ACS Publications. Most Trusted. Most Cited. Most Read
In Vitro Reconstitution of Eukaryotic Ion Channels Using Droplet Interface Bilayers
My Activity

Figure 1Loading Img
    Article

    In Vitro Reconstitution of Eukaryotic Ion Channels Using Droplet Interface Bilayers
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
    Department of Physiology, Anatomy and Genetics, Le Gros Clark Building, South Parks Road, University of Oxford, Oxford OX1 3QX, United Kingdom
    § Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2011, 133, 24, 9370–9375
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja200128n
    Published May 18, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The ability to routinely study eukaryotic ion channels in a synthetic lipid environment would have a major impact on our understanding of how different lipids influence ion channel function. Here, we describe a straightforward, detergent-free method for the in vitro reconstitution of eukaryotic ion channels and ionotropic receptors into droplet interface bilayers and measure their electrical activity at both the macroscopic and single-channel level. We explore the general applicability of this method by reconstitution of channels from a wide range of sources including recombinant cell lines and native tissues, as well as preparations that are difficult to study by conventional methods including erythrocytes and mitochondria.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional description of the reconstitution method, and further electrical characterization of ion channels present in this manuscript are included as Supporting Information. This information is available free of charge via the Internet at http://pubs.acs.org/.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 58 publications.

    1. Emily A. Schafer, Joshua J. Maraj, Camryn Kenney, Stephen A. Sarles, Jonathan Rivnay. Droplet Polymer Bilayers for Bioelectronic Membrane Interfacing. Journal of the American Chemical Society 2024, 146 (21) , 14391-14396. https://doi.org/10.1021/jacs.4c01591
    2. Xiaoyu Du, Yuqin Wang, Shanyu Zhang, Pingping Fan, Shuanghong Yan, Panke Zhang, Hong-Yuan Chen, Shuo Huang. Microscopic Screening of Cyclodextrin Channel Blockers by DiffusiOptoPhysiology. Analytical Chemistry 2021, 93 (42) , 14161-14168. https://doi.org/10.1021/acs.analchem.1c02775
    3. Siew-Leng Loo, Winna Siti, Monisha Thiyagarajan, Jaume Torres, Rong Wang, and Xiao Hu . Reproducible Preparation of Proteopolymersomes via Sequential Polymer Film Hydration and Membrane Protein Reconstitution. Langmuir 2017, 33 (43) , 12336-12343. https://doi.org/10.1021/acs.langmuir.7b02926
    4. Toshihisa Osaki and Shoji Takeuchi . Artificial Cell Membrane Systems for Biosensing Applications. Analytical Chemistry 2017, 89 (1) , 216-231. https://doi.org/10.1021/acs.analchem.6b04744
    5. Dibyendu Kumar Sasmal, Rajeev Yadav, and H. Peter Lu . Single-Molecule Patch-Clamp FRET Anisotropy Microscopy Studies of NMDA Receptor Ion Channel Activation and Deactivation under Agonist Ligand Binding in Living Cells. Journal of the American Chemical Society 2016, 138 (28) , 8789-8801. https://doi.org/10.1021/jacs.6b03496
    6. Graham J. Taylor and Stephen A. Sarles . Heating-Enabled Formation of Droplet Interface Bilayers Using Escherichia coli Total Lipid Extract. Langmuir 2015, 31 (1) , 325-337. https://doi.org/10.1021/la503471m
    7. Dibyendu Kumar Sasmal and H. Peter Lu . Single-Molecule Patch-Clamp FRET Microscopy Studies of NMDA Receptor Ion Channel Dynamics in Living Cells: Revealing the Multiple Conformational States Associated with a Channel at Its Electrical Off State. Journal of the American Chemical Society 2014, 136 (37) , 12998-13005. https://doi.org/10.1021/ja506231j
    8. Nadin Jahnke, Oxana O. Krylova, Torben Hoomann, Carolyn Vargas, Sebastian Fiedler, Peter Pohl, and Sandro Keller . Real-Time Monitoring of Membrane-Protein Reconstitution by Isothermal Titration Calorimetry. Analytical Chemistry 2014, 86 (1) , 920-927. https://doi.org/10.1021/ac403723t
    9. Jesper S. Hansen, James R. Thompson, Claus Hélix-Nielsen, and Noah Malmstadt . Lipid Directed Intrinsic Membrane Protein Segregation. Journal of the American Chemical Society 2013, 135 (46) , 17294-17297. https://doi.org/10.1021/ja409708e
    10. Azusa Oshima, Ayumi Hirano-Iwata, Hideki Mozumi, Yutaka Ishinari, Yasuo Kimura, and Michio Niwano . Reconstitution of Human Ether-a-go-go-Related Gene Channels in Microfabricated Silicon Chips. Analytical Chemistry 2013, 85 (9) , 4363-4369. https://doi.org/10.1021/ac303484k
    11. Megan Larmore, Orhi Esarte Palomero, Neha Kamat, Paul G DeCaen. A synthetic method to assay polycystin channel biophysics. eLife 2024, 13 https://doi.org/10.7554/eLife.98534.3
    12. Megan Larmore, Orhi Esarte Palomero, Neha Kamat, Paul G DeCaen. A synthetic method to assay polycystin channel biophysics. eLife 2024, 13 https://doi.org/10.7554/eLife.98534
    13. Megan Larmore, Orhi Esarte Palomero, Neha P. Kamat, Paul G. DeCaen. A synthetic method to assay polycystin channel biophysics. 2024https://doi.org/10.1101/2024.05.06.592666
    14. Elanna B. Stephenson, Jaime L. Korner, Katherine S. Elvira. Challenges and opportunities in achieving the full potential of droplet interface bilayers. Nature Chemistry 2022, 14 (8) , 862-870. https://doi.org/10.1038/s41557-022-00989-y
    15. D. K. Baxani, W. D. Jamieson, D. A. Barrow, O. K. Castell. Encapsulated droplet interface bilayers as a platform for high-throughput membrane studies. Soft Matter 2022, 18 (27) , 5089-5096. https://doi.org/10.1039/D1SM01111A
    16. Y. Huang, G.G. Fuller, V. Chandran Suja. Physicochemical characteristics of droplet interface bilayers. Advances in Colloid and Interface Science 2022, 304 , 102666. https://doi.org/10.1016/j.cis.2022.102666
    17. Ryusuke Miyata, Daisuke Tadaki, Daichi Yamaura, Shun Araki, Madoka Sato, Maki Komiya, Teng Ma, Hideaki Yamamoto, Michio Niwano, Ayumi Hirano-Iwata. Parallel Recordings of Transmembrane hERG Channel Currents Based on Solvent-Free Lipid Bilayer Microarray. Micromachines 2021, 12 (1) , 98. https://doi.org/10.3390/mi12010098
    18. Maki Komiya, Miki Kato, Daisuke Tadaki, Teng Ma, Hideaki Yamamoto, Ryugo Tero, Yuzuru Tozawa, Michio Niwano, Ayumi Hirano‐Iwata. Advances in Artificial Cell Membrane Systems as a Platform for Reconstituting Ion Channels. The Chemical Record 2020, 20 (7) , 730-742. https://doi.org/10.1002/tcr.201900094
    19. Maxwell Allen-Benton, Heather E Findlay, Paula J Booth. Probing membrane protein properties using droplet interface bilayers. Experimental Biology and Medicine 2019, 244 (8) , 709-720. https://doi.org/10.1177/1535370219847939
    20. Alan Williams, N. Lowri Thomas. Reconstitution of Ion Channels from Intracellular Membranes and Bacteria Not Amenable to Conventional Electrophysiological Techniques. 2019, 1-11. https://doi.org/10.1007/978-3-642-35943-9_372-1
    21. Oliver K. Castell, Patricia M. Dijkman, Daniel N. Wiseman, Alan D. Goddard. Single molecule fluorescence for membrane proteins. Methods 2018, 147 , 221-228. https://doi.org/10.1016/j.ymeth.2018.05.024
    22. Daisuke Tadaki, Daichi Yamaura, Kohei Arata, Takeshi Ohori, Teng Ma, Hideaki Yamamoto, Michio Niwano, Ayumi Hirano-Iwata. Micro- and nanofabrication methods for ion channel reconstitution in bilayer lipid membranes. Japanese Journal of Applied Physics 2018, 57 (3S2) , 03EA01. https://doi.org/10.7567/JJAP.57.03EA01
    23. Stéphane Renauld, Sandra Cortes, Beate Bersch, Xavier Henry, Michel De Waard, Béatrice Schaack. Functional reconstitution of cell-free synthesized purified Kv channels. Biochimica et Biophysica Acta (BBA) - Biomembranes 2017, 1859 (12) , 2373-2380. https://doi.org/10.1016/j.bbamem.2017.09.002
    24. Mariam Bayoumi, Hagan Bayley, Giovanni Maglia, K. Tanuj Sapra. Multi-compartment encapsulation of communicating droplets and droplet networks in hydrogel as a model for artificial cells. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep45167
    25. Kadla R. Rosholm, Matthew A. B. Baker, Pietro Ridone, Yoshitaka Nakayama, Paul R. Rohde, Luis G. Cuello, Lawrence K. Lee, Boris Martinac. Activation of the mechanosensitive ion channel MscL by mechanical stimulation of supported Droplet-Hydrogel bilayers. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep45180
    26. John S. H. Danial, Bríd Cronin, Chandini Mallik, Mark I. Walllace. On demand modulation of lipid composition in an individual bilayer. Soft Matter 2017, 13 (9) , 1788-1793. https://doi.org/10.1039/C6SM01774F
    27. Michael J. Booth, Vanessa Restrepo Schild, Florence G. Downs, Hagan Bayley. Functional aqueous droplet networks. Molecular BioSystems 2017, 13 (9) , 1658-1691. https://doi.org/10.1039/C7MB00192D
    28. Abigail de Bruin, Mark S. Friddin, Yuval Elani, Nicholas J. Brooks, Robert V. Law, John M. Seddon, Oscar Ces. A transparent 3D printed device for assembling droplet hydrogel bilayers (DHBs). RSC Adv. 2017, 7 (75) , 47796-47800. https://doi.org/10.1039/C7RA09406J
    29. Divesh K. Baxani, Alex J. L. Morgan, William D. Jamieson, Christopher J. Allender, David A. Barrow, Oliver K. Castell. Bilayer Networks within a Hydrogel Shell: A Robust Chassis for Artificial Cells and a Platform for Membrane Studies. Angewandte Chemie 2016, 128 (46) , 14452-14457. https://doi.org/10.1002/ange.201607571
    30. Divesh K. Baxani, Alex J. L. Morgan, William D. Jamieson, Christopher J. Allender, David A. Barrow, Oliver K. Castell. Bilayer Networks within a Hydrogel Shell: A Robust Chassis for Artificial Cells and a Platform for Membrane Studies. Angewandte Chemie International Edition 2016, 55 (46) , 14240-14245. https://doi.org/10.1002/anie.201607571
    31. Ayumi Hirano-Iwata, Yutaka Ishinari, Miyu Yoshida, Shun Araki, Daisuke Tadaki, Ryusuke Miyata, Kenichi Ishibashi, Hideaki Yamamoto, Yasuo Kimura, Michio Niwano. Reconstitution of Human Ion Channels into Solvent-free Lipid Bilayers Enhanced by Centrifugal Forces. Biophysical Journal 2016, 110 (10) , 2207-2215. https://doi.org/10.1016/j.bpj.2016.04.010
    32. Nathan E. Barlow, Guido Bolognesi, Anthony J. Flemming, Nicholas J. Brooks, Laura M. C. Barter, Oscar Ces. Multiplexed droplet Interface bilayer formation. Lab on a Chip 2016, 16 (24) , 4653-4657. https://doi.org/10.1039/C6LC01011C
    33. Viksita Vijayvergiya, Shiv Acharya, Sidney P. Wilson, Jacob J. Schmidt, . Measurement of Ensemble TRPV1 Ion Channel Currents Using Droplet Bilayers. PLOS ONE 2015, 10 (10) , e0141366. https://doi.org/10.1371/journal.pone.0141366
    34. Ayumi Hirano‐Iwata, Yutaka Ishinari, Hideaki Yamamoto, Michio Niwano. Micro‐ and Nano‐Technologies for Lipid Bilayer‐Based Ion‐Channel Functional Assays. Chemistry – An Asian Journal 2015, 10 (6) , 1266-1274. https://doi.org/10.1002/asia.201403391
    35. Viksita Vijayvergiya, Shiv Acharya, Jason Poulos, Jacob Schmidt. Single channel and ensemble hERG conductance measured in droplet bilayers. Biomedical Microdevices 2015, 17 (1) https://doi.org/10.1007/s10544-014-9919-4
    36. Eve E. Weatherill, Mark I. Wallace. Combining Single-Molecule Imaging and Single-Channel Electrophysiology. Journal of Molecular Biology 2015, 427 (1) , 146-157. https://doi.org/10.1016/j.jmb.2014.07.007
    37. Jesper S. Hansen, Karin Elbing, James R. Thompson, Noah Malmstadt, Karin Lindkvist-Petersson. Glucose transport machinery reconstituted in cell models. Chemical Communications 2015, 51 (12) , 2316-2319. https://doi.org/10.1039/C4CC08838G
    38. Hanna M. G. Barriga, Paula Booth, Stuart Haylock, Richard Bazin, Richard H. Templer, Oscar Ces. Droplet interface bilayer reconstitution and activity measurement of the mechanosensitive channel of large conductance from Escherichia coli. Journal of The Royal Society Interface 2014, 11 (98) https://doi.org/10.1098/rsif.2014.0404
    39. Srujan Kumar Dondapati, Mohamed Kreir, Robert B. Quast, Doreen A Wüstenhagen, Andrea Brüggemann, Niels Fertig, Stefan Kubick. Membrane assembly of the functional KcsA potassium channel in a vesicle-based eukaryotic cell-free translation system. Biosensors and Bioelectronics 2014, 59 , 174-183. https://doi.org/10.1016/j.bios.2014.03.004
    40. Bin Lu, Gayane Kocharyan, Jacob J. Schmidt. Lipid bilayer arrays: Cyclically formed and measured. Biotechnology Journal 2014, 9 (3) , 446-451. https://doi.org/10.1002/biot.201300271
    41. Kei Fujiwara, Miho Yanagisawa, Shin-ichiro M. Nomura. Reconstitution of intracellular environments in vitro and in artificial cells. BIOPHYSICS 2014, 10 (0) , 43-48. https://doi.org/10.2142/biophysics.10.43
    42. Shiksha Mantri, K. Tanuj Sapra. Evolving protocells to prototissues: rational design of a missing link. Biochemical Society Transactions 2013, 41 (5) , 1159-1165. https://doi.org/10.1042/BST20130135
    43. Stephen A Sarles. The use of virtual ground to control transmembrane voltages and measure bilayer currents in serial arrays of droplet interface bilayers. Smart Materials and Structures 2013, 22 (9) , 094023. https://doi.org/10.1088/0964-1726/22/9/094023
    44. Patthara Kongsuphol, Kok Boon Fang, Zhipeng Ding. Lipid bilayer technologies in ion channel recordings and their potential in drug screening assay. Sensors and Actuators B: Chemical 2013, 185 , 530-542. https://doi.org/10.1016/j.snb.2013.04.119
    45. Sebastian Leptihn, Oliver K Castell, Brid Cronin, En-Hsin Lee, Linda C M Gross, David P Marshall, James R Thompson, Matthew Holden, Mark I Wallace. Constructing droplet interface bilayers from the contact of aqueous droplets in oil. Nature Protocols 2013, 8 (6) , 1048-1057. https://doi.org/10.1038/nprot.2013.061
    46. Shiva A. Portonovo, Carl S. Salazar, Jacob J. Schmidt. hERG drug response measured in droplet bilayers. Biomedical Microdevices 2013, 15 (2) , 255-259. https://doi.org/10.1007/s10544-012-9725-9
    47. Max Lein, Jing Huang, Matthew A. Holden. Robust reagent addition and perfusion strategies for droplet-interface bilayers. Lab on a Chip 2013, 13 (14) , 2749. https://doi.org/10.1039/c3lc41323c
    48. K. Tanuj Sapra, Hagan Bayley. Lipid-coated hydrogel shapes as components of electrical circuits and mechanical devices. Scientific Reports 2012, 2 (1) https://doi.org/10.1038/srep00848
    49. Yanli Zhang, Thai Phung, James Dunlop, Julie Dalziel. hERG ion channel pharmacology: cell membrane liposomes in porous-supported lipid bilayers compared with whole-cell patch-clamping. European Biophysics Journal 2012, 41 (11) , 949-958. https://doi.org/10.1007/s00249-012-0852-2
    50. Ayumi Hirano-Iwata, Azusa Oshima, Hideki Mozumi, Yasuo Kimura, Michio Niwano. Stable Lipid Bilayers Based on Micro- and Nano-Fabrication as a Platform for Recording Ion-Channel Activities. Analytical Sciences 2012, 28 (11) , 1049-1057. https://doi.org/10.2116/analsci.28.1049
    51. Louis Tiefenauer, Sophie Demarche. Challenges in the Development of Functional Assays of Membrane Proteins. Materials 2012, 5 (11) , 2205-2242. https://doi.org/10.3390/ma5112205
    52. Ayumi Hirano-Iwata, Tomohiro Nasu, Azusa Oshima, Yasuo Kimura, Michio Niwano. Lipid bilayer array for simultaneous recording of ion channel activities. Applied Physics Letters 2012, 101 (2) https://doi.org/10.1063/1.4736263
    53. Oliver K. Castell, James Berridge, Mark I. Wallace. Quantification of Membrane Protein Inhibition by Optical Ion Flux in a Droplet Interface Bilayer Array. Angewandte Chemie 2012, 124 (13) , 3188-3192. https://doi.org/10.1002/ange.201107343
    54. Oliver K. Castell, James Berridge, Mark I. Wallace. Quantification of Membrane Protein Inhibition by Optical Ion Flux in a Droplet Interface Bilayer Array. Angewandte Chemie International Edition 2012, 51 (13) , 3134-3138. https://doi.org/10.1002/anie.201107343
    55. Ildikò Szabò, Luigi Leanza, Erich Gulbins, Mario Zoratti. Physiology of potassium channels in the inner membrane of mitochondria. Pflügers Archiv - European Journal of Physiology 2012, 463 (2) , 231-246. https://doi.org/10.1007/s00424-011-1058-7
    56. Shiva A. Portonovo, Jacob Schmidt. Masking apertures enabling automation and solution exchange in sessile droplet lipid bilayers. Biomedical Microdevices 2012, 14 (1) , 187-191. https://doi.org/10.1007/s10544-011-9596-5
    57. Tao Zhu, Fan Xu, Bing Yuan, Chunlai Ren, Zhongying Jiang, Yuqiang Ma. Effect of calcium cation on lipid vesicle deposition on silicon dioxide surface under various thermal conditions. Colloids and Surfaces B: Biointerfaces 2012, 89 , 228-233. https://doi.org/10.1016/j.colsurfb.2011.09.014
    58. Ahmad M. El-Arabi, Carl S. Salazar, Jacob J. Schmidt. Ion channel drug potency assay with an artificial bilayer chip. Lab on a Chip 2012, 12 (13) , 2409. https://doi.org/10.1039/c2lc40087a
    59. Joanne Oates, Anthony Watts. Uncovering the intimate relationship between lipids, cholesterol and GPCR activation. Current Opinion in Structural Biology 2011, 21 (6) , 802-807. https://doi.org/10.1016/j.sbi.2011.09.007

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2011, 133, 24, 9370–9375
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja200128n
    Published May 18, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    2775

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.