ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Kinetic Control and Thermodynamic Selection in the Synthesis of Atomically Precise Gold Nanoclusters

View Author Information
Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences (CAS), Hefei 230031, Anhui, China
§ Department of Chemistry and Institute for Research in Materials, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J3
Cite this: J. Am. Chem. Soc. 2011, 133, 25, 9670–9673
Publication Date (Web):June 2, 2011
https://doi.org/10.1021/ja2028102
Copyright © 2011 American Chemical Society

Article Views

5637

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
Read OnlinePDF (1 MB)
Supporting Info (1)»

Abstract

Abstract Image

This work presents a combined approach of kinetic control and thermodynamic selection for the synthesis of monodisperse 19 gold atom nanoclusters protected by thiolate groups. The step of kinetic control allows the formation of a proper size distribution of initial size-mixed Aun(SR)m nanoclusters following the reduction of a gold precursor. Unlike the synthesis of Au25(SR)18 nanoclusters, which involves rapid reduction of the gold precursor by NaBH4 followed by size focusing, the synthesis of 19-atom nanoclusters requires slow reduction effected by a weaker reducing agent, borane–tert-butylamine complex. The initially formed mixture of nanoclusters then undergoes size convergence into a monodisperse product by means of a prolonged aging process. The nanocluster formula was determined to be Au19(SC2H4Ph)13. This work demonstrates the importance of both kinetic control of the initial size distribution of nanoclusters prior to size focusing and subsequent thermodynamic selection of stable nanoclusters as the final product.

Supporting Information

ARTICLE SECTIONS
Jump To

Experimental details of the synthesis and characterization of the material (Supporting Figures S1–S5). This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 191 publications.

  1. Angus I. Sullivan, Joseph F. DeJesus, Sami Malola, Shinjiro Takano, Tatsuya Tsukuda, Hannu Häkkinen, Cathleen M. Crudden. Synthesis and Characterization of a Monodentate N-Heterocyclic Carbene-Protected Au11-Nanocluster via Reduction with KC8. Chemistry of Materials 2023, 35 (7) , 2790-2796. https://doi.org/10.1021/acs.chemmater.2c03429
  2. Chengjie Wang, Hairong Zhao, Zhongsheng Ge, Lizhuang Dong, Xiao Han, Avula Balakrishna, Praveen Kumar Balguri, Yixi Wang, Udayabhaskararao Thumu. Kinetically Controlled Synthesis of Highly Emissive Au18SG14 Clusters and Their Phase Transfer: Tips and Tricks. ACS Omega 2023, 8 (7) , 6884-6894. https://doi.org/10.1021/acsomega.2c07663
  3. Jun Zha, Xiangfu Meng, Wentao Fan, Qing You, Nan Xia, Wanmiao Gu, Yan Zhao, Lin Hu, Jin Li, Haiteng Deng, Hui Wang, Nan Yan, Zhikun Wu. Surface Site-Specific Replacement for Catalysis Selectivity Switching. ACS Applied Materials & Interfaces 2023, 15 (3) , 3985-3992. https://doi.org/10.1021/acsami.2c18553
  4. Hiroto Yoshida, Miwa Kuzuhara, Riku Tanibe, Tsuyoshi Kawai, Takuya Nakashima. Chirality Induction in the Synthesis of Ag29 Nanoclusters with Asymmetric Structure. The Journal of Physical Chemistry C 2021, 125 (48) , 27009-27015. https://doi.org/10.1021/acs.jpcc.1c08692
  5. Jiaqi Chen, Ting Zhong, Xi Lu, Feng Zhao, Pan Wang, Xue Yu, Yuxin Yang, Fengyun Sun, Xiaochun Wu, Wei Feng. 4-Aminothiophenol-Modulated Ag Growth on Au Nanoparticles for Detection of Nitrite. ACS Applied Nano Materials 2021, 4 (11) , 11674-11680. https://doi.org/10.1021/acsanm.1c02245
  6. Wei-Dan Si, Ying-Zhou Li, Shan-Shan Zhang, Suna Wang, Lei Feng, Zhi-Yong Gao, Chen-Ho Tung, Di Sun. Toward Controlled Syntheses of Diphosphine-Protected Homochiral Gold Nanoclusters through Precursor Engineering. ACS Nano 2021, 15 (10) , 16019-16029. https://doi.org/10.1021/acsnano.1c04421
  7. Xiang-Yu Xiao, Zong-Yin Song, Pei-Hua Li, Shi-Hua Chen, Li-Na Li, Meng Yang, Chu-Hong Lin, Xing-Jiu Huang. Au25 Nanoclusters Exhibit Superhigh Catalytic Activity in Electrochemical Detection of As(III). Analytical Chemistry 2021, 93 (41) , 14014-14023. https://doi.org/10.1021/acs.analchem.1c03748
  8. Malenahalli H. Naveen, Rizwan Khan, Jin Ho Bang. Gold Nanoclusters as Electrocatalysts: Atomic Level Understanding from Fundamentals to Applications. Chemistry of Materials 2021, 33 (19) , 7595-7612. https://doi.org/10.1021/acs.chemmater.1c02112
  9. Jing Li, Pu Wang, Yong Pei. From Monolayer-Protected Gold Cluster to Monolayer-Protected Gold-Sulfide Cluster: Geometrical and Electronic Structure Evolutions of Au60Sn(SR)36 (n = 0–12). ACS Omega 2020, 5 (27) , 16901-16911. https://doi.org/10.1021/acsomega.0c02091
  10. Wenhao Zhang, Shengli Zhuang, Lingwen Liao, Hongwei Dong, Nan Xia, Jin Li, Haiteng Deng, Zhikun Wu. Two-Way Alloying and Dealloying of Cadmium in Metalloid Gold Clusters. Inorganic Chemistry 2019, 58 (9) , 5388-5392. https://doi.org/10.1021/acs.inorgchem.9b00125
  11. Marte van der Linden, Arnoldus J. van Bunningen, Mario U. Delgado-Jaime, Blanka Detlefs, Pieter Glatzel, Alessandro Longo, Frank M. F. de Groot. Insights into the Synthesis Mechanism of Ag29 Nanoclusters. The Journal of Physical Chemistry C 2018, 122 (49) , 28351-28361. https://doi.org/10.1021/acs.jpcc.8b09360
  12. Ting Su, Haolin Xiao, Wei Shen, Chaohao Hu, Chengying Tang. Nonlinear Size-Dependent Melting of Silica-Encapsulated Ag–Cu Alloy Nanoparticles. The Journal of Physical Chemistry C 2018, 122 (48) , 27761-27768. https://doi.org/10.1021/acs.jpcc.8b09156
  13. Franck Bertorelle, Isabelle Russier-Antoine, Clothilde Comby-Zerbino, Fabien Chirot, Philippe Dugourd, Pierre-François Brevet, Rodolphe Antoine. Isomeric Effect of Mercaptobenzoic Acids on the Synthesis, Stability, and Optical Properties of Au25(MBA)18 Nanoclusters. ACS Omega 2018, 3 (11) , 15635-15642. https://doi.org/10.1021/acsomega.8b02615
  14. Meenal Kataria, Manoj Kumar, Zujhar Singh, Vandana Bhalla. Gold Nanoparticles Immobilized Polymeric PBI Derivative: Productive, Portable, and Photocatalytic System for Heck Coupling. ACS Sustainable Chemistry & Engineering 2018, 6 (7) , 8223-8229. https://doi.org/10.1021/acssuschemeng.8b00031
  15. Milan Rambukwella and Amala Dass . Synthesis of Au38(SCH2CH2Ph)24, Au36(SPh-tBu)24, and Au30(S-tBu)18 Nanomolecules from a Common Precursor Mixture. Langmuir 2017, 33 (41) , 10958-10964. https://doi.org/10.1021/acs.langmuir.7b03080
  16. Miao-Miao Yin, Ping Dong, Wen-Qi Chen, Shi-Ping Xu, Li-Yun Yang, Feng-Lei Jiang, and Yi Liu . Thermodynamics and Mechanisms of the Interactions between Ultrasmall Fluorescent Gold Nanoclusters and Human Serum Albumin, γ-Globulins, and Transferrin: A Spectroscopic Approach. Langmuir 2017, 33 (21) , 5108-5116. https://doi.org/10.1021/acs.langmuir.7b00196
  17. Lingwen Liao, Chuanhao Yao, Chengming Wang, Shubo Tian, Jishi Chen, Man-Bo Li, Nan Xia, Nan Yan, and Zhikun Wu . Quantitatively Monitoring the Size-Focusing of Au Nanoclusters and Revealing What Promotes the Size Transformation from Au44(TBBT)28 to Au36(TBBT)24. Analytical Chemistry 2016, 88 (23) , 11297-11301. https://doi.org/10.1021/acs.analchem.6b03428
  18. Nan Yan, Lingwen Liao, Jinyun Yuan, Yue-jian Lin, Lin-hong Weng, Jinlong Yang, and Zhikun Wu . Bimetal Doping in Nanoclusters: Synergistic or Counteractive?. Chemistry of Materials 2016, 28 (22) , 8240-8247. https://doi.org/10.1021/acs.chemmater.6b03132
  19. Yong Yu, Qiaofeng Yao, Tiankai Chen, Guo Xing Lim, and Jianping Xie . The Innermost Three Gold Atoms Are Indispensable To Maintain the Structure of the Au18(SR)14 Cluster. The Journal of Physical Chemistry C 2016, 120 (38) , 22096-22102. https://doi.org/10.1021/acs.jpcc.6b07795
  20. Lingwen Liao, Shengli Zhuang, Chuanhao Yao, Nan Yan, Jishi Chen, Chengming Wang, Nan Xia, Xu Liu, Man-Bo Li, Lingling Li, Xiaoli Bao, and Zhikun Wu . Structure of Chiral Au44(2,4-DMBT)26 Nanocluster with an 18-Electron Shell Closure. Journal of the American Chemical Society 2016, 138 (33) , 10425-10428. https://doi.org/10.1021/jacs.6b07178
  21. Chunyan Liu, Yong Pei, Hui Sun, and Jing Ma . The Nucleation and Growth Mechanism of Thiolate-Protected Au Nanoclusters. Journal of the American Chemical Society 2015, 137 (50) , 15809-15816. https://doi.org/10.1021/jacs.5b09466
  22. Lingwen Liao, Shiming Zhou, Yafei Dai, Liren Liu, Chuanhao Yao, Cenfeng Fu, Jinlong Yang, and Zhikun Wu . Mono-Mercury Doping of Au25 and the HOMO/LUMO Energies Evaluation Employing Differential Pulse Voltammetry. Journal of the American Chemical Society 2015, 137 (30) , 9511-9514. https://doi.org/10.1021/jacs.5b03483
  23. Chuanhao Yao, Jishi Chen, Man-Bo Li, Liren Liu, Jinlong Yang, and Zhikun Wu . Adding Two Active Silver Atoms on Au25 Nanoparticle. Nano Letters 2015, 15 (2) , 1281-1287. https://doi.org/10.1021/nl504477t
  24. Xian-Kai Wan, Qing Tang, Shang-Fu Yuan, De-en Jiang, and Quan-Ming Wang . Au19 Nanocluster Featuring a V-Shaped Alkynyl–Gold Motif. Journal of the American Chemical Society 2015, 137 (2) , 652-655. https://doi.org/10.1021/ja512133a
  25. James J. Spivey, Katla Sai Krishna, Challa S.S.R. Kumar, Kerry M. Dooley, John C. Flake, Louis H. Haber, Ye Xu, Michael J. Janik, Susan B. Sinnott, Yu-Ting Cheng, Tao Liang, David S. Sholl, Thomas A. Manz, Ulrike Diebold, Gareth S. Parkinson, David A. Bruce, and Petra de Jongh . Synthesis, Characterization, and Computation of Catalysts at the Center for Atomic-Level Catalyst Design. The Journal of Physical Chemistry C 2014, 118 (35) , 20043-20069. https://doi.org/10.1021/jp502556u
  26. Chunyan Liu, Sisi Lin, Yong Pei, and Xiao Cheng Zeng . Semiring Chemistry of Au25(SR)18: Fragmentation Pathway and Catalytic Active site. Journal of the American Chemical Society 2013, 135 (48) , 18067-18079. https://doi.org/10.1021/ja404957t
  27. Mary Sajini Devadas, Viraj Dhanushka Thanthirige, Semere Bairu, Ekkehard Sinn, and Guda Ramakrishna . Temperature-Dependent Absorption and Ultrafast Luminescence Dynamics of Bi-Icosahedral Au25 Clusters. The Journal of Physical Chemistry C 2013, 117 (44) , 23155-23161. https://doi.org/10.1021/jp408333h
  28. Alfredo Tlahuice-Flores, Robert L. Whetten, and Miguel Jose-Yacaman . Vibrational Normal Modes of Small Thiolate-Protected Gold Clusters. The Journal of Physical Chemistry C 2013, 117 (23) , 12191-12198. https://doi.org/10.1021/jp4033063
  29. T. Udayabhaskararao and T. Pradeep . New Protocols for the Synthesis of Stable Ag and Au Nanocluster Molecules. The Journal of Physical Chemistry Letters 2013, 4 (9) , 1553-1564. https://doi.org/10.1021/jz400332g
  30. Matías F. Calderón, Eugenia Zelaya, Guillermo A. Benitez, Patricia L. Schilardi, Alberto Hernández Creus, Alejandro González Orive, Roberto C. Salvarezza, and Francisco J. Ibañez . New Findings for the Composition and Structure of Ni Nanoparticles Protected with Organomercaptan Molecules. Langmuir 2013, 29 (15) , 4670-4678. https://doi.org/10.1021/la304993c
  31. Yong Yu, Xi Chen, Qiaofeng Yao, Yue Yu, Ning Yan, and Jianping Xie . Scalable and Precise Synthesis of Thiolated Au10–12, Au15, Au18, and Au25 Nanoclusters via pH Controlled CO Reduction. Chemistry of Materials 2013, 25 (6) , 946-952. https://doi.org/10.1021/cm304098x
  32. Fadi Aldeek, M. A. Habeeb Muhammed, Goutam Palui, Naiqian Zhan, and Hedi Mattoussi . Growth of Highly Fluorescent Polyethylene Glycol- and Zwitterion-Functionalized Gold Nanoclusters. ACS Nano 2013, 7 (3) , 2509-2521. https://doi.org/10.1021/nn305856t
  33. Daniel M. Chevrier, Mark A. MacDonald, Amares Chatt, and Peng Zhang , Zhikun Wu and Rongchao Jin . Sensitivity of Structural and Electronic Properties of Gold–Thiolate Nanoclusters to the Atomic Composition: A Comparative X-ray Study of Au19(SR)13 and Au25(SR)18. The Journal of Physical Chemistry C 2012, 116 (47) , 25137-25142. https://doi.org/10.1021/jp309283y
  34. Madathumpady Abubaker Habeeb Muhammed, Fadi Aldeek, Goutam Palui, Laura Trapiella-Alfonso, and Hedi Mattoussi . Growth of In Situ Functionalized Luminescent Silver Nanoclusters by Direct Reduction and Size Focusing. ACS Nano 2012, 6 (10) , 8950-8961. https://doi.org/10.1021/nn302954n
  35. Yong Yu, Zhentao Luo, Yue Yu, Jim Yang Lee, and Jianping Xie . Observation of Cluster Size Growth in CO-Directed Synthesis of Au25(SR)18 Nanoclusters. ACS Nano 2012, 6 (9) , 7920-7927. https://doi.org/10.1021/nn3023206
  36. Reji Philip, Panit Chantharasupawong, Huifeng Qian, Rongchao Jin, and Jayan Thomas . Evolution of Nonlinear Optical Properties: From Gold Atomic Clusters to Plasmonic Nanocrystals. Nano Letters 2012, 12 (9) , 4661-4667. https://doi.org/10.1021/nl301988v
  37. Xun Yuan, Yong Yu, Qiaofeng Yao, Qingbo Zhang, and Jianping Xie . Fast Synthesis of Thiolated Au25 Nanoclusters via Protection–Deprotection Method. The Journal of Physical Chemistry Letters 2012, 3 (17) , 2310-2314. https://doi.org/10.1021/jz300960b
  38. Atanu Ghosh, Thumu Udayabhaskararao, and Thalappil Pradeep . One-Step Route to Luminescent Au18SG14 in the Condensed Phase and Its Closed Shell Molecular Ions in the Gas Phase. The Journal of Physical Chemistry Letters 2012, 3 (15) , 1997-2002. https://doi.org/10.1021/jz3007436
  39. Xiaotao Nie, Huifeng Qian, Qingjie Ge, Hengyong Xu, and Rongchao Jin . CO Oxidation Catalyzed by Oxide-Supported Au25(SR)18 Nanoclusters and Identification of Perimeter Sites as Active Centers. ACS Nano 2012, 6 (7) , 6014-6022. https://doi.org/10.1021/nn301019f
  40. Deepa Jose, John E. Matthiesen, Christopher Parsons, Christopher M. Sorensen, and Kenneth J. Klabunde . Size Focusing of Nanoparticles by Thermodynamic Control through Ligand Interactions. Molecular Clusters Compared with Nanoparticles of Metals. The Journal of Physical Chemistry Letters 2012, 3 (7) , 885-890. https://doi.org/10.1021/jz201640e
  41. Peter J. Skrdla . Roles of Nucleation, Denucleation, Coarsening, and Aggregation Kinetics in Nanoparticle Preparations and Neurological Disease. Langmuir 2012, 28 (10) , 4842-4857. https://doi.org/10.1021/la205034u
  42. Yong Pei, Rhitankar Pal, Chunyan Liu, Yi Gao, Zhuhua Zhang, and Xiao Cheng Zeng . Interlocked Catenane-Like Structure Predicted in Au24(SR)20: Implication to Structural Evolution of Thiolated Gold Clusters from Homoleptic Gold(I) Thiolates to Core-Stacked Nanoparticles. Journal of the American Chemical Society 2012, 134 (6) , 3015-3024. https://doi.org/10.1021/ja208559y
  43. Xiupei Yang, Yan Su, Man Chin Paau, and Martin M. F. Choi . Mass Spectrometric Identification of Water-Soluble Gold Nanocluster Fractions from Sequential Size-Selective Precipitation. Analytical Chemistry 2012, 84 (3) , 1765-1771. https://doi.org/10.1021/ac2029908
  44. Prasenjit Maity, Hironori Tsunoyama, Miho Yamauchi, Songhai Xie, and Tatsuya Tsukuda . Organogold Clusters Protected by Phenylacetylene. Journal of the American Chemical Society 2011, 133 (50) , 20123-20125. https://doi.org/10.1021/ja209236n
  45. Mary Sajini Devadas, Semere Bairu, Huifeng Qian, Ekkehard Sinn, Rongchao Jin, and Guda Ramakrishna . Temperature-Dependent Optical Absorption Properties of Monolayer-Protected Au25 and Au38 Clusters. The Journal of Physical Chemistry Letters 2011, 2 (21) , 2752-2758. https://doi.org/10.1021/jz2012897
  46. Zhao Liu, Manzhou Zhu, Xiangming Meng, Guoyong Xu, and Rongchao Jin . Electron Transfer between [Au25(SC2H4Ph)18]−TOA+ and Oxoammonium Cations. The Journal of Physical Chemistry Letters 2011, 2 (17) , 2104-2109. https://doi.org/10.1021/jz200925h
  47. Rongchao Jin. Introduction to Atomically Precise Nanochemistry. 2023, 1-55. https://doi.org/10.1002/9781119788676.ch1
  48. Wanmiao Gu, Zhikun Wu. Thiolated Gold Nanoclusters with Well‐Defined Compositions and Structures. 2023, 87-140. https://doi.org/10.1002/9781119788676.ch3
  49. Jiafeng Zou, Wenwen Fei, Yao Qiao, Ying Yang, Zongbing He, Lei Feng, Man-Bo Li, Zhikun Wu. Combined synthesis of interconvertible Au11Cd and Au26Cd5 for photocatalytic oxidations involving singlet oxygen. Chinese Chemical Letters 2023, 34 (4) , 107660. https://doi.org/10.1016/j.cclet.2022.07.003
  50. Li Yan, Panpan Li, Qingyi Zhu, Anuj Kumar, Kai Sun, Shubo Tian, Xiaoming Sun. Atomically precise electrocatalysts for oxygen reduction reaction. Chem 2023, 9 (2) , 280-342. https://doi.org/10.1016/j.chempr.2023.01.003
  51. Ge Yang, Yali Xie, Yaru Wang, Ying Tang, Leng Leng Chng, Fuyi Jiang, Fanglin Du, Xianfeng Zhou, Jackie Y. Ying, Xun Yuan. Water-soluble Cu30 nanoclusters as a click chemistry catalyst for living cell labeling via azide-alkyne cycloaddition. Nano Research 2023, 16 (1) , 1748-1754. https://doi.org/10.1007/s12274-022-4821-5
  52. . Appendix. 2023, 601-637. https://doi.org/10.1016/B978-0-323-90879-5.00026-3
  53. Arijit Jana, Thalappil Pradeep. Nanocluster assembled solids. 2023, 49-82. https://doi.org/10.1016/B978-0-323-90879-5.00007-X
  54. Korath Shivan Sugi, Thalappil Pradeep. Chromatography and separation in nanocluster science. 2023, 177-202. https://doi.org/10.1016/B978-0-323-90879-5.00009-3
  55. Nan Xia, Jianpei Xing, Di Peng, Shiyu Ji, Jun Zha, Nan Yan, Yan Su, Xue Jiang, Zhi Zeng, Jijun Zhao, Zhikun Wu. Assembly-induced spin transfer and distance-dependent spin coupling in atomically precise AgCu nanoclusters. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-33651-9
  56. Zhi‐Rui Yuan, Zhi Wang, Bao‐Liang Han, Cheng‐Kai Zhang, Shan‐Shan Zhang, Zhen‐Yu Zhu, Jiu‐Hong Yu, Tian‐Duo Li, Ying‐Zhou Li, Chen‐Ho Tung, Di Sun. Ag 22 Nanoclusters with Thermally Activated Delayed Fluorescence Protected by Ag/Cyanurate/Phosphine Metallamacrocyclic Monolayers through In‐Situ Ligand Transesterification. Angewandte Chemie International Edition 2022, 61 (45) https://doi.org/10.1002/anie.202211628
  57. Zhi‐Rui Yuan, Zhi Wang, Bao‐Liang Han, Cheng‐Kai Zhang, Shan‐Shan Zhang, Zhen‐Yu Zhu, Jiu‐Hong Yu, Tian‐Duo Li, Ying‐Zhou Li, Chen‐Ho Tung, Di Sun. Ag 22 Nanoclusters with Thermally Activated Delayed Fluorescence Protected by Ag/Cyanurate/Phosphine Metallamacrocyclic Monolayers through In‐Situ Ligand Transesterification. Angewandte Chemie 2022, 134 (45) https://doi.org/10.1002/ange.202211628
  58. Baowen Zhang, Lianfang Chen, Maosen Zhang, Caixia Deng, Xiupei Yang. A gold-silver bimetallic nanocluster-based fluorescent probe for cysteine detection in milk and apple. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 278 , 121345. https://doi.org/10.1016/j.saa.2022.121345
  59. Li Li, Yanjie Zhu, Baoliang Han, Qiongyi Wang, Luming Zheng, Lei Feng, Di Sun, Zhi Wang. A classical [V 10 O 28 ] 6− anion templated high-nuclearity silver thiolate cluster. Chemical Communications 2022, 58 (66) , 9234-9237. https://doi.org/10.1039/D2CC03003A
  60. Ian D. Anderson, Yuchen Wang, Christine M. Aikens, Christopher J. Ackerson. An ultrastable thiolate/diglyme ligated cluster: Au 20 (PET) 15 (DG) 2. Nanoscale 2022, 14 (25) , 9134-9141. https://doi.org/10.1039/D2NR02426H
  61. Jie Xuan, Guijian Guan, Yong Yu, Enyi Ye, Zibiao Li. Nanotechnology for Energy Storage and Efficiency. 2022, 185-219. https://doi.org/10.1039/9781839165771-00185
  62. Sayani Mukherjee, Sukhendu Mandal. Metal Nanoclusters. 2022, 187-209. https://doi.org/10.1002/9783527833689.ch8
  63. Zhiren Zheng, Yanyan Hu, Ying Lv, Lu Liu, Daoqing Fan, Lichao Zhang, Ling Chen, Haizhu Yu, Manzhou Zhu. Aggregative Growth of Oligopeptide‐Protected Gold Nanoclusters into Plasmonic Particles. ChemNanoMat 2022, 8 (2) https://doi.org/10.1002/cnma.202100449
  64. Nidhi Kapil. Introduction. 2022, 1-44. https://doi.org/10.1007/978-3-031-15066-1_1
  65. Zhenkun Lin, Nirmal Goswami, Tiantian Xue, Osburg Jin Huang Chai, Hejie Xu, Yuxin Liu, Yu Su, Jianping Xie. Engineering Metal Nanoclusters for Targeted Therapeutics: From Targeting Strategies to Therapeutic Applications. Advanced Functional Materials 2021, 31 (51) , 2105662. https://doi.org/10.1002/adfm.202105662
  66. Vinitha Packirisamy, Prabhu Pandurangan. Heterocyclic thiol protected supramolecular self-assembly of silver nanoclusters for ultrasensitive detection of toxic Hg (II) ions in nanomolar range. Journal of Molecular Liquids 2021, 344 , 117769. https://doi.org/10.1016/j.molliq.2021.117769
  67. Jingwu Dong, Zibao Gan, Wanmiao Gu, Qing You, Yan Zhao, Jun Zha, Jin Li, Haiteng Deng, Nan Yan, Zhikun Wu. Synthesizing Photoluminescent Au 28 (SCH 2 Ph‐ t Bu) 22 Nanoclusters with Structural Features by Using a Combined Method. Angewandte Chemie International Edition 2021, 60 (33) , 17932-17936. https://doi.org/10.1002/anie.202105530
  68. Jingwu Dong, Zibao Gan, Wanmiao Gu, Qing You, Yan Zhao, Jun Zha, Jin Li, Haiteng Deng, Nan Yan, Zhikun Wu. Synthesizing Photoluminescent Au 28 (SCH 2 Ph‐ t Bu) 22 Nanoclusters with Structural Features by Using a Combined Method. Angewandte Chemie 2021, 133 (33) , 18076-18080. https://doi.org/10.1002/ange.202105530
  69. Mittal L. Desai, Hirakendu Basu, Sudeshna Saha, Rakesh Kumar Singhal, Suresh Kumar Kailasa. Fluorescence enhancement of bovine serum albumin gold nanoclusters from La3+ ion: Detection of four divalent metal ions (Hg2+, Cu2+, Pb2+ and Cd2+). Journal of Molecular Liquids 2021, 336 , 116239. https://doi.org/10.1016/j.molliq.2021.116239
  70. Ziping Wang, Xinxin Pan, Shuyu Qian, Ge Yang, Fanglin Du, Xun Yuan. The beauty of binary phases: A facile strategy for synthesis, processing, functionalization, and application of ultrasmall metal nanoclusters. Coordination Chemistry Reviews 2021, 438 , 213900. https://doi.org/10.1016/j.ccr.2021.213900
  71. Zibao Gan, Nan Xia, Nan Yan, Shengli Zhuang, Jingwu Dong, Yan Zhao, Shuqing Jiang, Qiang Tao, Zhikun Wu. Compression‐Driven Internanocluster Reaction for Synthesis of Unconventional Gold Nanoclusters. Angewandte Chemie International Edition 2021, 60 (22) , 12253-12257. https://doi.org/10.1002/anie.202014828
  72. Zibao Gan, Nan Xia, Nan Yan, Shengli Zhuang, Jingwu Dong, Yan Zhao, Shuqing Jiang, Qiang Tao, Zhikun Wu. Compression‐Driven Internanocluster Reaction for Synthesis of Unconventional Gold Nanoclusters. Angewandte Chemie 2021, 133 (22) , 12361-12365. https://doi.org/10.1002/ange.202014828
  73. Wanmiao Gu, Yan Zhao, Shengli Zhuang, Jun Zha, Jingwu Dong, Qing You, Zibao Gan, Nan Xia, Jin Li, Haiteng Deng, Zhikun Wu. Unravelling the Structure of a Medium‐Sized Metalloid Gold Nanocluster and its Filming Property. Angewandte Chemie 2021, 127 https://doi.org/10.1002/ange.202100879
  74. Wanmiao Gu, Yan Zhao, Shengli Zhuang, Jun Zha, Jingwu Dong, Qing You, Zibao Gan, Nan Xia, Jin Li, Haiteng Deng, Zhikun Wu. Unravelling the Structure of a Medium‐Sized Metalloid Gold Nanocluster and its Filming Property. Angewandte Chemie International Edition 2021, 127 https://doi.org/10.1002/anie.202100879
  75. Nan Xia, Zhikun Wu. Controlling ultrasmall gold nanoparticles with atomic precision. Chemical Science 2021, 12 (7) , 2368-2380. https://doi.org/10.1039/D0SC05363E
  76. Tokuhisa Kawawaki, Ayano Ebina, Yasunaga Hosokawa, Shuhei Ozaki, Daiki Suzuki, Sakiat Hossain, Yuichi Negishi. Thiolate‐Protected Metal Nanoclusters: Recent Development in Synthesis, Understanding of Reaction, and Application in Energy and Environmental Field. Small 2021, 140 , 2005328. https://doi.org/10.1002/smll.202005328
  77. Veeranmaril Sudheeshkumar, Charles Soong, Stas Dogel, Robert W. J. Scott. Probing the Thermal Stability of (3‐Mercaptopropyl)‐trimethoxysilane‐Protected Au 25 Clusters by In Situ Transmission Electron Microscopy. Small 2021, 115 , 2004539. https://doi.org/10.1002/smll.202004539
  78. Zhikun Wu, Rongchao Jin. Synthesis of Atomically Precise Metal Nanoclusters. 2021, 9-29. https://doi.org/10.1007/978-3-031-02389-7_2
  79. Zhikun Wu, Rongchao Jin. Atomically Precise Metal Nanoclusters. Synthesis Lectures on Materials and Optics 2020, 1 (6) , 1-139. https://doi.org/10.2200/S01058ED1V01Y202010MOP008
  80. . Zhikun Wu. Angewandte Chemie 2020, 18460-18460. https://doi.org/10.1002/ange.202005022
  81. . Zhikun Wu. Angewandte Chemie International Edition 2020, 18304-18304. https://doi.org/10.1002/anie.202005022
  82. Yuvasri Genji Srinivasulu, Qiaofeng Yao, Nirmal Goswami, Jianping Xie. Interfacial engineering of gold nanoclusters for biomedical applications. Materials Horizons 2020, 7 (10) , 2596-2618. https://doi.org/10.1039/D0MH00827C
  83. Yingwei Li, Tatsuya Higaki, Xiangsha Du, Rongchao Jin. Chirality and Surface Bonding Correlation in Atomically Precise Metal Nanoclusters. Advanced Materials 2020, 32 (41) , 1905488. https://doi.org/10.1002/adma.201905488
  84. Da Chen, Jinghong Li. Ultrasmall Au nanoclusters for bioanalytical and biomedical applications: the undisclosed and neglected roles of ligands in determining the nanoclusters' catalytic activities. Nanoscale Horizons 2020, 5 (10) , 1355-1367. https://doi.org/10.1039/D0NH00207K
  85. Yeakub Zaker, Brian A. Ashenfelter, Badri Bhattarai, Nathan A. Diemler, Timothy R. Brewer, Terry P. Bigioni. Sequential Growth as a Mechanism of Silver‐Glutathione Monolayer‐Protected Cluster Formation. Small 2020, , 2002238. https://doi.org/10.1002/smll.202002238
  86. C. Rivera-Cárcamo, F. Leng, I. C. Gerber, I. del Rosal, R. Poteau, V. Collière, P. Lecante, D. Nechiyil, W. Bacsa, A. Corrias, M. R. Axet, P. Serp. Catalysis to discriminate single atoms from subnanometric ruthenium particles in ultra-high loading catalysts. Catalysis Science & Technology 2020, 10 (14) , 4673-4683. https://doi.org/10.1039/D0CY00540A
  87. Hiroto Yoshida, Jatish Kumar, Masahiro Ehara, Yasuo Okajima, Fumio Asanoma, Tsuyoshi Kawai, Takuya Nakashima. Impact of Enantiomeric Ligand Composition on the Photophysical Properties of Chiral Ag 29 Nanoclusters. Bulletin of the Chemical Society of Japan 2020, 93 (7) , 834-840. https://doi.org/10.1246/bcsj.20200089
  88. Hui Shen, Elli Selenius, Pengpeng Ruan, Xihua Li, Peng Yuan, Omar Lopez‐Estrada, Sami Malola, Shuichao Lin, Boon K. Teo, Hannu Häkkinen, Nanfeng Zheng. Solubility‐Driven Isolation of a Metastable Nonagold Cluster with Body‐Centered Cubic Structure. Chemistry – A European Journal 2020, 26 (38) , 8465-8470. https://doi.org/10.1002/chem.202001753
  89. Yuichi Negishi, Sayaka Hashimoto, Ayano Ebina, Kota Hamada, Sakiat Hossain, Tokuhisa Kawawaki. Atomic-level separation of thiolate-protected metal clusters. Nanoscale 2020, 12 (15) , 8017-8039. https://doi.org/10.1039/D0NR00824A
  90. Cezar A. Didó, Felipe L. Coelho, Maurício B. Closs, Monique Deon, Flavio Horowitz, Fabiano Bernardi, Paulo H. Schneider, Edilson V. Benvenutti. Strategy to isolate ionic gold sites on silica surface: Increasing their efficiency as catalyst for the formation of 1,3-diynes. Applied Catalysis A: General 2020, 594 , 117444. https://doi.org/10.1016/j.apcata.2020.117444
  91. Murugan Ramadurai, Packirisamy Vinitha, Pandurangan Prabhu, ---Shanmugam Komathi, Rajendran Suresh Babu. Size-Dependent Photoluminescence from Thiolate-Protected Water-Soluble Cobalt Nanoclusters. ChemistrySelect 2020, 5 (7) , 2263-2270. https://doi.org/10.1002/slct.201903751
  92. Shengli Zhuang, Dong Chen, Lingwen Liao, Yan Zhao, Nan Xia, Wenhao Zhang, Chengming Wang, Jun Yang, Zhikun Wu. Hard‐Sphere Random Close‐Packed Au 47 Cd 2 (TBBT) 31 Nanoclusters with a Faradaic Efficiency of Up to 96 % for Electrocatalytic CO 2 Reduction to CO. Angewandte Chemie 2020, 132 (8) , 3097-3101. https://doi.org/10.1002/ange.201912845
  93. Shengli Zhuang, Dong Chen, Lingwen Liao, Yan Zhao, Nan Xia, Wenhao Zhang, Chengming Wang, Jun Yang, Zhikun Wu. Hard‐Sphere Random Close‐Packed Au 47 Cd 2 (TBBT) 31 Nanoclusters with a Faradaic Efficiency of Up to 96 % for Electrocatalytic CO 2 Reduction to CO. Angewandte Chemie International Edition 2020, 59 (8) , 3073-3077. https://doi.org/10.1002/anie.201912845
  94. Ying Lv, Xiangyu Ma, Jinsong Chai, Haizhu Yu, Manzhou Zhu. Face‐Centered‐Cubic Ag Nanoclusters: Origins and Consequences of the High Structural Regularity Elucidated by Density Functional Theory Calculations. Chemistry – A European Journal 2019, 25 (61) , 13977-13986. https://doi.org/10.1002/chem.201903183
  95. Danye Liu, Linlin Xu, Jianping Xie, Jun Yang. A perspective of chalcogenide semiconductor-noble metal nanocomposites through structural transformations. Nano Materials Science 2019, 1 (3) , 184-197. https://doi.org/10.1016/j.nanoms.2019.03.005
  96. Sha Li, Suyash Singh, James A. Dumesic, Manos Mavrikakis. On the nature of active sites for formic acid decomposition on gold catalysts. Catalysis Science & Technology 2019, 9 (11) , 2836-2848. https://doi.org/10.1039/C9CY00410F
  97. Yu Su, Tiantian Xue, Yuxin Liu, Jinxia Qi, Rongchao Jin, Zhenkun Lin. Luminescent metal nanoclusters for biomedical applications. Nano Research 2019, 12 (6) , 1251-1265. https://doi.org/10.1007/s12274-019-2314-y
  98. . Nanocomposites Consisting of Chalcogenide Semiconductors and Noble Metals by Structural Transformations. 2019, 217-247. https://doi.org/10.1002/9783527814305.ch6
  99. Shengli Zhuang, Lingwen Liao, Jinyun Yuan, Nan Xia, Yan Zhao, Chengming Wang, Zibao Gan, Nan Yan, Lizhong He, Jin Li, Haiteng Deng, Zhaoyong Guan, Jinlong Yang, Zhikun Wu. Fcc versus Non‐fcc Structural Isomerism of Gold Nanoparticles with Kernel Atom Packing Dependent Photoluminescence. Angewandte Chemie 2019, 131 (14) , 4558-4562. https://doi.org/10.1002/ange.201813426
  100. Shengli Zhuang, Lingwen Liao, Jinyun Yuan, Nan Xia, Yan Zhao, Chengming Wang, Zibao Gan, Nan Yan, Lizhong He, Jin Li, Haiteng Deng, Zhaoyong Guan, Jinlong Yang, Zhikun Wu. Fcc versus Non‐fcc Structural Isomerism of Gold Nanoparticles with Kernel Atom Packing Dependent Photoluminescence. Angewandte Chemie International Edition 2019, 58 (14) , 4510-4514. https://doi.org/10.1002/anie.201813426
Load all citations

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect