ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Amphiphilic Crescent-Moon-Shaped Microparticles Formed by Selective Adsorption of Colloids

View Author Information
School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, Massachusetts, United States
Cite this: J. Am. Chem. Soc. 2011, 133, 14, 5516–5524
Publication Date (Web):March 21, 2011
https://doi.org/10.1021/ja200139w
Copyright © 2011 American Chemical Society

    Article Views

    4636

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (9 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    We use a microfluidic device to prepare monodisperse amphiphilic particles in the shape of a crescent-moon and use these particles to stabilize oil droplets in water. The microfluidic device is comprised of a tapered capillary in a theta (θ) shape that injects two oil phases into water in a single receiving capillary. One oil is a fluorocarbon, while the second is a photocurable monomer, which partially wets the first oil drop; silica colloids in the monomer migrate and adsorb to the interface with water but do not protrude into the oil interface. Upon UV-induced polymerization, solid particles with the shape of a crescent moon are formed; removal of fluorocarbon oil yields amphiphilic particles due to the selective adsorption of silica colloids. The resultant amphiphilic microparticles can be used to stabilize oil drops in a mixture of water and ethanol; if they are packed to sufficient surface density on the interface of the oil drop, they become immobilized, preventing direct contact between neighboring drops, thereby providing the stability.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Optical microscope and SEM images of microparticles and particle-coated oil drops are included to show their structures and surface properties. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 148 publications.

    1. Yongyang Song, Xizi Wan, Shutao Wang. Heterostructured Microparticles: From Emulsion Interfacial Polymerization to Separation Applications. Accounts of Materials Research 2023, Article ASAP.
    2. Arkaye Kierulf, Mojtaba Enayati, Mohammad Yaghoobi, Judith Whaley, James Smoot, Mariana Perez Herrera, Alireza Abbaspourrad. Starch Janus Particles: Bulk Synthesis, Self-Assembly, Rheology, and Potential Food Applications. ACS Applied Materials & Interfaces 2022, 14 (51) , 57371-57386. https://doi.org/10.1021/acsami.2c17634
    3. Pingan Zhu, Liqiu Wang. Microfluidics-Enabled Soft Manufacture of Materials with Tailorable Wettability. Chemical Reviews 2022, 122 (7) , 7010-7060. https://doi.org/10.1021/acs.chemrev.1c00530
    4. Yuanqing Zhu, Rong Fan, Zhiyuan Zheng, Zhiqiang Zhu, Ting Si, Ronald X. Xu. Preparation of Anisotropic Micro-Hydrogels with Tunable Structural and Topographic Features by Compound Interfacial Shearing. ACS Applied Materials & Interfaces 2021, 13 (35) , 42114-42124. https://doi.org/10.1021/acsami.1c08744
    5. Haohong Sun, Shaohui Lin, Flora T. T. Ng, Sushanta K. Mitra, Qinmin Pan. Synthesis of Shape-Controllable Anisotropic Microparticles and “Walnut-like” Microparticles via Emulsion Interfacial Polymerization. Langmuir 2021, 37 (19) , 6007-6015. https://doi.org/10.1021/acs.langmuir.1c00589
    6. Kavitha Thangavelu, Cyril Aubry, Linda Zou. Amphiphilic Janus 3D MoS2/rGO Nanocomposite for Removing Oil from Wastewater. Industrial & Engineering Chemistry Research 2021, 60 (3) , 1266-1273. https://doi.org/10.1021/acs.iecr.0c05545
    7. Hanjin Seo, Changwoo Nam, Eunseo Kim, Juhyun Son, Hyomin Lee. Aqueous Two-Phase System (ATPS)-Based Polymersomes for Particle Isolation and Separation. ACS Applied Materials & Interfaces 2020, 12 (49) , 55467-55475. https://doi.org/10.1021/acsami.0c16968
    8. Seong Kyeong Nam, Jong Bin Kim, Sang Hoon Han, Shin-Hyun Kim. Photonic Janus Balls with Controlled Magnetic Moment and Density Asymmetry. ACS Nano 2020, 14 (11) , 15714-15722. https://doi.org/10.1021/acsnano.0c06672
    9. Bobby Haney, Jörg G. Werner, David A. Weitz, Subramanian Ramakrishnan. Absorbent–Adsorbates: Large Amphiphilic Janus Microgels as Droplet Stabilizers. ACS Applied Materials & Interfaces 2020, 12 (29) , 33439-33446. https://doi.org/10.1021/acsami.0c11408
    10. Siyu Shi, Linlin Zhang, Guolin Zhang, Ximing Song, Dayin Sun, Fuxin Liang, Zhenzhong Yang. Jellyfish-Like Janus Polymeric Cage. Macromolecules 2020, 53 (6) , 2228-2234. https://doi.org/10.1021/acs.macromol.0c00166
    11. Liujun Song, Xiaofeng Huang, Xiaofei Chen, Li Zhong, Xiang Jiang, Xinya Zhang. Anisotropic Hexagonal Particles Induced by the Double-Solvent Swelling Method. Langmuir 2019, 35 (47) , 15315-15319. https://doi.org/10.1021/acs.langmuir.9b02897
    12. Donglee Shin, Tianxu Huang, Denise Neibloom, Michael A. Bevan, Joelle Frechette. Multifunctional Liquid Marble Compound Lenses. ACS Applied Materials & Interfaces 2019, 11 (37) , 34478-34486. https://doi.org/10.1021/acsami.9b12738
    13. Bobby Haney, Dong Chen, Li-Heng Cai, David Weitz, Subramanian Ramakrishnan. Millimeter-Size Pickering Emulsions Stabilized with Janus Microparticles. Langmuir 2019, 35 (13) , 4693-4701. https://doi.org/10.1021/acs.langmuir.9b00058
    14. Min Ren, Zhen Geng, Ke Wang, Yi Yang, Zhengping Tan, Jiangping Xu, Lianbin Zhang, Lixiong Zhang, Jintao Zhu. Shape-Anisotropic Diblock Copolymer Particles with Varied Internal Structures. Langmuir 2019, 35 (9) , 3461-3469. https://doi.org/10.1021/acs.langmuir.8b04147
    15. Lingling Ge, Haimei Jin, Xia Li, Duo Wei, Rong Guo. Batch-Scale Preparation of Reverse Janus Emulsions. Langmuir 2019, 35 (9) , 3490-3497. https://doi.org/10.1021/acs.langmuir.9b00061
    16. Changwoo Nam, Jongsun Yoon, Sang A Ryu, Chang-Hyung Choi, Hyomin Lee. Water and Oil Insoluble PEGDA-Based Microcapsule: Biocompatible and Multicomponent Encapsulation. ACS Applied Materials & Interfaces 2018, 10 (47) , 40366-40371. https://doi.org/10.1021/acsami.8b16876
    17. Lingling Ge, Jingru Cheng, Duo Wei, Yue Sun, Rong Guo. Anisotropic Particles Templated by Cerberus Emulsions. Langmuir 2018, 34 (25) , 7386-7395. https://doi.org/10.1021/acs.langmuir.8b00990
    18. Liwei Wang, Liang Yu, Changfeng Zeng, Chongqing Wang, Lixiong Zhang. Fabrication of PAA–PETPTA Janus Microspheres with Respiratory Function for Controlled Release of Guests with Different Sizes. Langmuir 2018, 34 (24) , 7106-7116. https://doi.org/10.1021/acs.langmuir.8b01055
    19. Chengjun Kang, Andrei Honciuc. Influence of Geometries on the Assembly of Snowman-Shaped Janus Nanoparticles. ACS Nano 2018, 12 (4) , 3741-3750. https://doi.org/10.1021/acsnano.8b00960
    20. Jun-Bing Fan, Hong Liu, Yongyang Song, Zhen Luo, Zhongyuan Lu, Shutao Wang. Janus Particles Synthesis by Emulsion Interfacial Polymerization: Polystyrene as Seed or Beyond?. Macromolecules 2018, 51 (5) , 1591-1597. https://doi.org/10.1021/acs.macromol.7b02304
    21. Dong Chen, Esther Amstad, Chun-Xia Zhao, Liheng Cai, Jing Fan, Qiushui Chen, Mingtan Hai, Stephan Koehler, Huidan Zhang, Fuxin Liang, Zhenzhong Yang, and David A. Weitz . Biocompatible Amphiphilic Hydrogel–Solid Dimer Particles as Colloidal Surfactants. ACS Nano 2017, 11 (12) , 11978-11985. https://doi.org/10.1021/acsnano.7b03110
    22. Duo Wei, Lingling Ge, Shuhui Lu, Jingjing Li, and Rong Guo . Janus Particles Templated by Janus Emulsions and Application as a Pickering Emulsifier. Langmuir 2017, 33 (23) , 5819-5828. https://doi.org/10.1021/acs.langmuir.7b00939
    23. Wei-Han Chen, Fuquan Tu, Laura C. Bradley, and Daeyeon Lee . Shape-Tunable Synthesis of Sub-Micrometer Lens-Shaped Particles via Seeded Emulsion Polymerization. Chemistry of Materials 2017, 29 (7) , 2685-2688. https://doi.org/10.1021/acs.chemmater.7b00494
    24. Nam Gi Min, Minhee Ku, Jaemoon Yang, and Shin-Hyun Kim . Microfluidic Production of Uniform Microcarriers with Multicompartments through Phase Separation in Emulsion Drops. Chemistry of Materials 2016, 28 (5) , 1430-1438. https://doi.org/10.1021/acs.chemmater.5b04798
    25. Ekanem E. Ekanem, Seyed Ali Nabavi, Goran T. Vladisavljević, and Sai Gu . Structured Biodegradable Polymeric Microparticles for Drug Delivery Produced Using Flow Focusing Glass Microfluidic Devices. ACS Applied Materials & Interfaces 2015, 7 (41) , 23132-23143. https://doi.org/10.1021/acsami.5b06943
    26. Zhou Liu, Xiangyu Fu, Bernard P. Binks, and Ho Cheung Shum . Mechanical Compression to Characterize the Robustness of Liquid Marbles. Langmuir 2015, 31 (41) , 11236-11242. https://doi.org/10.1021/acs.langmuir.5b02792
    27. Deyu Liu, Xinxing Peng, Binghui Wu, Xueyun Zheng, Tracy T Chuong, Jialuo Li, Shigang Sun, and Galen D. Stucky . Uniform Concave Polystyrene-Carbon Core–Shell Nanospheres by a Swelling Induced Buckling Process. Journal of the American Chemical Society 2015, 137 (31) , 9772-9775. https://doi.org/10.1021/jacs.5b05027
    28. Yuandu Hu, Shibo Wang, Alireza Abbaspourrad, and Arezoo M. Ardekani . Fabrication of Shape Controllable Janus Alginate/pNIPAAm Microgels via Microfluidics Technique and Off-Chip Ionic Cross-Linking. Langmuir 2015, 31 (6) , 1885-1891. https://doi.org/10.1021/la504422j
    29. Nam Gi Min, Bomi Kim, Tae Yong Lee, Dahin Kim, Doh C. Lee, and Shin-Hyun Kim . Anisotropic Microparticles Created by Phase Separation of Polymer Blends Confined in Monodisperse Emulsion Drops. Langmuir 2015, 31 (3) , 937-943. https://doi.org/10.1021/la504385z
    30. Sang Seok Lee, Alireza Abbaspourrad, and Shin-Hyun Kim . Nonspherical Double Emulsions with Multiple Distinct Cores Enveloped by Ultrathin Shells. ACS Applied Materials & Interfaces 2014, 6 (2) , 1294-1300. https://doi.org/10.1021/am405283j
    31. Jaewon Yoon, Arun Kota, Srijanani Bhaskar, Anish Tuteja, and Joerg Lahann . Amphiphilic Colloidal Surfactants Based on Electrohydrodynamic Co-jetting. ACS Applied Materials & Interfaces 2013, 5 (21) , 11281-11287. https://doi.org/10.1021/am403516h
    32. Alireza Abbaspourrad, Sujit S. Datta, and David A. Weitz . Controlling Release From pH-Responsive Microcapsules. Langmuir 2013, 29 (41) , 12697-12702. https://doi.org/10.1021/la403064f
    33. Andreas Walther and Axel H. E. Müller . Janus Particles: Synthesis, Self-Assembly, Physical Properties, and Applications. Chemical Reviews 2013, 113 (7) , 5194-5261. https://doi.org/10.1021/cr300089t
    34. Alireza Abbaspourrad, Nick J. Carroll, Shin-Hyun Kim, and David A. Weitz . Polymer Microcapsules with Programmable Active Release. Journal of the American Chemical Society 2013, 135 (20) , 7744-7750. https://doi.org/10.1021/ja401960f
    35. Yuanjin Zhao, Hongcheng Gu, Zhuoying Xie, Ho Cheung Shum, Baoping Wang, and Zhongze Gu . Bioinspired Multifunctional Janus Particles for Droplet Manipulation. Journal of the American Chemical Society 2013, 135 (1) , 54-57. https://doi.org/10.1021/ja310389w
    36. Chen Tang, Chengliang Zhang, Yijing Sun, Fuxin Liang, Qian Wang, Jiaoli Li, Xiaozhong Qu, and Zhenzhong Yang . Janus Anisotropic Hybrid Particles with Tunable Size from Patchy Composite Spheres. Macromolecules 2013, 46 (1) , 188-193. https://doi.org/10.1021/ma3020883
    37. Xiaohui Meng, Yinyan Guan, Zhengdong Zhang, and Dong Qiu . Fabrication of a Composite Colloidal Particle with Unusual Janus Structure as a High-Performance Solid Emulsifier. Langmuir 2012, 28 (34) , 12472-12478. https://doi.org/10.1021/la302392s
    38. Yi Yang, Jong Bin Kim, Seong Kyeong Nam, Mengmeng Zhang, Jiangping Xu, Jintao Zhu, Shin-Hyun Kim. Nanostructure-free crescent-shaped microparticles as full-color reflective pigments. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-36482-4
    39. Chenchen Zhou, Yuwei Cao, Chenxu Liu, Wanlin Guo. Microparticles by microfluidic lithography. Materials Today 2023, 38 https://doi.org/10.1016/j.mattod.2023.05.009
    40. Ziyi Feng, Boyu Zhou, Xin Su, Ting Wang, Shu Guo, Huazhe Yang, Xiaoting Sun. One-step fabrication of multiphasic Janus microparticles with programmed degradation properties based on a microfluidic chip. Materials & Design 2023, 225 , 111516. https://doi.org/10.1016/j.matdes.2022.111516
    41. Shuai Zhang, Bo Wang, Chenmu Xue, Xiaodong Chen. Fabrication of Diverse Microparticles in a Unified Microfluidic Configuration. Advanced Materials Technologies 2023, 8 (1) https://doi.org/10.1002/admt.202200680
    42. Meiying He, Pingmei Wang, Peiwen Xiao, Xinli Jia, Jianhui Luo, Bo Jiang, Bo Xiao. Synthesis of amphiphilic dumbbell-like Janus nanoparticles through one-step coupling. Nanocomposites 2022, 8 (1) , 175-183. https://doi.org/10.1080/20550324.2022.2055374
    43. Chenchen Zhou, Jia Man, Jianyong Li, Bin Qi, Zesheng Hua, Chenxu Liu, Minyi Zhang, Jianfeng Li. Double UV lights intersection shaping for bowl-shaped ceramic microparticles based on microfluidics. Ceramics International 2022, 48 (19) , 27590-27596. https://doi.org/10.1016/j.ceramint.2022.06.053
    44. Houssem Boukhalfa, Valérie Potin, Nicolas Martin. Structural and electrical properties of nanocolumnar W-Mo thin films with a Janus-like structure. Surface and Coatings Technology 2022, 448 , 128928. https://doi.org/10.1016/j.surfcoat.2022.128928
    45. Hua Zou, Yongliang Lv. Synthetic Strategies for Polymer Particles with Surface Concavities. Macromolecular Rapid Communications 2022, 43 (10) https://doi.org/10.1002/marc.202200072
    46. Minjung Kim, Jong Bin Kim, Seung Yeol Lee, Seong Kyeong Nam, Shin‐Hyun Kim. Designing Multicolor Graphics of Plasmonic Metasurfaces through Gradual Protrusion of Particles at Free Interface. Advanced Materials Interfaces 2022, 9 (7) https://doi.org/10.1002/admi.202102240
    47. Shauni Keller, René Dekkers, Guo Xun Hu, Matteo Tollemeto, Martina Morosini, Arif Keskin, Daniela A. Wilson. A simple microfluidic tool to design anisotropic microgels. Reactive and Functional Polymers 2021, 167 , 105012. https://doi.org/10.1016/j.reactfunctpolym.2021.105012
    48. Lingyu Sun, Jiahui Guo, Hanxu Chen, Dagan Zhang, Luoran Shang, Bing Zhang, Yuanjin Zhao. Tailoring Materials with Specific Wettability in Biomedical Engineering. Advanced Science 2021, 8 (19) , 2100126. https://doi.org/10.1002/advs.202100126
    49. Ryungeun Song, Seongsu Cho, Seonghun Shin, Hyejeong Kim, Jinkee Lee. From shaping to functionalization of micro-droplets and particles. Nanoscale Advances 2021, 3 (12) , 3395-3416. https://doi.org/10.1039/D1NA00276G
    50. Xiaokang Deng, Yukun Ren, Likai Hou, Tianyi Jiang, Hongyuan Jiang. Continuous microfluidic fabrication of anisotropic microparticles for enhanced wastewater purification. Lab on a Chip 2021, 21 (8) , 1517-1526. https://doi.org/10.1039/D0LC01298J
    51. Seyyedeh Fatemeh Alavi, Payam Abasian, Hormoz Eslami. Synthesis and characterization of polystyrene/poly(ethyl acrylate) mushroom‐like Janus particles. Polymers for Advanced Technologies 2021, 32 (4) , 1712-1726. https://doi.org/10.1002/pat.5207
    52. Siyuan Xu, Takasi Nisisako. Surfactant-Laden Janus Droplets with Tunable Morphologies and Enhanced Stability for Fabricating Lens-Shaped Polymeric Microparticles. Micromachines 2021, 12 (1) , 29. https://doi.org/10.3390/mi12010029
    53. Kazem V. Edmond, Tess W. P. Jacobson, Joon Suk Oh, Gi-Ra Yi, Andrew D. Hollingsworth, Stefano Sacanna, David J. Pine. Large-scale synthesis of colloidal bowl-shaped particles. Soft Matter 2021, 9 https://doi.org/10.1039/D0SM00793E
    54. Yoon‐Ho Hwang, Kyounghee Jeon, Sang A Ryu, Dong‐Pyo Kim, Hyomin Lee. Temperature‐Responsive Janus Particles as Microsurfactants for On‐Demand Coalescence of Emulsions. Small 2020, 16 (49) https://doi.org/10.1002/smll.202005159
    55. Jinsol Im, Eun Kwang Jang, DaBin Yim, Jong-Ho Kim, Kuk Young Cho. One-pot fabrication of uniform half-moon-shaped biodegradable microparticles via microfluidic approach. Journal of Industrial and Engineering Chemistry 2020, 90 , 152-158. https://doi.org/10.1016/j.jiec.2020.07.007
    56. Ye Tian, Liqiu Wang. Complex three‐dimensional microparticles from microfluidic lithography. ELECTROPHORESIS 2020, 41 (16-17) , 1491-1502. https://doi.org/10.1002/elps.201900322
    57. Zhu Sun, Chenjing Yang, Fan Wang, Baiheng Wu, Baiqi Shao, Zhuocheng Li, Dong Chen, Zhenzhong Yang, Kai Liu. Biocompatible and pH‐Responsive Colloidal Surfactants with Tunable Shape for Controlled Interfacial Curvature. Angewandte Chemie 2020, 132 (24) , 9451-9455. https://doi.org/10.1002/ange.202001588
    58. Zhu Sun, Chenjing Yang, Fan Wang, Baiheng Wu, Baiqi Shao, Zhuocheng Li, Dong Chen, Zhenzhong Yang, Kai Liu. Biocompatible and pH‐Responsive Colloidal Surfactants with Tunable Shape for Controlled Interfacial Curvature. Angewandte Chemie International Edition 2020, 59 (24) , 9365-9369. https://doi.org/10.1002/anie.202001588
    59. Han-Yu Peng, Wei Wang, Rui Xie, Xiao-Jie Ju, Zhuang Liu, Yousef Faraj, Liang-Yin Chu. Mesoscale regulation of droplet templates to tailor microparticle structures and functions. Particuology 2020, 48 , 74-87. https://doi.org/10.1016/j.partic.2018.10.003
    60. Xiao-Ting Sun, Rui Guo, Dan-Ni Wang, Yun-Yun Wei, Chun-Guang Yang, Zhang-Run Xu. Microfluidic preparation of polymer-lipid Janus microparticles with staged drug release property. Journal of Colloid and Interface Science 2019, 553 , 631-638. https://doi.org/10.1016/j.jcis.2019.06.069
    61. Lingling Ge, Weijie Tong, Qingfa Bian, Duo Wei, Rong Guo. Temperature and composition induced morphology transition of Cerberus emulsion droplets. Journal of Colloid and Interface Science 2019, 554 , 210-219. https://doi.org/10.1016/j.jcis.2019.07.011
    62. Jun Hyuk Lee, Gwan H. Choi, Kyung Jin Park, Dongjae Kim, Juhyun Park, Seungwoo Lee, Hyunmin Yi, Pil J. Yoo. Dual-colour generation from layered colloidal photonic crystals harnessing “core hatching” in double emulsions. Journal of Materials Chemistry C 2019, 7 (23) , 6924-6931. https://doi.org/10.1039/C9TC01055F
    63. Shu-jing Liu, Jiang-tao Li, Fang Gu, Hai-jun Wang. Crystallization, vitrification, and gelation of patchy colloidal particles. Chinese Journal of Chemical Physics 2019, 32 (3) , 379-390. https://doi.org/10.1063/1674-0068/cjcp1810231
    64. Markus Andersson Trojer, Asvad A. Gabul-Zada, Anna Ananievskaia, Lars Nordstierna, Marcus Östman, Hans Blanck. Use of anchoring amphiphilic diblock copolymers for encapsulation of hydrophilic actives in polymeric microcapsules: methodology and encapsulation efficiency. Colloid and Polymer Science 2019, 297 (2) , 307-313. https://doi.org/10.1007/s00396-018-04463-5
    65. Qian Liu, Meng Zhao, Serhii Mytnyk, Benjamin Klemm, Kai Zhang, Yiming Wang, Dadong Yan, Eduardo Mendes, Jan H. van Esch. Self‐Orienting Hydrogel Micro‐Buckets as Novel Cell Carriers. Angewandte Chemie International Edition 2019, 58 (2) , 547-551. https://doi.org/10.1002/anie.201811374
    66. Qian Liu, Meng Zhao, Serhii Mytnyk, Benjamin Klemm, Kai Zhang, Yiming Wang, Dadong Yan, Eduardo Mendes, Jan H. van Esch. Self‐Orienting Hydrogel Micro‐Buckets as Novel Cell Carriers. Angewandte Chemie 2019, 131 (2) , 557-561. https://doi.org/10.1002/ange.201811374
    67. Juntong Yao, Yue Ma, Jinxin Liu, Shucheng Liu, Jianming Pan. Janus-like boronate affinity magnetic molecularly imprinted nanobottles for specific adsorption and fast separation of luteolin. Chemical Engineering Journal 2019, 356 , 436-444. https://doi.org/10.1016/j.cej.2018.09.003
    68. Ziyang Wu, Li Li, Ting Liao, Xinqi Chen, Wan Jiang, Wei Luo, Jianping Yang, Ziqi Sun. Janus nanoarchitectures: From structural design to catalytic applications. Nano Today 2018, 22 , 62-82. https://doi.org/10.1016/j.nantod.2018.08.009
    69. Ruirui Liu, Jian Zhao, Qian Han, Xinyi Hu, Dong Wang, Xu Zhang, Peng Yang. One‐Step Assembly of a Biomimetic Biopolymer Coating for Particle Surface Engineering. Advanced Materials 2018, 30 (38) https://doi.org/10.1002/adma.201802851
    70. Shaohua Ma, Nobina Mukherjee. Microfluidics Fabrication of Soft Microtissues and Bottom‐Up Assembly. Advanced Biosystems 2018, 2 (9) https://doi.org/10.1002/adbi.201800119
    71. Xue‐Hui Ge, Yu‐Hao Geng, Jian Chen, Jian‐Hong Xu. Smart Amphiphilic Janus Microparticles: One‐Step Synthesis and Self‐Assembly. ChemPhysChem 2018, 19 (16) , 2009-2013. https://doi.org/10.1002/cphc.201700838
    72. Yongyang Song, Jiajia Zhou, Jun‐Bing Fan, Wenzhong Zhai, Jingxin Meng, Shutao Wang. Hydrophilic/Oleophilic Magnetic Janus Particles for the Rapid and Efficient Oil–Water Separation. Advanced Functional Materials 2018, 28 (32) https://doi.org/10.1002/adfm.201802493
    73. Hamed Eskandarloo, Meisam Zaferani, Arkaye Kierulf, Alireza Abbaspourrad. Shape-controlled fabrication of TiO2 hollow shells toward photocatalytic application. Applied Catalysis B: Environmental 2018, 227 , 519-529. https://doi.org/10.1016/j.apcatb.2018.01.059
    74. Kota Shiba, Makoto Ogawa. Precise Synthesis of Well‐Defined Inorganic‐Organic Hybrid Particles. The Chemical Record 2018, 18 (7-8) , 950-968. https://doi.org/10.1002/tcr.201700077
    75. H.S. Patel, P.K. Kushwaha, M.K. Swami. Generation of highly confined photonic nanojet using crescent-shape refractive index profile in microsphere. Optics Communications 2018, 415 , 140-145. https://doi.org/10.1016/j.optcom.2018.01.050
    76. Wenhua Jing, Sinan Du, Zexin Zhang. Synthesis of Polystyrene Particles with Precisely Controlled Degree of Concaveness. Polymers 2018, 10 (4) , 458. https://doi.org/10.3390/polym10040458
    77. Tian-Hao Han, Fu-Xin Liang, Zhen-Zhong Yang. Cable-like Au@SiO 2 Janus composite nanorods. Chinese Chemical Letters 2018, 29 (3) , 353-356. https://doi.org/10.1016/j.cclet.2017.06.003
    78. Qiang Wu, Chaoyu Yang, Jianxin Yang, Fangsheng Huang, Guangli Liu, Zhiqiang Zhu, Ting Si, Ronald X. Xu. Photopolymerization of complex emulsions with irregular shapes fabricated by multiplex coaxial flow focusing. Applied Physics Letters 2018, 112 (7) https://doi.org/10.1063/1.5018207
    79. Jongmin Kim, Chang‐Soo Lee. Microfluidic Approaches for Designing Multifunctional Polymeric Microparticles from Simple Emulsions to Complex Particles. 2018, 375-404. https://doi.org/10.1002/9783527800643.ch12
    80. Mona Tréguer-Delapierre, Alexandra Madeira, Céline Hubert, Serge Ravaine. Recent advances in the synthesis of anisotropic particles. 2018, 1-35. https://doi.org/10.1016/B978-0-12-804069-0.00001-0
    81. Wen Li, Liyuan Zhang, Xuehui Ge, Biyi Xu, Weixia Zhang, Liangliang Qu, Chang-Hyung Choi, Jianhong Xu, Afang Zhang, Hyomin Lee, David A. Weitz. Microfluidic fabrication of microparticles for biomedical applications. Chemical Society Reviews 2018, 47 (15) , 5646-5683. https://doi.org/10.1039/C7CS00263G
    82. Wei Wang, Xiao‐Heng He, Mao‐Jie Zhang, Meng‐Jiao Tang, Rui Xie, Xiao‐Jie Ju, Zhuang Liu, Liang‐Yin Chu. Controllable Microfluidic Fabrication of Microstructured Materials from Nonspherical Particles to Helices. Macromolecular Rapid Communications 2017, 38 (23) https://doi.org/10.1002/marc.201700429
    83. Mohammadreza Chimerad, Esmail Pishbin, Sasan Asiaei, Fatemeh Ghorbani Bidkorpeh, Manochehr Eghba. The Effect of Geometrical and Fluid Kinematic Parameters of a Microfluidic Platform on the Droplet Generation. 2017, 1-6. https://doi.org/10.1109/ICBME.2017.8430262
    84. Peng Guo, Changfeng Zeng, Chongqing Wang, Lixiong Zhang. Magnetic ionic liquid‐water Janus droplets: Preparation, structure and morphology adjustment and magnetic manipulation. AIChE Journal 2017, 63 (9) , 4115-4123. https://doi.org/10.1002/aic.15672
    85. Ekanem E. Ekanem, Zilin Zhang, Goran T. Vladisavljević. Facile microfluidic production of composite polymer core-shell microcapsules and crescent-shaped microparticles. Journal of Colloid and Interface Science 2017, 498 , 387-394. https://doi.org/10.1016/j.jcis.2017.03.067
    86. Jun-Bing Fan, Yongyang Song, Hong Liu, Zhongyuan Lu, Feilong Zhang, Hongliang Liu, Jingxin Meng, Lin Gu, Shutao Wang, Lei Jiang. A general strategy to synthesize chemically and topologically anisotropic Janus particles. Science Advances 2017, 3 (6) https://doi.org/10.1126/sciadv.1603203
    87. Jie Wang, Lingyu Sun, Minhan Zou, Wei Gao, Cihui Liu, Luoran Shang, Zhongze Gu, Yuanjin Zhao. Bioinspired shape-memory graphene film with tunable wettability. Science Advances 2017, 3 (6) https://doi.org/10.1126/sciadv.1700004
    88. Gregory Dardelle, Marlène Jacquemond, Philipp Erni. Delivery Systems for Low Molecular Weight Payloads: Core/Shell Capsules with Composite Coacervate/Polyurea Membranes. Advanced Materials 2017, 29 (23) https://doi.org/10.1002/adma.201606099
    89. Zhou Liu, Xiangyu Fu, Bernard P. Binks, Ho Cheung Shum. Coalescence of electrically charged liquid marbles. Soft Matter 2017, 13 (1) , 119-124. https://doi.org/10.1039/C6SM00883F
    90. Lingling Ge, Jingjing Li, Songtao Zhong, Yue Sun, Stig E. Friberg, Rong Guo. Single, Janus, and Cerberus emulsions from the vibrational emulsification of oils with significant mutual solubility. Soft Matter 2017, 13 (5) , 1012-1019. https://doi.org/10.1039/C6SM02690G
    91. Deliang Yi, Qian Zhang, Yinghua Liu, Jiaying Song, Yi Tang, Frank Caruso, Yajun Wang. Synthesis of Chemically Asymmetric Silica Nanobottles and Their Application for Cargo Loading and as Nanoreactors and Nanomotors. Angewandte Chemie International Edition 2016, 55 (47) , 14733-14737. https://doi.org/10.1002/anie.201607330
    92. Deliang Yi, Qian Zhang, Yinghua Liu, Jiaying Song, Yi Tang, Frank Caruso, Yajun Wang. Synthesis of Chemically Asymmetric Silica Nanobottles and Their Application for Cargo Loading and as Nanoreactors and Nanomotors. Angewandte Chemie 2016, 128 (47) , 14953-14957. https://doi.org/10.1002/ange.201607330
    93. Lingling Ge, Stig E. Friberg, Rong Guo. Recent studies of Janus emulsions prepared by one-step vibrational mixing. Current Opinion in Colloid & Interface Science 2016, 25 , 58-66. https://doi.org/10.1016/j.cocis.2016.05.001
    94. Takasi Nisisako. Recent advances in microfluidic production of Janus droplets and particles. Current Opinion in Colloid & Interface Science 2016, 25 , 1-12. https://doi.org/10.1016/j.cocis.2016.05.003
    95. Hyomin Lee, Chang‐Hyung Choi, Alireza Abbaspourrad, Chris Wesner, Marco Caggioni, Taotao Zhu, Saraf Nawar, David A. Weitz. Fluorocarbon Oil Reinforced Triple Emulsion Drops. Advanced Materials 2016, 28 (38) , 8425-8430. https://doi.org/10.1002/adma.201602804
    96. Zhanxiao Kang, Tiantian Kong, Leyan Lei, Pingan Zhu, Xiaowei Tian, Liqiu Wang. Engineering particle morphology with microfluidic droplets. Journal of Micromechanics and Microengineering 2016, 26 (7) , 075011. https://doi.org/10.1088/0960-1317/26/7/075011
    97. Maojie Zhang, Wei Wang, Rui Xie, Xiaojie Ju, Zhuang Liu, Lu Jiang, Qianming Chen, Liangyin Chu. Controllable microfluidic strategies for fabricating microparticles using emulsions as templates. Particuology 2016, 24 , 18-31. https://doi.org/10.1016/j.partic.2015.08.001
    98. Takasi Nisisako, Takeshi Hatsuzawa. Microfluidic fabrication of oil-filled polymeric microcapsules with independently controllable size and shell thickness via Janus to core–shell evolution of biphasic droplets. Sensors and Actuators B: Chemical 2016, 223 , 209-216. https://doi.org/10.1016/j.snb.2015.09.085
    99. Xiao-Ting Sun, Chun-Guang Yang, Zhang-Run Xu. Controlled production of size-tunable Janus droplets for submicron particle synthesis using an electrospray microfluidic chip. RSC Advances 2016, 6 (15) , 12042-12047. https://doi.org/10.1039/C5RA24531A
    100. Tae Yong Lee, Tae Min Choi, Tae Soup Shim, Raoul A. M. Frijns, Shin-Hyun Kim. Microfluidic production of multiple emulsions and functional microcapsules. Lab on a Chip 2016, 16 (18) , 3415-3440. https://doi.org/10.1039/C6LC00809G
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect