ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Quantum-Yield-Optimized Fluorophores for Site-Specific Labeling and Super-Resolution Imaging

View Author Information
Institute of Biochemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt/M., Germany
University of Bordeaux, Interdisciplinary Institute for Neuroscience
# CNRS UMR 5297, F-33000 Bordeaux, France
§ Laboratoire Photonique Numérique et Nanosciences, Université de Bordeaux, Institut d’Optique Graduate School and CNRS, 33405 Talence, France
Cite this: J. Am. Chem. Soc. 2011, 133, 21, 8090–8093
Publication Date (Web):May 5, 2011
https://doi.org/10.1021/ja200967z
Copyright © 2011 American Chemical Society

    Article Views

    3089

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Single-molecule applications, saturated pattern excitation microscopy, and stimulated emission depletion (STED) microscopy demand bright as well as highly stable fluorescent dyes. Here we describe the synthesis of quantum-yield-optimized fluorophores for reversible, site-specific labeling of proteins or macromolecular complexes. We used polyproline-II (PPII) helices as sufficiently rigid spacers with various lengths to improve the fluorescence signals of a set of different trisNTA–fluorophores. The improved quantum yields were demonstrated by steady-state and fluorescence lifetime analyses. As a proof of principle, we characterized the trisNTA–PPII–fluorophores with respect to in vivo protein labeling and super-resolution imaging at synapses of living neurons. The distribution of His-tagged AMPA receptors (GluA1) in spatially restricted synaptic clefts was imaged by confocal and STED microscopy. The comparison of fluorescence intensity profiles revealed the superior resolution of STED microscopy. These results highlight the advantages of biocompatible and, in particular, small and photostable trisNTA–PPII–fluorophores in super-resolution microscopy.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Detailed information regarding synthesis, spectroscopic characterization, specific protein binding, and in vivo visualization of trisNTA–Px–fluorophores in living neurons; complete ref 18. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 33 publications.

    1. Yupeng Yang, Apurba Dev, Ilya Sychugov, Carl Hägglund, Shi-Li Zhang. Plasmon-Enhanced Fluorescence of Single Quantum Dots Immobilized in Optically Coupled Aluminum Nanoholes. The Journal of Physical Chemistry Letters 2023, 14 (9) , 2339-2346. https://doi.org/10.1021/acs.jpclett.3c00468
    2. Viktorija Glembockyte, Ralph Wieneke, Karl Gatterdam, Yasser Gidi, Robert Tampé, Gonzalo Cosa. Tris-N-Nitrilotriacetic Acid Fluorophore as a Self-Healing Dye for Single-Molecule Fluorescence Imaging. Journal of the American Chemical Society 2018, 140 (35) , 11006-11012. https://doi.org/10.1021/jacs.8b04681
    3. Amanda M. Hussey and James J. Chambers . Methods To Locate and Track Ion Channels and Receptors Expressed in Live Neurons. ACS Chemical Neuroscience 2015, 6 (1) , 189-198. https://doi.org/10.1021/cn5002057
    4. Ralph Wieneke, Noemi Labòria, Malini Rajan, Alina Kollmannsperger, Francesco Natale, M. Cristina Cardoso, and Robert Tampé . Live-Cell Targeting of His-Tagged Proteins by Multivalent N-Nitrilotriacetic Acid Carrier Complexes. Journal of the American Chemical Society 2014, 136 (40) , 13975-13978. https://doi.org/10.1021/ja5063357
    5. Juan Liu, Mariana Spulber, Dalin Wu, Renee M. Talom, Cornelia G. Palivan, and Wolfgang Meier . Poly(N-isopropylacrylamide-co-tris-nitrilotriacetic acid acrylamide) for a Combined Study of Molecular Recognition and Spatial Constraints in Protein Binding and Interactions. Journal of the American Chemical Society 2014, 136 (36) , 12607-12614. https://doi.org/10.1021/ja503632w
    6. Li Zhou, Junlong Geng, Guan Wang, Jie Liu, and Bin Liu . Facile Synthesis of Stable and Water-Dispersible Multihydroxy Conjugated Polymer Nanoparticles with Tunable Size by Dendritic Cross-Linking. ACS Macro Letters 2012, 1 (8) , 927-932. https://doi.org/10.1021/mz300282s
    7. Miguel A. Garcia-Garibay (Associate Editor). Advances at the Frontiers of Photochemical Sciences. Journal of the American Chemical Society 2012, 134 (20) , 8289-8292. https://doi.org/10.1021/ja301329b
    8. Sophie Roizard, Christophe Danelon, Ghérici Hassaïne, Joachim Piguet, Katrin Schulze, Ruud Hovius, Robert Tampé, and Horst Vogel . Activation of G-Protein-Coupled Receptors in Cell-Derived Plasma Membranes Supported on Porous Beads. Journal of the American Chemical Society 2011, 133 (42) , 16868-16874. https://doi.org/10.1021/ja205302g
    9. Dana Al Kelabi, Avishek Dey, Lukman O. Alimi, Hubert Piwoński, Satoshi Habuchi, Niveen M. Khashab. Photostable polymorphic organic cages for targeted live cell imaging. Chemical Science 2022, 13 (24) , 7341-7346. https://doi.org/10.1039/D2SC00836J
    10. Ralph Wieneke, Robert Tampé. Multivalent Chelators for In Vivo Protein Labeling. Angewandte Chemie 2019, 131 (25) , 8364-8376. https://doi.org/10.1002/ange.201811293
    11. Ralph Wieneke, Robert Tampé. Multivalent Chelators for In Vivo Protein Labeling. Angewandte Chemie International Edition 2019, 58 (25) , 8278-8290. https://doi.org/10.1002/anie.201811293
    12. Yupeng Qiu, Hye Ran Koh, Sua Myong. Probing Dynamic Assembly and Disassembly of Rad51 Tuned by Srs2 Using smFRET. 2018, 321-345. https://doi.org/10.1016/bs.mie.2018.01.001
    13. Alexander D. Thompson, Mitchell H. Omar, Felix Rivera‐Molina, Zhiqun Xi, Anthony J. Koleske, Derek K. Toomre, Alanna Schepartz. Long‐Term Live‐Cell STED Nanoscopy of Primary and Cultured Cells with the Plasma Membrane HIDE Probe DiI‐SiR. Angewandte Chemie 2017, 129 (35) , 10544-10548. https://doi.org/10.1002/ange.201704783
    14. Alexander D. Thompson, Mitchell H. Omar, Felix Rivera‐Molina, Zhiqun Xi, Anthony J. Koleske, Derek K. Toomre, Alanna Schepartz. Long‐Term Live‐Cell STED Nanoscopy of Primary and Cultured Cells with the Plasma Membrane HIDE Probe DiI‐SiR. Angewandte Chemie International Edition 2017, 56 (35) , 10408-10412. https://doi.org/10.1002/anie.201704783
    15. Lucy Goodman, David Baddeley, Wojciech Ambroziak, Clarissa L. Waites, Craig C. Garner, Christian Soeller, Johanna M. Montgomery. N‐terminal SAP97 isoforms differentially regulate synaptic structure and postsynaptic surface pools of AMPA receptors. Hippocampus 2017, 27 (6) , 668-682. https://doi.org/10.1002/hipo.22723
    16. Ingrid Chamma, Olivier Rossier, Grégory Giannone, Olivier Thoumine, Matthieu Sainlos. Optimized labeling of membrane proteins for applications to super-resolution imaging in confined cellular environments using monomeric streptavidin. Nature Protocols 2017, 12 (4) , 748-763. https://doi.org/10.1038/nprot.2017.010
    17. M. Braner, R. Wieneke, R. Tampé. Nanomolar affinity protein trans-splicing monitored in real-time by fluorophore–quencher pairs. Chemical Communications 2017, 53 (3) , 545-548. https://doi.org/10.1039/C6CC08862G
    18. Borislav Angelov, Angelina Angelova. Nanoscale clustering of the neurotrophin receptor TrkB revealed by super-resolution STED microscopy. Nanoscale 2017, 9 (28) , 9797-9804. https://doi.org/10.1039/C7NR03454G
    19. Ingrid Chamma, Mathieu Letellier, Corey Butler, Béatrice Tessier, Kok-Hong Lim, Isabel Gauthereau, Daniel Choquet, Jean-Baptiste Sibarita, Sheldon Park, Matthieu Sainlos, Olivier Thoumine. Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms10773
    20. M. Braner, A. Kollmannsperger, R. Wieneke, R. Tampé. ‘Traceless’ tracing of proteins – high-affinity trans-splicing directed by a minimal interaction pair. Chemical Science 2016, 7 (4) , 2646-2652. https://doi.org/10.1039/C5SC02936H
    21. David Albrecht, Christian M Winterflood, Helge Ewers. Dual color single particle tracking via nanobodies. Methods and Applications in Fluorescence 2015, 3 (2) , 024001. https://doi.org/10.1088/2050-6120/3/2/024001
    22. . Oregon Green 488 maleimide. 2015, 312-314. https://doi.org/10.1002/9781119007104.ch114
    23. Bhanu Neupane, Frances S. Ligler, Gufeng Wang. Review of recent developments in stimulated emission depletion microscopy: applications on cell imaging. Journal of Biomedical Optics 2014, 19 (8) , 080901. https://doi.org/10.1117/1.JBO.19.8.080901
    24. Changjiang You, Jacob Piehler. Multivalent chelators for spatially and temporally controlled protein functionalization. Analytical and Bioanalytical Chemistry 2014, 406 (14) , 3345-3357. https://doi.org/10.1007/s00216-014-7803-y
    25. Daniel Smeets, Jürgen Neumann, Lothar Schermelleh. Application of Three-Dimensional Structured Illumination Microscopy in Cell Biology: Pitfalls and Practical Considerations. 2014, 167-188. https://doi.org/10.1007/978-1-62703-983-3_8
    26. Audrey Constals, Eric Hosy, Daniel Choquet. Investigating AMPA Receptor Diffusion and Nanoscale Organization at Synapses with High-Density Single-Molecule Tracking Methods. 2014, 59-74. https://doi.org/10.1007/978-1-4614-9179-8_4
    27. Pascale Winckler, Lydia Lartigue, Gregory Giannone, Francesca De Giorgi, François Ichas, Jean-Baptiste Sibarita, Brahim Lounis, Laurent Cognet. Identification and super-resolution imaging of ligand-activated receptor dimers in live cells. Scientific Reports 2013, 3 (1) https://doi.org/10.1038/srep02387
    28. Yupeng Qiu, Edwin Antony, Sultan Doganay, Hye Ran Koh, Timothy M. Lohman, Sua Myong. Srs2 prevents Rad51 filament formation by repetitive motion on DNA. Nature Communications 2013, 4 (1) https://doi.org/10.1038/ncomms3281
    29. Noemi Labòria, Ralph Wieneke, Robert Tampé. Control of Nanomolar Interaction and In Situ Assembly of Proteins in Four Dimensions by Light. Angewandte Chemie International Edition 2013, 52 (3) , 848-853. https://doi.org/10.1002/anie.201206698
    30. Noemi Labòria, Ralph Wieneke, Robert Tampé. Steuerung von nanomolaren Wechselwirkungen und In‐situ‐Immobilisierung von Proteinen in vier Dimensionen durch Licht. Angewandte Chemie 2013, 125 (3) , 880-886. https://doi.org/10.1002/ange.201206698
    31. Grégory Giannone, Eric Hosy, Jean-Baptiste Sibarita, Daniel Choquet, Laurent Cognet. High-Content Super-Resolution Imaging of Live Cell by uPAINT. 2013, 95-110. https://doi.org/10.1007/978-1-62703-137-0_7
    32. Olivier Rossier, Vivien Octeau, Jean-Baptiste Sibarita, Cécile Leduc, Béatrice Tessier, Deepak Nair, Volker Gatterdam, Olivier Destaing, Corinne Albigès-Rizo, Robert Tampé, Laurent Cognet, Daniel Choquet, Brahim Lounis, Grégory Giannone. Integrins β1 and β3 exhibit distinct dynamic nanoscale organizations inside focal adhesions. Nature Cell Biology 2012, 14 (10) , 1057-1067. https://doi.org/10.1038/ncb2588
    33. Kalyan K. Sadhu, Shin Mizukami, Carolyn R. Lanam, Kazuya Kikuchi. Fluorogenic Protein Labeling through Photoinduced Electron Transfer‐Based BL‐Tag Technology. Chemistry – An Asian Journal 2012, 7 (2) , 272-276. https://doi.org/10.1002/asia.201100647

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect