheim, A. R. Rocha, G. M. Dalpian. First principles investigations on the electronic structure of anchor groups on ZnO nanowires and surfaces. Journal of Applied Physics 2014, 115 (20) https://doi.org/10.1063/1.4879676
    88. Sin Tee Tan, Akrajas Ali Umar, Aamna Balouch, Muhammad Yahaya, Chi Chin Yap, Muhamad Mat Salleh, Munetaka Oyama. ZnO nanocubes with (1 0 1) basal plane photocatalyst prepared via a low-frequency ultrasonic assisted hydrolysis process. Ultrasonics Sonochemistry 2014, 21 (2) , 754-760. https://doi.org/10.1016/j.ultsonch.2013.10.009
    89. Arrigo Calzolari, Marco Buongiorno Nardelli. Dielectric properties and Raman spectra of ZnO from a first principles finite-differences/finite-fields approach. Scientific Reports 2013, 3 (1) https://doi.org/10.1038/srep02999
    90. Alessandra Catellani, Alice Ruini, Giancarlo Cicero, Arrigo Calzolari. First principles description of the electronic properties of doped ZnO. physica status solidi (b) 2013, 250 (10) , 2106-2109. https://doi.org/10.1002/pssb.201200967
    91. Cunku Dong, Xin Li, Wei Zhao, Pengfei Jin, Xiujuan Fan, Jingyao Qi. Elementary Photoelectronic Processes at a Porphyrin Dye/Single‐Walled TiO 2 Nanotube Hetero‐interface in Dye‐Sensitized Solar Cells: A First‐Principles Study. Chemistry – A European Journal 2013, 19 (30) , 10046-10056. https://doi.org/10.1002/chem.201301035
    92. Wenwu Shi, Nitin Chopra. Nanoscale heterostructures for photoelectrochemical water splitting and photodegradation of pollutants. Nanomaterials and Energy 2013, 2 (3) , 158-178. https://doi.org/10.1680/nme.13.00009
    93. Arrigo Calzolari, Mirco Bazzani, Alessandra Catellani. Dipolar and charge transfer effects on the atomic stabilization of ZnO polar surfaces. Surface Science 2013, 607 , 181-186. https://doi.org/10.1016/j.susc.2012.09.004
    94. Jakub Goclon, Bernd Meyer. The interaction of H2S with the ZnO(101̄0) surface. Physical Chemistry Chemical Physics 2013, 15 (21) , 8373. https://doi.org/10.1039/c3cp44546a
    95. Giancarlo Cicero, Giorgia Musso, Andrea Lamberti, Bruno Camino, Stefano Bianco, Diego Pugliese, Francesca Risplendi, Adriano Sacco, Nadia Shahzad, Anna Maria Ferrari, Barbara Ballarin, Claudia Barolo, Elena Tresso, Giuseppe Caputo. Combined experimental and theoretical investigation of the hemi-squaraine/TiO2 interface for dye sensitized solar cells. Physical Chemistry Chemical Physics 2013, 15 (19) , 7198. https://doi.org/10.1039/c3cp50559f
    96. Saifful Kamaluddin Muzakir, Nabilah Alias, Mashitah M. Yusoff, Rajan Jose. On the missing links in quantum dot solar cells: a DFT study on fluorophore oxidation and reduction processes in sensitized solar cells. Physical Chemistry Chemical Physics 2013, 15 (38) , 16275. https://doi.org/10.1039/c3cp52858h
    97. Tatjana D. Savić, Zoran V. Šaponjić, Mirjana I. Čomor, Jovan M. Nedeljković, Miroslav D. Dramićanin, Marko G. Nikolić, Dušan Ž. Veljković, Snežana D. Zarić, Ivana A. Janković. Surface modification of anatase nanoparticles with fused ring salicylate-type ligands (3-hydroxy-2-naphthoic acids): a combined DFT and experimental study of optical properties. Nanoscale 2013, 5 (16) , 7601. https://doi.org/10.1039/c3nr01277h
    98. D. Pugliese, N. Shahzad, A. Sacco, G. Musso, A. Lamberti, G. Caputo, E. Tresso, S. Bianco, C. F. Pirri. Fast TiO 2 Sensitization Using the Semisquaric Acid as Anchoring Group. International Journal of Photoenergy 2013, 2013 , 1-8. https://doi.org/10.1155/2013/871526
    99. Ney Henrique Moreira, Adriel Domıinguez, Thomas Frauenheim, Andreia Luisa da Rosa. On the stabilization mechanisms of organic functional groups on ZnO surfaces. Physical Chemistry Chemical Physics 2012, 14 (44) , 15445. https://doi.org/10.1039/c2cp42435e
    100. Tatjana D. Savić, Ivana A. Janković, Zoran V. Šaponjić, Mirjana I. Čomor, Dušan Ž. Veljković, Snežana D. Zarić, Jovan M. Nedeljković. Surface modification of anatase nanoparticles with fused ring catecholate type ligands: a combined DFT and experimental study of optical properties. Nanoscale 2012, 4 (5) , 1612. https://doi.org/10.1039/c2nr11501h
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2011, 133, 15, 5893–5899
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja1101008
    Published March 28, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    2276

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.