ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Mechanism of Membrane Interaction and Disruption by α-Synuclein

View Author Information
Institute of Physical Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
Institute of Physical Chemistry, ETH Zurich, Wolfgang-Pauli Strasse 10, 8093 Zurich, Switzerland
§ Electron Microscopy Center of the ETH Zurich (EMEZ), Schafmattstrasse 18, 8093 Zurich, Switzerland
Cite this: J. Am. Chem. Soc. 2011, 133, 48, 19366–19375
Publication Date (Web):October 6, 2011
https://doi.org/10.1021/ja2029848
Copyright © 2011 American Chemical Society

    Article Views

    4347

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Parkinson's disease is a common progressive neurodegenerative condition, characterized by the deposition of amyloid fibrils as Lewy bodies in the substantia nigra of affected individuals. These insoluble aggregates predominantly consist of the protein α-synuclein. There is increasing evidence suggesting that the aggregation of α-synuclein is influenced by lipid membranes and, vice versa, the membrane integrity is severely affected by the presence of bound aggregates. Here, using the surface-sensitive imaging technique supercritical angle fluorescence microscopy and Förster resonance energy transfer, we report the direct observation of α-synuclein aggregation on supported lipid bilayers. Both the wild-type and the two mutant forms of α-synuclein studied, namely, the familiar variant A53T and the designed highly toxic variant E57K, were found to follow the same mechanism of polymerization and membrane damage. This mechanism involved the extraction of lipids from the bilayer and their clustering around growing α-synuclein aggregates. Despite all three isoforms following the same pathway, the extent of aggregation and their effect on the bilayers was seen to be variant and concentration dependent. Both A53T and E57K formed cross-β-sheet aggregates and damaged the membrane at submicromolar concentrations. The wild-type also formed aggregates in this range; however, the extent of membrane disruption was greatly reduced. The process of membrane damage could resemble part of the yet poorly understood cellular toxicity phenomenon in vivo.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional methods, SAF microscopy images showing adsorption of WT, A53T, and E57K α-Syn at 200 nM, adsorption of α-Syn to SLBs containing various amounts of fluorophores, adsorption of E57K α-Syn on a 20% DOPS SLB, and OC antibody positive α-Syn aggregates, confocal microscopy images showing p-FTAA staining of α-Syn at 400 nM (A53T) and 3 μM (E57K) and p-FTAA staining of α-Syn fibrils grown in vitro, cryo-SEM image of clean SLBs, and complete refs 13, 15, 38, 47, 55, and 56. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 176 publications.

    1. Lianjie Zhou, Touko Hajiri, Kichitaro Nakajima, César Aguirre, Kensuke Ikenaka, Hideki Mochizuki, Keiichi Yamaguchi, Yuji Goto, Hirotsugu Ogi. Ultrastiff Amyloid-Fibril Network of α-Synuclein Formed by Surface Seeding Reaction Confirmed by Multichannel Electrodeless Quartz-Crystal-Microbalance Biosensor. ACS Sensors 2023, 8 (7) , 2598-2608. https://doi.org/10.1021/acssensors.3c00331
    2. Yanxing Yang, Hannah Distaffen, Sharareh Jalali, Andrew J. Nieuwkoop, Bradley L. Nilsson, Cristiano L. Dias. Atomic Insights into Amyloid-Induced Membrane Damage. ACS Chemical Neuroscience 2022, 13 (18) , 2766-2777. https://doi.org/10.1021/acschemneuro.2c00446
    3. Dong Yan Zhang, Jian Wang, Rebecca M. Fleeman, Madison K. Kuhn, Matthew T. Swulius, Elizabeth A. Proctor, Nikolay V. Dokholyan. Monosialotetrahexosylganglioside Promotes Early Aβ42 Oligomer Formation and Maintenance. ACS Chemical Neuroscience 2022, 13 (13) , 1979-1991. https://doi.org/10.1021/acschemneuro.2c00221
    4. Henry M. Sanders, Marius M. Kostelic, Ciara K. Zak, Michael T. Marty. Lipids and EGCG Affect α-Synuclein Association and Disruption of Nanodiscs. Biochemistry 2022, 61 (11) , 1014-1021. https://doi.org/10.1021/acs.biochem.2c00160
    5. Moutusi Manna, Rajesh K. Murarka. Polyunsaturated Fatty Acid Modulates Membrane-Bound Monomeric α-Synuclein by Modulating Membrane Microenvironment through Preferential Interactions. ACS Chemical Neuroscience 2021, 12 (4) , 675-688. https://doi.org/10.1021/acschemneuro.0c00694
    6. Christopher Kang, Rui Sun. Molecular Dynamics Study of the Interaction between the N-terminal of α-Synuclein and a Lipid Bilayer Mimicking Synaptic Vesicles. The Journal of Physical Chemistry B 2021, 125 (4) , 1036-1048. https://doi.org/10.1021/acs.jpcb.0c08620
    7. Jacob Parres-Gold, Andy Chieng, Stephanie Wong Su, Yixian Wang. Real-Time Characterization of Cell Membrane Disruption by α-Synuclein Oligomers in Live SH-SY5Y Neuroblastoma Cells. ACS Chemical Neuroscience 2020, 11 (17) , 2528-2534. https://doi.org/10.1021/acschemneuro.0c00309
    8. Sophia M. McClain, Adedolapo M. Ojoawo, Wayne Lin, Chad M. Rienstra, Catherine J. Murphy. Interaction of Alpha-Synuclein and Its Mutants with Rigid Lipid Vesicle Mimics of Varying Surface Curvature. ACS Nano 2020, 14 (8) , 10153-10167. https://doi.org/10.1021/acsnano.0c03420
    9. Sneha Menon, Neelanjana Sengupta, Payel Das. Nanoscale Interplay of Membrane Composition and Amyloid Self-Assembly. The Journal of Physical Chemistry B 2020, 124 (28) , 5837-5846. https://doi.org/10.1021/acs.jpcb.0c03796
    10. Moran Frenkel-Pinter, Mousumi Samanta, Gonen Ashkenasy, Luke J. Leman. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chemical Reviews 2020, 120 (11) , 4707-4765. https://doi.org/10.1021/acs.chemrev.9b00664
    11. Cristiano L. Dias, Sharareh Jalali, Yanxing Yang, Luis Cruz. Role of Cholesterol on Binding of Amyloid Fibrils to Lipid Bilayers. The Journal of Physical Chemistry B 2020, 124 (15) , 3036-3042. https://doi.org/10.1021/acs.jpcb.0c00485
    12. Valentin Dubois, Diana Serrano, Xiaotian Zhang, Stefan Seeger. Structure Analysis of Amyloid Aggregates at Lipid Bilayers by Supercritical Angle Raman Microscopy. Analytical Chemistry 2020, 92 (7) , 4963-4970. https://doi.org/10.1021/acs.analchem.9b05092
    13. Valentin Dubois, Diana Serrano, Stefan Seeger. Amyloid-β Peptide–Lipid Bilayer Interaction Investigated by Supercritical Angle Fluorescence. ACS Chemical Neuroscience 2019, 10 (12) , 4776-4786. https://doi.org/10.1021/acschemneuro.9b00264
    14. Stephanie Ghio, Angelique Camilleri, Mario Caruana, Viktoria C. Ruf, Felix Schmidt, Andrei Leonov, Sergey Ryazanov, Christian Griesinger, Ruben J. Cauchi, Frits Kamp, Armin Giese, Neville Vassallo. Cardiolipin Promotes Pore-Forming Activity of Alpha-Synuclein Oligomers in Mitochondrial Membranes. ACS Chemical Neuroscience 2019, 10 (8) , 3815-3829. https://doi.org/10.1021/acschemneuro.9b00320
    15. Dipita Bhattacharyya, Ganesh M. Mohite, Janarthanan Krishnamoorthy, Nilanjan Gayen, Surabhi Mehra, Ambuja Navalkar, Samuel A. Kotler, Bhisma N. Ratha, Anirban Ghosh, Rakesh Kumar, Kanchan Garai, Atin K. Mandal, Samir K. Maji, Anirban Bhunia. Lipopolysaccharide from Gut Microbiota Modulates α-Synuclein Aggregation and Alters Its Biological Function. ACS Chemical Neuroscience 2019, 10 (5) , 2229-2236. https://doi.org/10.1021/acschemneuro.8b00733
    16. Paul J. Boersema, Andre Melnik, Bouke P.C. Hazenberg, Melinda Rezeli, György Marko-Varga, Junichi Kamiie, Erik Portelius, Kaj Blennow, Roman A. Zubarev, Magdalini Polymenidou, Paola Picotti. Biology/Disease-Driven Initiative on Protein-Aggregation Diseases of the Human Proteome Project: Goals and Progress to Date. Journal of Proteome Research 2018, 17 (12) , 4072-4084. https://doi.org/10.1021/acs.jproteome.8b00401
    17. Roshan Kumar, Raniki Kumari, Sanjay Kumar, Deepak Kumar Jangir, Tushar Kanti Maiti. Extracellular α-Synuclein Disrupts Membrane Nanostructure and Promotes S-Nitrosylation-Induced Neuronal Cell Death. Biomacromolecules 2018, 19 (4) , 1118-1129. https://doi.org/10.1021/acs.biomac.7b01727
    18. Fulvio Grigolato, Claudio Colombo, Raffaele Ferrari, Lenka Rezabkova, and Paolo Arosio . Mechanistic Origin of the Combined Effect of Surfaces and Mechanical Agitation on Amyloid Formation. ACS Nano 2017, 11 (11) , 11358-11367. https://doi.org/10.1021/acsnano.7b05895
    19. Nicholas P. Reynolds, Mirren Charnley, Marie N. Bongiovanni, Patrick G. Hartley, and Sally L. Gras . Biomimetic Topography and Chemistry Control Cell Attachment to Amyloid Fibrils. Biomacromolecules 2015, 16 (5) , 1556-1565. https://doi.org/10.1021/acs.biomac.5b00114
    20. Hendrik Hähl, Isabelle Möller, Irena Kiesel, Silvia Campioni, Roland Riek, Dorinel Verdes, and Stefan Seeger . α-Synuclein Insertion into Supported Lipid Bilayers As Seen by in Situ X-ray Reflectivity. ACS Chemical Neuroscience 2015, 6 (3) , 374-379. https://doi.org/10.1021/cn5002683
    21. Igor F. Tsigelny, Yuriy Sharikov, Valentina L. Kouznetsova, Jerry P. Greenberg, Wolf Wrasidlo, Cassia Overk, Tania Gonzalez, Margarita Trejo, Brian Spencer, Kori Kosberg, and Eliezer Masliah . Molecular Determinants of α-Synuclein Mutants’ Oligomerization and Membrane Interactions. ACS Chemical Neuroscience 2015, 6 (3) , 403-416. https://doi.org/10.1021/cn500332w
    22. Andreas van Maarschalkerweerd, Valeria Vetri, Annette Eva Langkilde, Vito Foderà, and Bente Vestergaard . Protein/Lipid Coaggregates are Formed During α-Synuclein-Induced Disruption of Lipid Bilayers. Biomacromolecules 2014, 15 (10) , 3643-3654. https://doi.org/10.1021/bm500937p
    23. Cecile Lara, Nicholas P. Reynolds, Joshua T. Berryman, Anqiu Xu, Afang Zhang, and Raffaele Mezzenga . ILQINS Hexapeptide, Identified in Lysozyme Left-Handed Helical Ribbons and Nanotubes, Forms Right-Handed Helical Ribbons and Crystals. Journal of the American Chemical Society 2014, 136 (12) , 4732-4739. https://doi.org/10.1021/ja500445z
    24. Nicholas P. Reynolds, Mirren Charnley, Raffaele Mezzenga, and Patrick G. Hartley . Engineered Lysozyme Amyloid Fibril Networks Support Cellular Growth and Spreading. Biomacromolecules 2014, 15 (2) , 599-608. https://doi.org/10.1021/bm401646x
    25. Shin Jung C. Lee, Jong Wha Lee, Tae Su Choi, Kyeong Sik Jin, Seonghwan Lee, Changill Ban, and Hugh I. Kim . Probing Conformational Change of Intrinsically Disordered α-Synuclein to Helical Structures by Distinctive Regional Interactions with Lipid Membranes. Analytical Chemistry 2014, 86 (3) , 1909-1916. https://doi.org/10.1021/ac404132g
    26. Jonas Ries, Vinod Udayar, Alice Soragni, Simone Hornemann, K. Peter R. Nilsson, Roland Riek, Christoph Hock, Helge Ewers, Adriano A. Aguzzi, and Lawrence Rajendran . Superresolution Imaging of Amyloid Fibrils with Binding-Activated Probes. ACS Chemical Neuroscience 2013, 4 (7) , 1057-1061. https://doi.org/10.1021/cn400091m
    27. Nicholas P. Reynolds, Katie E. Styan, Christopher D. Easton, Yali Li, Lynne Waddington, Cecile Lara, John S. Forsythe, Raffaele Mezzenga, Patrick G. Hartley, and Benjamin W. Muir . Nanotopographic Surfaces with Defined Surface Chemistries from Amyloid Fibril Networks Can Control Cell Attachment. Biomacromolecules 2013, 14 (7) , 2305-2316. https://doi.org/10.1021/bm400430t
    28. Michael Rabe, Alice Soragni, Nicholas P. Reynolds, Dorinel Verdes, Ennio Liverani, Roland Riek, and Stefan Seeger . On-Surface Aggregation of α-Synuclein at Nanomolar Concentrations Results in Two Distinct Growth Mechanisms. ACS Chemical Neuroscience 2013, 4 (3) , 408-417. https://doi.org/10.1021/cn3001312
    29. Michele F. M. Sciacca, Jeffrey R. Brender, Dong-Kuk Lee, and Ayyalusamy Ramamoorthy . Phosphatidylethanolamine Enhances Amyloid Fiber-Dependent Membrane Fragmentation. Biochemistry 2012, 51 (39) , 7676-7684. https://doi.org/10.1021/bi3009888
    30. Tomoya Kon, Seojin Lee, Ivan Martinez-Valbuena, Koji Yoshida, Satoshi Tanikawa, Anthony E. Lang, Gabor G. Kovacs. Molecular Behavior of α-Synuclein Is Associated with Membrane Transport, Lipid Metabolism, and Ubiquitin–Proteasome Pathways in Lewy Body Disease. International Journal of Molecular Sciences 2024, 25 (5) , 2676. https://doi.org/10.3390/ijms25052676
    31. Amberley D. Stephens, Ana Fernandez Villegas, Chyi Wei Chung, Oliver Vanderpoorten, Dorothea Pinotsi, Ioanna Mela, Edward Ward, Thomas M. McCoy, Robert Cubitt, Alexander F. Routh, Clemens F. Kaminski, Gabriele S. Kaminski Schierle. α-Synuclein fibril and synaptic vesicle interactions lead to vesicle destruction and increased lipid-associated fibril uptake into iPSC-derived neurons. Communications Biology 2023, 6 (1) https://doi.org/10.1038/s42003-023-04884-1
    32. Alessandra Bigi, Roberta Cascella, Cristina Cecchi. α-Synuclein oligomers and fibrils: partners in crime in synucleinopathies. Neural Regeneration Research 2023, 18 (11) , 2332-2342. https://doi.org/10.4103/1673-5374.371345
    33. Bhanu P. Singh, Ryan J. Morris, Tilo Kunath, Cait E. MacPhee, Mathew H. Horrocks. Lipid‐induced polymorphic amyloid fibril formation by α‐synuclein. Protein Science 2023, 32 (10) https://doi.org/10.1002/pro.4736
    34. Jennifer Ramirez, Samantha X. Pancoe, Elizabeth Rhoades, E. James Petersson. The Effects of Lipids on α-Synuclein Aggregation In Vitro. Biomolecules 2023, 13 (10) , 1476. https://doi.org/10.3390/biom13101476
    35. Ying Yang, Min Shi, Xiaodan Liu, Qiaoyun Zhu, Zhi Xu, Genliang Liu, Tao Feng, Tessandra Stewart, Jing Zhang. Calcium influx: An essential process by which α-Synuclein regulates morphology of erythrocytes. Journal of Advanced Research 2023, 538 https://doi.org/10.1016/j.jare.2023.09.009
    36. John H. Viles. Imaging Amyloid‐β Membrane Interactions: Ion‐Channel Pores and Lipid‐Bilayer Permeability in Alzheimer's Disease. Angewandte Chemie 2023, 135 (25) https://doi.org/10.1002/ange.202215785
    37. John H. Viles. Imaging Amyloid‐β Membrane Interactions: Ion‐Channel Pores and Lipid‐Bilayer Permeability in Alzheimer's Disease. Angewandte Chemie International Edition 2023, 62 (25) https://doi.org/10.1002/anie.202215785
    38. Phelippe Carmo-Gonçalves, Eduardo Coelho-Cerqueira, Vanderlei de Araujo Lima, Cristian Follmer. Alpha-synuclein in Parkinson's disease: a villain or tragic hero? A critical view of the formation of α-synuclein aggregates induced by dopamine metabolites and viral infection. Expert Review of Neurotherapeutics 2023, 23 (4) , 321-330. https://doi.org/10.1080/14737175.2023.2196014
    39. Jack Robinson, Nirod Kumar Sarangi, Tia E. Keyes. Role of phosphatidylserine in amyloid-beta oligomerization at asymmetric phospholipid bilayers. Physical Chemistry Chemical Physics 2023, 25 (11) , 7648-7661. https://doi.org/10.1039/D2CP03344E
    40. Valeriya Trusova, Uliana Tarabara, Olga Zhytniakivska, Kateryna Vus, Galyna Gorbenko. Interactions of Fibrillar Proteins with Lipids: A Molecular Docking Insight. East European Journal of Physics 2023, (1) , 236-240. https://doi.org/10.26565/2312-4334-2023-1-31
    41. Benedikt Frieg, Leif Antonschmidt, Christian Dienemann, James A. Geraets, Eszter E. Najbauer, Dirk Matthes, Bert L. de Groot, Loren B. Andreas, Stefan Becker, Christian Griesinger, Gunnar F. Schröder. The 3D structure of lipidic fibrils of α-synuclein. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-34552-7
    42. Azad Farzadfard, Jannik Nedergaard Pedersen, Georg Meisl, Arun Kumar Somavarapu, Parvez Alam, Louise Goksøyr, Morten Agertoug Nielsen, Adam Frederik Sander, Tuomas P. J. Knowles, Jan Skov Pedersen, Daniel Erik Otzen. The C-terminal tail of α-synuclein protects against aggregate replication but is critical for oligomerization. Communications Biology 2022, 5 (1) https://doi.org/10.1038/s42003-022-03059-8
    43. Gyeongji Yoo, Hyeong Jeon An, Sanghun Yeou, Nam Ki Lee. α-Synuclein Disrupts Vesicle Fusion by Two Mutant-Specific Mechanisms. Molecules and Cells 2022, 45 (11) , 806-819. https://doi.org/10.14348/molcells.2022.0102
    44. Nevena Vicic, Xiaoxin Guo, Darren Chan, John G Flanagan, Ian A. Sigal, Jeremy M. Sivak. Evidence of an Annexin A4 mediated plasma membrane repair response to biomechanical strain associated with glaucoma pathogenesis. Journal of Cellular Physiology 2022, 237 (9) , 3687-3702. https://doi.org/10.1002/jcp.30834
    45. Ivan Martinez-Valbuena, Emily Swinkin, Enrique Santamaria, Joaquin Fernandez-Irigoyen, Valerie Sackmann, Ain Kim, Jun Li, Paulina Gonzalez-Latapi, Greg Kuhlman, Suvorit Subhas Bhowmick, Naomi P. Visanji, Anthony E. Lang, Gabor G. Kovacs. α-Synuclein molecular behavior and nigral proteomic profiling distinguish subtypes of Lewy body disorders. Acta Neuropathologica 2022, 144 (2) , 167-185. https://doi.org/10.1007/s00401-022-02453-0
    46. Varun Prasath, Jiali Zhai, Brendan P. Dyett, Haitao Yu, Søren V. Hoffmann, Nykola C. Jones, Nicholas P. Reynolds, Céline Valéry, Calum J. Drummond, Charlotte E. Conn. Lipid membrane-mediated assembly of the functional amyloid-forming peptide Somatostatin-14. Biophysical Chemistry 2022, 287 , 106830. https://doi.org/10.1016/j.bpc.2022.106830
    47. Ana Sofía Vallés, Francisco J. Barrantes. Interactions between the Nicotinic and Endocannabinoid Receptors at the Plasma Membrane. Membranes 2022, 12 (8) , 812. https://doi.org/10.3390/membranes12080812
    48. John M. Sanderson. The association of lipids with amyloid fibrils. Journal of Biological Chemistry 2022, 298 (8) , 102108. https://doi.org/10.1016/j.jbc.2022.102108
    49. Yuxi Lin, Dai Ito, Je Min Yoo, Mi Hee Lim, Wookyung Yu, Yasushi Kawata, Young-Ho Lee. Dual Effects of Presynaptic Membrane Mimetics on α-Synuclein Amyloid Aggregation. Frontiers in Cell and Developmental Biology 2022, 10 https://doi.org/10.3389/fcell.2022.707417
    50. George K. Tofaris. Initiation and progression of α-synuclein pathology in Parkinson’s disease. Cellular and Molecular Life Sciences 2022, 79 (4) https://doi.org/10.1007/s00018-022-04240-2
    51. Carmelo Tempra, Federica Scollo, Martina Pannuzzo, Fabio Lolicato, Carmelo La Rosa. A unifying framework for amyloid-mediated membrane damage: The lipid-chaperone hypothesis. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2022, 1870 (4) , 140767. https://doi.org/10.1016/j.bbapap.2022.140767
    52. Zahra Najarzadeh, Hossein Mohammad-Beigi, Jannik Nedergaard Pedersen, Gunna Christiansen, Jan Skov Pedersen, Janni Nielsen, Daniel E. Otzen. Interaction of membrane vesicles with the Pseudomonas functional amyloid protein FapC facilitates amyloid formation. BBA Advances 2022, 2 , 100055. https://doi.org/10.1016/j.bbadva.2022.100055
    53. Md Masud Alam, De Yang, Xiao-Qing Li, Jia Liu, Timothy Carrel Back, Anna Trivett, Baktiar Karim, Denise Barbut, Michael Zasloff, Joost J. Oppenheim. Alpha synuclein, the culprit in Parkinson disease, is required for normal immune function. Cell Reports 2022, 38 (2) , 110090. https://doi.org/10.1016/j.celrep.2021.110090
    54. Zahra Najarzadeh, Hossein Mohammad-Beigi, Jannik Nedergaard Pedersen, Gunna Christiansen, Jan Skov Pedersen, Janni Nielsen, Daniel Otzen. Interaction of Membrane Vesicles with the Pseudomonas Functional Amyloid Protein FapC Facilitates Amyloid Formation. SSRN Electronic Journal 2022, 27 https://doi.org/10.2139/ssrn.4177056
    55. Shakkira Erimban, Snehasis Daschakraborty. How does excess phenylalanine affect the packing density and fluidity of a lipid membrane?. Physical Chemistry Chemical Physics 2021, 23 (48) , 27294-27303. https://doi.org/10.1039/D1CP05004D
    56. Catarina Dias, Jesper Nylandsted. Plasma membrane integrity in health and disease: significance and therapeutic potential. Cell Discovery 2021, 7 (1) https://doi.org/10.1038/s41421-020-00233-2
    57. Jingyao Li, Fuzhong Zhang. Amyloids as Building Blocks for Macroscopic Functional Materials: Designs, Applications and Challenges. International Journal of Molecular Sciences 2021, 22 (19) , 10698. https://doi.org/10.3390/ijms221910698
    58. Tomoyuki Ishimoto, Hodaka Yamakado. Membranes and Organelle in Lewy Bodies: The Mastermind or the Bystander?. Movement Disorders 2021, 36 (9) , 2026-2026. https://doi.org/10.1002/mds.28747
    59. Paola Signorelli, Carmela Conte, Elisabetta Albi. The Multiple Roles of Sphingomyelin in Parkinson’s Disease. Biomolecules 2021, 11 (9) , 1311. https://doi.org/10.3390/biom11091311
    60. Alessia Sarchione, Antoine Marchand, Jean-Marc Taymans, Marie-Christine Chartier-Harlin. Alpha-Synuclein and Lipids: The Elephant in the Room?. Cells 2021, 10 (9) , 2452. https://doi.org/10.3390/cells10092452
    61. Simona S. Ghanem, Hend S. Fayed, Qi Zhu, Jia-Hong Lu, Nishant N. Vaikath, Janarthanan Ponraj, Said Mansour, Omar M. A. El-Agnaf. Natural Alkaloid Compounds as Inhibitors for Alpha-Synuclein Seeded Fibril Formation and Toxicity. Molecules 2021, 26 (12) , 3736. https://doi.org/10.3390/molecules26123736
    62. Yao Tian, Ruina Liang, Amit Kumar, Piotr Szwedziak, John H. Viles. 3D-visualization of amyloid-β oligomer interactions with lipid membranes by cryo-electron tomography. Chemical Science 2021, 12 (20) , 6896-6907. https://doi.org/10.1039/D0SC06426B
    63. Leif Antonschmidt, Rıza Dervişoğlu, Vrinda Sant, Kumar Tekwani Movellan, Ingo Mey, Dietmar Riedel, Claudia Steinem, Stefan Becker, Loren B. Andreas, Christian Griesinger. Insights into the molecular mechanism of amyloid filament formation: Segmental folding of α-synuclein on lipid membranes. Science Advances 2021, 7 (20) https://doi.org/10.1126/sciadv.abg2174
    64. Greta Musteikytė, Akhila K. Jayaram, Catherine K. Xu, Michele Vendruscolo, Georg Krainer, Tuomas P.J. Knowles. Interactions of α-synuclein oligomers with lipid membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes 2021, 1863 (4) , 183536. https://doi.org/10.1016/j.bbamem.2020.183536
    65. José Carlos Bozelli, Evelyn Kamski-Hennekam, Giuseppe Melacini, Richard M. Epand. α-Synuclein and neuronal membranes: Conformational flexibilities in health and disease. Chemistry and Physics of Lipids 2021, 235 , 105034. https://doi.org/10.1016/j.chemphyslip.2020.105034
    66. Ricardo Gaspar, Ilaria Idini, Göran Carlström, Sara Linse, Emma Sparr. Transient Lipid-Protein Structures and Selective Ganglioside Uptake During α-Synuclein-Lipid Co-aggregation. Frontiers in Cell and Developmental Biology 2021, 9 https://doi.org/10.3389/fcell.2021.622764
    67. Reeba Susan Jacob, Cédric Eichmann, Alessandro Dema, Davide Mercadante, Philipp Selenko. α-Synuclein plasma membrane localization correlates with cellular phosphatidylinositol polyphosphate levels. eLife 2021, 10 https://doi.org/10.7554/eLife.61951
    68. Mohamed Bilal Fares, Somanath Jagannath, Hilal A. Lashuel. Reverse engineering Lewy bodies: how far have we come and how far can we go?. Nature Reviews Neuroscience 2021, 22 (2) , 111-131. https://doi.org/10.1038/s41583-020-00416-6
    69. Ruth Hendus-Altenburger, Jens Vogensen, Emilie Skotte Pedersen, Alessandra Luchini, Raul Araya-Secchi, Anne H. Bendsoe, Nanditha Shyam Prasad, Andreas Prestel, Marité Cardenas, Elena Pedraz-Cuesta, Lise Arleth, Stine F. Pedersen, Birthe B. Kragelund. The intracellular lipid-binding domain of human Na+/H+ exchanger 1 forms a lipid-protein co-structure essential for activity. Communications Biology 2020, 3 (1) https://doi.org/10.1038/s42003-020-01455-6
    70. Mustafa T. Ardah, Simona S. Ghanem, Sara A. Abdulla, Guohua Lv, Mohamed M. Emara, Katerina E. Paleologou, Nishant N. Vaikath, Jia-Hong Lu, Min Li, Konstantinos Vekrellis, David Eliezer, Omar M. A. El-Agnaf. Inhibition of alpha-synuclein seeded fibril formation and toxicity by herbal medicinal extracts. BMC Complementary Medicine and Therapies 2020, 20 (1) https://doi.org/10.1186/s12906-020-2849-1
    71. Natalie Landeck, Katherine E. Strathearn, Daniel Ysselstein, Kerstin Buck, Sayan Dutta, Siddhartha Banerjee, Zhengjian Lv, John D. Hulleman, Jagadish Hindupur, Li-Kai Lin, Sonal Padalkar, Lia A. Stanciu, Yuri L. Lyubchenko, Deniz Kirik, Jean-Christophe Rochet. Two C-terminal sequence variations determine differential neurotoxicity between human and mouse α-synuclein. Molecular Neurodegeneration 2020, 15 (1) https://doi.org/10.1186/s13024-020-00380-w
    72. Lifu Sheng, Tessandra Stewart, Dishun Yang, Eric Thorland, David Soltys, Patrick Aro, Tarek Khrisat, Zhiying Xie, Na Li, Zongran Liu, Chen Tian, Matthew Bercow, Junichi Matsumoto, Cyrus P. Zabetian, Elaine Peskind, Joseph F. Quinn, Min Shi, Jing Zhang. Erythrocytic α-synuclein contained in microvesicles regulates astrocytic glutamate homeostasis: a new perspective on Parkinson’s disease pathogenesis. Acta Neuropathologica Communications 2020, 8 (1) https://doi.org/10.1186/s40478-020-00983-w
    73. Andre Melnik, Valentina Cappelletti, Federico Vaggi, Ilaria Piazza, Marco Tognetti, Carmen Schwarz, Gea Cereghetti, Mennat Allah Ahmed, Martin Soste, Kent Matlack, Natalie de Souza, Attila Csikasz-Nagy, Paola Picotti. Comparative analysis of the intracellular responses to disease-related aggregation-prone proteins. Journal of Proteomics 2020, 225 , 103862. https://doi.org/10.1016/j.jprot.2020.103862
    74. Jonas K. Hannestad, Sandra Rocha, Björn Agnarsson, Vladimir P. Zhdanov, Pernilla Wittung-Stafshede, Fredrik Höök. Single-vesicle imaging reveals lipid-selective and stepwise membrane disruption by monomeric α-synuclein. Proceedings of the National Academy of Sciences 2020, 117 (25) , 14178-14186. https://doi.org/10.1073/pnas.1914670117
    75. Jinming Wu, Chan Cao, Rolf Antonie Loch, Ann Tiiman, Jinghui Luo. Single-molecule studies of amyloid proteins: from biophysical properties to diagnostic perspectives. Quarterly Reviews of Biophysics 2020, 53 https://doi.org/10.1017/S0033583520000086
    76. Sayan Dutta, Ben Watson, Seema Mattoo, Jean-Christophe Rochet. Calcein Release Assay to Measure Membrane Permeabilization by Recombinant Alpha-Synuclein. BIO-PROTOCOL 2020, 10 (14) https://doi.org/10.21769/BioProtoc.3690
    77. Dong-Fei Ma, Wen-Qing Hou, Chun-Hua Xu, Chun-Yu Zhao, Jian-Bing Ma, Xing-Yuan Huang, Qi Jia, Lu Ma, Cong Liu, Ming Li, Ying Lu, , , . Investigation of structure and dynamics of α-synuclein on membrane by quenchers-in-a-liposome fluorescence resonance energy transfer method. Acta Physica Sinica 2020, 69 (3) , 038701. https://doi.org/10.7498/aps.69.20191607
    78. Sandra Rocha, Ranjeet Kumar, Istvan Horvath, Pernilla Wittung-Stafshede, . Synaptic vesicle mimics affect the aggregation of wild-type and A53T α-synuclein variants differently albeit similar membrane affinity. Protein Engineering, Design and Selection 2019, 32 (2) , 59-66. https://doi.org/10.1093/protein/gzz021
    79. Daniel Otzen, Roland Riek. Functional Amyloids. Cold Spring Harbor Perspectives in Biology 2019, 11 (12) , a033860. https://doi.org/10.1101/cshperspect.a033860
    80. Chen Tian, Genliang Liu, Liyan Gao, David Soltys, Catherine Pan, Tessandra Stewart, Min Shi, Zhiying Xie, Na Liu, Tao Feng, Jing Zhang. Erythrocytic α-Synuclein as a potential biomarker for Parkinson’s disease. Translational Neurodegeneration 2019, 8 (1) https://doi.org/10.1186/s40035-019-0155-y
    81. Liisa Lutter, Christopher J. Serpell, Mick F. Tuite, Wei-Feng Xue. The molecular lifecycle of amyloid – Mechanism of assembly, mesoscopic organisation, polymorphism, suprastructures, and biological consequences. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2019, 1867 (11) , 140257. https://doi.org/10.1016/j.bbapap.2019.07.010
    82. T. Devanand, Sankaran Krishnaswamy, Satyavani Vemparala. Interdigitation of Lipids Induced by Membrane–Active Proteins. The Journal of Membrane Biology 2019, 252 (4-5) , 331-342. https://doi.org/10.1007/s00232-019-00072-7
    83. Justine Lempart, Eric Tse, James A Lauer, Magdalena I Ivanova, Alexandra Sutter, Nicholas Yoo, Philipp Huettemann, Daniel Southworth, Ursula Jakob. Mechanistic insights into the protective roles of polyphosphate against amyloid cytotoxicity. Life Science Alliance 2019, 2 (5) , e201900486. https://doi.org/10.26508/lsa.201900486
    84. Zhengjian Lv, Mohtadin Hashemi, Siddhartha Banerjee, Karen Zagorski, Jean-Christophe Rochet, Yuri L. Lyubchenko. Assembly of α-synuclein aggregates on phospholipid bilayers. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2019, 1867 (9) , 802-812. https://doi.org/10.1016/j.bbapap.2019.06.006
    85. Mohammad A. Fallah, Karin Hauser. Immobilization approaches can affect protein dynamics: a surface-enhanced infrared spectroscopic study on lipid–protein interactions. Biomaterials Science 2019, 7 (8) , 3204-3212. https://doi.org/10.1039/C9BM00140A
    86. Michael C. Owen, David Gnutt, Mimi Gao, Sebastian K. T. S. Wärmländer, Jüri Jarvet, Astrid Gräslund, Roland Winter, Simon Ebbinghaus, Birgit Strodel. Effects of in vivo conditions on amyloid aggregation. Chemical Society Reviews 2019, 48 (14) , 3946-3996. https://doi.org/10.1039/C8CS00034D
    87. Nicholas P. Reynolds. Amyloid-like peptide nanofibrils as scaffolds for tissue engineering: Progress and challenges (Review). Biointerphases 2019, 14 (4) https://doi.org/10.1116/1.5098332
    88. Emma I. O'Leary, Jennifer C. Lee. Interplay between α-synuclein amyloid formation and membrane structure. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2019, 1867 (5) , 483-491. https://doi.org/10.1016/j.bbapap.2018.09.012
    89. Aditya Iyer, Mireille M.A.E. Claessens. Disruptive membrane interactions of alpha-synuclein aggregates. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2019, 1867 (5) , 468-482. https://doi.org/10.1016/j.bbapap.2018.10.006
    90. Ricardo Gaspar, Jon Pallbo, Ulrich Weininger, Sara Linse, Emma Sparr. Reprint of “Ganglioside lipids accelerate α-synuclein amyloid formation”. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2019, 1867 (5) , 508-518. https://doi.org/10.1016/j.bbapap.2019.02.003
    91. Anwesha Sanyal, Sayan Dutta, Ali Camara, Aswathy Chandran, Antonius Koller, Ben G. Watson, Ranjan Sengupta, Daniel Ysselstein, Paola Montenegro, Jason Cannon, Jean-Christophe Rochet, Seema Mattoo. Alpha-Synuclein Is a Target of Fic-Mediated Adenylylation/AMPylation: Possible Implications for Parkinson's Disease. Journal of Molecular Biology 2019, 431 (12) , 2266-2282. https://doi.org/10.1016/j.jmb.2019.04.026
    92. David C. Bode, Mark Freeley, Jon Nield, Matteo Palma, John H. Viles. Amyloid-β oligomers have a profound detergent-like effect on lipid membrane bilayers, imaged by atomic force and electron microscopy. Journal of Biological Chemistry 2019, 294 (19) , 7566-7572. https://doi.org/10.1074/jbc.AC118.007195
    93. Natalia P. Alza, Pablo A. Iglesias González, Melisa A. Conde, Romina M. Uranga, Gabriela A. Salvador. Lipids at the Crossroad of α-Synuclein Function and Dysfunction: Biological and Pathological Implications. Frontiers in Cellular Neuroscience 2019, 13 https://doi.org/10.3389/fncel.2019.00175
    94. Radoslaw Bomba, Witek Kwiatkowski, Antoni Sánchez-Ferrer, Roland Riek, Jason Greenwald. Cooperative Induction of Ordered Peptide and Fatty Acid Aggregates. Biophysical Journal 2018, 115 (12) , 2336-2347. https://doi.org/10.1016/j.bpj.2018.10.031
    95. Thibault Viennet, Michael M. Wördehoff, Boran Uluca, Chetan Poojari, Hamed Shaykhalishahi, Dieter Willbold, Birgit Strodel, Henrike Heise, Alexander K. Buell, Wolfgang Hoyer, Manuel Etzkorn. Structural insights from lipid-bilayer nanodiscs link α-Synuclein membrane-binding modes to amyloid fibril formation. Communications Biology 2018, 1 (1) https://doi.org/10.1038/s42003-018-0049-z
    96. José Ignacio Gallea, Ernesto E. Ambroggio, Aldo Alejandro Vilcaes, Nicholas G. James, David M. Jameson, María Soledad Celej. Amyloid oligomerization of the Parkinson's disease related protein α‐synuclein impacts on its curvature‐membrane sensitivity. Journal of Neurochemistry 2018, 147 (4) , 541-556. https://doi.org/10.1111/jnc.14573
    97. Ricardo Gaspar, Jon Pallbo, Ulrich Weininger, Sara Linse, Emma Sparr. Ganglioside lipids accelerate α-synuclein amyloid formation. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2018, 1866 (10) , 1062-1072. https://doi.org/10.1016/j.bbapap.2018.07.004
    98. Somin Lim, Han-Joon Kim, Dong-Kyu Kim, Seung-Jae Lee. Non-cell-autonomous actions of α-synuclein: Implications in glial synucleinopathies. Progress in Neurobiology 2018, 169 , 158-171. https://doi.org/10.1016/j.pneurobio.2018.06.010
    99. Stephanie Wong Su, Andy Chieng, Jacob Parres-Gold, Megan Chang, Yixian Wang. Real-time determination of aggregated alpha-synuclein induced membrane disruption at neuroblastoma cells using scanning ion conductance microscopy. Faraday Discussions 2018, 210 , 131-143. https://doi.org/10.1039/C8FD00059J
    100. Yaowang Li, Chunyu Zhao, Feng Luo, Zhenying Liu, Xinrui Gui, Zhipu Luo, Xiang Zhang, Dan Li, Cong Liu, Xueming Li. Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy. Cell Research 2018, 28 (9) , 897-903. https://doi.org/10.1038/s41422-018-0075-x
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect