ACS Publications. Most Trusted. Most Cited. Most Read
Imaging Mass Spectrometry and Genome Mining via Short Sequence Tagging Identified the Anti-Infective Agent Arylomycin in Streptomyces roseosporus
My Activity

Figure 1Loading Img
    Communication

    Imaging Mass Spectrometry and Genome Mining via Short Sequence Tagging Identified the Anti-Infective Agent Arylomycin in Streptomyces roseosporus
    Click to copy article linkArticle link copied!

    View Author Information
    † ‡ § Department of Chemistry and Biochemistry, Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, §Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093, Unites States
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2011, 133, 45, 18010–18013
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja2040877
    Published October 14, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Here, we described the discovery of anti-infective agent arylomycin and its biosynthetic gene cluster in an industrial daptomycin producing strain Streptomyces roseosporus. This was accomplished via the use of MALDI imaging mass spectrometry (IMS) along with peptidogenomic approach in which we have expanded to short sequence tagging (SST) described herein. Using IMS, we observed that prior to the production of daptomycin, a cluster of ions (13) was produced by S. roseosporus and correlated well with the decreased staphylococcal cell growth. With a further adopted SST peptidogenomics approach, which relies on the generation of sequence tags from tandem mass spectrometric data and query against genomes to identify the biosynthetic genes, we were able to identify these three molecules (13) to arylomycins, a class of broad-spectrum antibiotics that target type I signal peptidase. The gene cluster was then identified. This highlights the strength of IMS and MS guided genome mining approaches in effectively bridging the gap between phenotypes, chemotypes, and genotypes.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Materials, detailed experimental procedures and supplementary figures. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 78 publications.

    1. Yu-Hong Liu, Yu-Ting Liao, Xiao-Dan Shao, Zhu-Ya Yang, Dashan Li, Lu Liu, Li-Dong Shao. Biomimetic Total Synthesis of Bimagnolignan: A Natural Anti-Breast Cancer Agent. Organic Letters 2024, 26 (12) , 2376-2380. https://doi.org/10.1021/acs.orglett.4c00378
    2. Carmela Molinaro, Yukie Kawasaki, George Wanyoike, Taiki Nishioka, Tsuyoshi Yamamoto, Brad Snedecor, Sarah J. Robinson, Francis Gosselin. Engineered Cytochrome P450-Catalyzed Oxidative Biaryl Coupling Reaction Provides a Scalable Entry into Arylomycin Antibiotics. Journal of the American Chemical Society 2022, 144 (32) , 14838-14845. https://doi.org/10.1021/jacs.2c06019
    3. Fan Zhang, René F. Ramos Alvarenga, Kurt Throckmorton, Shaurya Chanana, Doug R. Braun, Jen Fossen, Miao Zhao, Sue McCrone, Mary Kay Harper, Scott R. Rajski, Warren E. Rose, David R. Andes, Michael G. Thomas, Tim S. Bugni. Genome Mining and Metabolomics Unveil Pseudonochelin: A Siderophore Containing 5-Aminosalicylate from a Marine-Derived Pseudonocardia sp. Bacterium. Organic Letters 2022, 24 (22) , 3998-4002. https://doi.org/10.1021/acs.orglett.2c01408
    4. Elizabeth I. Parkinson, James H. Tryon, Anthony W. Goering, Kou-San Ju, Ryan A. McClure, Jeremy D. Kemball, Sara Zhukovsky, David P. Labeda, Regan J. Thomson, Neil L. Kelleher, William W. Metcalf. Discovery of the Tyrobetaine Natural Products and Their Biosynthetic Gene Cluster via Metabologenomics. ACS Chemical Biology 2018, 13 (4) , 1029-1037. https://doi.org/10.1021/acschembio.7b01089
    5. David S. Peters, Floyd E. Romesberg, and Phil S. Baran . Scalable Access to Arylomycins via C–H Functionalization Logic. Journal of the American Chemical Society 2018, 140 (6) , 2072-2075. https://doi.org/10.1021/jacs.8b00087
    6. Cheng-Chih Hsu, Michael W. Baker, Terry Gaasterland, Michael J. Meehan, Eduardo R. Macagno, and Pieter C. Dorrestein . Top-Down Atmospheric Ionization Mass Spectrometry Microscopy Combined With Proteogenomics. Analytical Chemistry 2017, 89 (16) , 8251-8258. https://doi.org/10.1021/acs.analchem.7b01096
    7. Man-Cheng Tang, Yi Zou, Kenji Watanabe, Christopher T. Walsh, and Yi Tang . Oxidative Cyclization in Natural Product Biosynthesis. Chemical Reviews 2017, 117 (8) , 5226-5333. https://doi.org/10.1021/acs.chemrev.6b00478
    8. Quentin P. Vanbellingen, Anthony Castellanos, Monica Rodriguez-Silva, Iru Paudel, Jeremy W. Chambers, Francisco A. Fernandez-Lima. Analysis of Chemotherapeutic Drug Delivery at the Single Cell Level Using 3D-MSI-TOF-SIMS. Journal of the American Society for Mass Spectrometry 2016, 27 (12) , 2033-2040. https://doi.org/10.1007/s13361-016-1485-y
    9. Xia Yu, Fang Liu, Yi Zou, Man-Cheng Tang, Leibniz Hang, K. N. Houk, and Yi Tang . Biosynthesis of Strained Piperazine Alkaloids: Uncovering the Concise Pathway of Herquline A. Journal of the American Chemical Society 2016, 138 (41) , 13529-13532. https://doi.org/10.1021/jacs.6b09464
    10. Kira Vyatkina, Si Wu, Lennard J. M. Dekker, Martijn M. VanDuijn, Xiaowen Liu, Nikola Tolić, Mikhail Dvorkin, Sonya Alexandrova, Theo M. Luider, Ljiljana Paša-Tolić, and Pavel A. Pevzner . De Novo Sequencing of Peptides from Top-Down Tandem Mass Spectra. Journal of Proteome Research 2015, 14 (11) , 4450-4462. https://doi.org/10.1021/pr501244v
    11. Andrew R. Johnson and Erin E. Carlson . Collision-Induced Dissociation Mass Spectrometry: A Powerful Tool for Natural Product Structure Elucidation. Analytical Chemistry 2015, 87 (21) , 10668-10678. https://doi.org/10.1021/acs.analchem.5b01543
    12. Clara Brieke and Max J. Cryle . A Facile Fmoc Solid Phase Synthesis Strategy To Access Epimerization-Prone Biosynthetic Intermediates of Glycopeptide Antibiotics. Organic Letters 2014, 16 (9) , 2454-2457. https://doi.org/10.1021/ol500840f
    13. Carolina Cano-Prieto, Agustina Undabarrena, Ana Calheiros de Carvalho, Jay D. Keasling, Pablo Cruz-Morales. Triumphs and Challenges of Natural Product Discovery in the Postgenomic Era. Annual Review of Biochemistry 2024, 93 (1) , 411-445. https://doi.org/10.1146/annurev-biochem-032620-104731
    14. Matthew C. Carson, Marisa C. Kozlowski. Recent advances in oxidative phenol coupling for the total synthesis of natural products. Natural Product Reports 2024, 41 (2) , 208-227. https://doi.org/10.1039/D3NP00009E
    15. Songya Zhang, Yunliang Chen, Jing Zhu, Qiujie Lu, Max J. Cryle, Youming Zhang, Fu Yan. Structural diversity, biosynthesis, and biological functions of lipopeptides from Streptomyces. Natural Product Reports 2023, 40 (3) , 557-594. https://doi.org/10.1039/D2NP00044J
    16. Jiao-Le Fang, Wen-Li Gao, Wei-Feng Xu, Zhong-Yuan Lyu, Lie Ma, Shuai Luo, Xin-Ai Chen, Xu-Ming Mao, Yong-Quan Li. m4C DNA methylation regulates biosynthesis of daptomycin in Streptomyces roseosporus L30. Synthetic and Systems Biotechnology 2022, 7 (4) , 1013-1023. https://doi.org/10.1016/j.synbio.2022.06.001
    17. Hao Li, Zhiyong Li. The Exploration of Microbial Natural Products and Metabolic Interaction Guided by Mass Spectrometry Imaging. Bioengineering 2022, 9 (11) , 707. https://doi.org/10.3390/bioengineering9110707
    18. Kira Vyatkina. Validation of De Novo Peptide Sequences with Bottom-Up Tag Convolution. Proteomes 2022, 10 (1) , 1. https://doi.org/10.3390/proteomes10010001
    19. Hülya Aldemir, Shuangjie Shu, Francoise Schaefers, Hanna Hong, René Richarz, Sabrina Harteis, Manuel Einsiedler, Tobias M. Milzarek, Sabine Schneider, Tobias A. M. Gulder. Carrier Protein‐Free Enzymatic Biaryl Coupling in Arylomycin A2 Assembly and Structure of the Cytochrome P450 AryC**. Chemistry – A European Journal 2022, 28 (2) https://doi.org/10.1002/chem.202103389
    20. Namil Lee, Soonkyu Hwang, Woori Kim, Yongjae Lee, Ji Hun Kim, Suhyung Cho, Hyun Uk Kim, Yeo Joon Yoon, Min-Kyu Oh, Bernhard O. Palsson, Byung-Kwan Cho. Systems and synthetic biology to elucidate secondary metabolite biosynthetic gene clusters encoded in Streptomyces genomes. Natural Product Reports 2021, 38 (7) , 1330-1361. https://doi.org/10.1039/D0NP00071J
    21. Fabian Panter, Chantal D. Bader, Rolf Müller. Synergizing the potential of bacterial genomics and metabolomics to find novel antibiotics. Chemical Science 2021, 12 (17) , 5994-6010. https://doi.org/10.1039/D0SC06919A
    22. Gregory Upert, Anatol Luther, Daniel Obrecht, Philipp Ermert. Emerging peptide antibiotics with therapeutic potential. Medicine in Drug Discovery 2021, 9 , 100078. https://doi.org/10.1016/j.medidd.2020.100078
    23. Max Crüsemann. Coupling Mass Spectral and Genomic Information to Improve Bacterial Natural Product Discovery Workflows. Marine Drugs 2021, 19 (3) , 142. https://doi.org/10.3390/md19030142
    24. Chen Zhang, Mohammad R. Seyedsayamdost. Discovery of a Cryptic Depsipeptide from Streptomyces ghanaensis via MALDI‐MS‐Guided High‐Throughput Elicitor Screening. Angewandte Chemie International Edition 2020, 59 (51) , 23005-23009. https://doi.org/10.1002/anie.202009611
    25. Chen Zhang, Mohammad R. Seyedsayamdost. Discovery of a Cryptic Depsipeptide from Streptomyces ghanaensis via MALDI‐MS‐Guided High‐Throughput Elicitor Screening. Angewandte Chemie 2020, 132 (51) , 23205-23209. https://doi.org/10.1002/ange.202009611
    26. Shunxi Wang, Lei Tian, Haijun Liu, Xiang Li, Jinghua Zhang, Xueyan Chen, Xingmeng Jia, Xu Zheng, Shubiao Wu, Yanhui Chen, Jianbing Yan, Liuji Wu. Large-Scale Discovery of Non-conventional Peptides in Maize and Arabidopsis through an Integrated Peptidogenomic Pipeline. Molecular Plant 2020, 13 (7) , 1078-1093. https://doi.org/10.1016/j.molp.2020.05.012
    27. Luisa Albarano, Roberta Esposito, Nadia Ruocco, Maria Costantini. Genome Mining as New Challenge in Natural Products Discovery. Marine Drugs 2020, 18 (4) , 199. https://doi.org/10.3390/md18040199
    28. Mor Ben‐Lulu, Eden Gaster, Anna Libman, Doron Pappo. Synthesis of Biaryl‐Bridged Cyclic Peptides via Catalytic Oxidative Cross‐Coupling Reactions. Angewandte Chemie International Edition 2020, 59 (12) , 4835-4839. https://doi.org/10.1002/anie.201913305
    29. Mor Ben‐Lulu, Eden Gaster, Anna Libman, Doron Pappo. Synthesis of Biaryl‐Bridged Cyclic Peptides via Catalytic Oxidative Cross‐Coupling Reactions. Angewandte Chemie 2020, 132 (12) , 4865-4869. https://doi.org/10.1002/ange.201913305
    30. Matt Pratt-Hyatt. Mycotoxin Exposure. 2020, 1026-1034.e3. https://doi.org/10.1016/B978-0-323-43044-9.00138-2
    31. Christian Martin H., Roberto Ibáñez, Louis-Félix Nothias, Cristopher A. Boya P., Laura K. Reinert, Louise A. Rollins-Smith, Pieter C. Dorrestein, Marcelino Gutiérrez. Viscosin-like lipopeptides from frog skin bacteria inhibit Aspergillus fumigatus and Batrachochytrium dendrobatidis detected by imaging mass spectrometry and molecular networking. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-39583-7
    32. Mark Paetzel. Bacterial Signal Peptidases. 2019, 187-219. https://doi.org/10.1007/978-3-030-18768-2_7
    33. Thierry Izoré, Max J. Cryle. The many faces and important roles of protein–protein interactions during non-ribosomal peptide synthesis. Natural Product Reports 2018, 35 (11) , 1120-1139. https://doi.org/10.1039/C8NP00038G
    34. Yee Hwee Lim, Fong Tian Wong, Wan Lin Yeo, Kuan Chieh Ching, Yi Wee Lim, Elena Heng, Shuwen Chen, De‐Juin Tsai, Tsai‐Ling Lauderdale, Kak‐Shan Shia, Ying Swan Ho, Shawn Hoon, Ee Lui Ang, Mingzi M. Zhang, Huimin Zhao. Auroramycin: A Potent Antibiotic from Streptomyces roseosporus by CRISPR‐Cas9 Activation. ChemBioChem 2018, 19 (16) , 1716-1719. https://doi.org/10.1002/cbic.201800266
    35. Joachim J. Hug, Chantal D. Bader, Maja Remškar, Katarina Cirnski, Rolf Müller. Concepts and Methods to Access Novel Antibiotics from Actinomycetes. Antibiotics 2018, 7 (2) , 44. https://doi.org/10.3390/antibiotics7020044
    36. Julien Tailhades, Melanie Schoppet, Anja Greule, Madeleine Peschke, Clara Brieke, Max J. Cryle. A route to diastereomerically pure phenylglycine thioester peptides: crucial intermediates for investigating glycopeptide antibiotic biosynthesis. Chemical Communications 2018, 54 (17) , 2146-2149. https://doi.org/10.1039/C7CC09409D
    37. Anja Greule, Jeanette E. Stok, James J. De Voss, Max J. Cryle. Unrivalled diversity: the many roles and reactions of bacterial cytochromes P450 in secondary metabolism. Natural Product Reports 2018, 35 (8) , 757-791. https://doi.org/10.1039/C7NP00063D
    38. K.V. Vyatkina. De novo sequencing of proteins and peptides: algorithms, applications, perspectives. Biomedical Chemistry: Research and Methods 2018, 1 (1) , e00005. https://doi.org/10.18097/BMCRM00005
    39. Anne van der Meij, Sarah F. Worsley, Matthew I. Hutchings, Gilles P. van Wezel. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiology Reviews 2017, 41 (3) , 392-416. https://doi.org/10.1093/femsre/fux005
    40. Brett C. Covington, John A. McLean, Brian O. Bachmann. Comparative mass spectrometry-based metabolomics strategies for the investigation of microbial secondary metabolites. Natural Product Reports 2017, 34 (1) , 6-24. https://doi.org/10.1039/C6NP00048G
    41. Kozo Ochi. Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. The Journal of Antibiotics 2017, 70 (1) , 25-40. https://doi.org/10.1038/ja.2016.82
    42. Xinpeng Tian, Zhewen Zhang, Tingting Yang, Meili Chen, Jie Li, Fei Chen, Jin Yang, Wenjie Li, Bing Zhang, Zhang Zhang, Jiayan Wu, Changsheng Zhang, Lijuan Long, Jingfa Xiao. Comparative Genomics Analysis of Streptomyces Species Reveals Their Adaptation to the Marine Environment and Their Diversity at the Genomic Level. Frontiers in Microbiology 2016, 7 https://doi.org/10.3389/fmicb.2016.00998
    43. Richard H Baltz. Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. Journal of Industrial Microbiology and Biotechnology 2016, 43 (2-3) , 343-370. https://doi.org/10.1007/s10295-015-1682-x
    44. Melanie Gonsior, Agnes Mühlenweg, Marcel Tietzmann, Saskia Rausch, Annette Poch, Roderich D. Süssmuth. Biosynthesis of the Peptide Antibiotic Feglymycin by a Linear Nonribosomal Peptide Synthetase Mechanism. ChemBioChem 2015, 16 (18) , 2610-2614. https://doi.org/10.1002/cbic.201500432
    45. Changsheng Wu, Hye Kyong Kim, Gilles P. van Wezel, Young Hae Choi. Metabolomics in the natural products field – a gateway to novel antibiotics. Drug Discovery Today: Technologies 2015, 13 , 11-17. https://doi.org/10.1016/j.ddtec.2015.01.004
    46. Tal Luzzatto-Knaan, Alexey V. Melnik, Pieter C. Dorrestein. Mass spectrometry tools and workflows for revealing microbial chemistry. The Analyst 2015, 140 (15) , 4949-4966. https://doi.org/10.1039/C5AN00171D
    47. Rashed S. Al Toma, Clara Brieke, Max J. Cryle, Roderich D. Süssmuth. Structural aspects of phenylglycines, their biosynthesis and occurrence in peptide natural products. Natural Product Reports 2015, 32 (8) , 1207-1235. https://doi.org/10.1039/C5NP00025D
    48. Susanne Zeilinger, Carlos García-Estrada, Juan-Francisco Martín. Fungal Secondary Metabolites in the “OMICS” Era. 2015, 1-12. https://doi.org/10.1007/978-1-4939-2531-5_1
    49. Amanda L. Waters, Olivier Peraud, Noer Kasanah, James W. Sims, Nuwan Kothalawala, Matthew A. Anderson, Samuel H. Abbas, Karumanchi V. Rao, Vijay R. Jupally, Michelle Kelly, Amala Dass, Russell T. Hill, Mark T. Hamann. An analysis of the sponge Acanthostrongylophora igens' microbiome yields an actinomycete that produces the natural product manzamine A. Frontiers in Marine Science 2014, 1 https://doi.org/10.3389/fmars.2014.00054
    50. Sheetal R. Modi, James J. Collins, David A. Relman. Antibiotics and the gut microbiota. Journal of Clinical Investigation 2014, 124 (10) , 4212-4218. https://doi.org/10.1172/JCI72333
    51. B. Christopher Hoefler, Paul D. Straight. Imaging Mass Spectrometry, Metabolism, and New Views of the Microbial World. 2014, 349-396. https://doi.org/10.1002/9781118876015.ch10
    52. Sarah M. Stow, Nichole M. Lareau, Kelly M. Hines, C. Ruth McNees, Cody R. Goodwin, Brian O. Bachmann, John A. Mclean. Structural Separations for Natural Product Characterization by Ion Mobility–Mass Spectrometry. 2014, 397-431. https://doi.org/10.1002/9781118876015.ch11
    53. Hülya Aldemir, René Richarz, Tobias A. M. Gulder. The Biocatalytic Repertoire of Natural Biaryl Formation. Angewandte Chemie International Edition 2014, 53 (32) , 8286-8293. https://doi.org/10.1002/anie.201401075
    54. Hülya Aldemir, René Richarz, Tobias A. M. Gulder. Das biokatalytische Repertoire natürlicher Biarylbildung. Angewandte Chemie 2014, 126 (32) , 8426-8433. https://doi.org/10.1002/ange.201401075
    55. Mark Paetzel. Structure and mechanism of Escherichia coli type I signal peptidase. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2014, 1843 (8) , 1497-1508. https://doi.org/10.1016/j.bbamcr.2013.12.003
    56. Mikhail O Maksimov, A James Link. Prospecting genomes for lasso peptides. Journal of Industrial Microbiology and Biotechnology 2014, 41 (2) , 333-344. https://doi.org/10.1007/s10295-013-1357-4
    57. Richard H Baltz. MbtH homology codes to identify gifted microbes for genome mining. Journal of Industrial Microbiology and Biotechnology 2014, 41 (2) , 357-369. https://doi.org/10.1007/s10295-013-1360-9
    58. Yuriy Rebets, Elke Brötz, Bogdan Tokovenko, Andriy Luzhetskyy. Actinomycetes biosynthetic potential: how to bridge in silico and in vivo?. Journal of Industrial Microbiology and Biotechnology 2014, 41 (2) , 387-402. https://doi.org/10.1007/s10295-013-1352-9
    59. Rolf Müller, Joachim Wink. Future potential for anti-infectives from bacteria – How to exploit biodiversity and genomic potential. International Journal of Medical Microbiology 2014, 304 (1) , 3-13. https://doi.org/10.1016/j.ijmm.2013.09.004
    60. Christopher T Walsh, Timothy A Wencewicz. Prospects for new antibiotics: a molecule-centered perspective. The Journal of Antibiotics 2014, 67 (1) , 7-22. https://doi.org/10.1038/ja.2013.49
    61. Wei-Ting Liu, Anne Lamsa, Weng Ruh Wong, Paul D Boudreau, Roland Kersten, Yao Peng, Wilna J Moree, Brendan M Duggan, Bradley S Moore, William H Gerwick, Roger G Linington, Kit Pogliano, Pieter C Dorrestein. MS/MS-based networking and peptidogenomics guided genome mining revealed the stenothricin gene cluster in Streptomyces roseosporus. The Journal of Antibiotics 2014, 67 (1) , 99-104. https://doi.org/10.1038/ja.2013.99
    62. Chao-Jen Shih, Pi-Yu Chen, Chih-Chuang Liaw, Ying-Mi Lai, Yu-Liang Yang. Bringing microbial interactions to light using imaging mass spectrometry. Natural Product Reports 2014, 31 (6) , 739. https://doi.org/10.1039/c3np70091g
    63. Daniel Krug, Rolf Müller. Secondary metabolomics: the impact of mass spectrometry-based approaches on the discovery and characterization of microbial natural products. Natural Product Reports 2014, 31 (6) , 768. https://doi.org/10.1039/c3np70127a
    64. Michal Letek, Luis M. Mateos, José A. Gil. Genetic Analysis and Manipulation of Polyene Antibiotic Gene Clusters as a Way to Produce More Effective Antifungal Compounds. 2014, 177-214. https://doi.org/10.1007/978-3-642-40444-3_7
    65. Markus Nett. Genome Mining: Concept and Strategies for Natural Product Discovery. 2014, 199-245. https://doi.org/10.1007/978-3-319-04900-7_4
    66. Carlos Olano, Carmen Méndez, José A. Salas. Strategies for the Design and Discovery of Novel Antibiotics using Genetic Engineering and Genome Mining. 2014, 1-25. https://doi.org/10.1007/978-3-642-40444-3_1
    67. Min Rao, Wei Wei, Mei Ge, Daijie Chen, Xiafang Sheng. A new antibacterial lipopeptide found by UPLC-MS from an actinomycete Streptomyces sp. HCCB10043. Natural Product Research 2013, 27 (23) , 2190-2195. https://doi.org/10.1080/14786419.2013.811661
    68. Max J. Cryle, Clara Brieke, Kristina Haslinger. Oxidative transformations of amino acids and peptides catalysed by Cytochromes P450. 2013, 1-36. https://doi.org/10.1039/9781849737081-00001
    69. Min Rao, Lei Feng, Lijun Ruan, Mei Ge, Xiafang Sheng. UPLC-MS-Based Metabolomic Study of Streptomyces Strain HCCB10043 Under Different pH Conditions Reveals Important Pathways Affecting the Biosynthesis of A21978C Compounds. Analytical Letters 2013, 46 (15) , 2305-2318. https://doi.org/10.1080/00032719.2013.800538
    70. Cristian G Bologa, Oleg Ursu, Tudor I Oprea, Charles E Melançon, George P Tegos. Emerging trends in the discovery of natural product antibacterials. Current Opinion in Pharmacology 2013, 13 (5) , 678-687. https://doi.org/10.1016/j.coph.2013.07.002
    71. Xinqing Zhao, Wence Jiao, Xiaona Xu. Harnessing the Chemical and Genetic Diversities of Marine Microorganisms for Medical Applications. 2013, 267-294. https://doi.org/10.1002/9783527665259.ch17
    72. Arryn Craney, Salman Ahmed, Justin Nodwell. Towards a new science of secondary metabolism. The Journal of Antibiotics 2013, 66 (7) , 387-400. https://doi.org/10.1038/ja.2013.25
    73. Katharina Graupner, Kirstin Scherlach, Tom Bretschneider, Gerald Lackner, Martin Roth, Harald Gross, Christian Hertweck. Imaging Mass Spectrometry and Genome Mining Reveal Highly Antifungal Virulence Factor of Mushroom Soft Rot Pathogen. Angewandte Chemie International Edition 2012, 51 (52) , 13173-13177. https://doi.org/10.1002/anie.201206658
    74. Katharina Graupner, Kirstin Scherlach, Tom Bretschneider, Gerald Lackner, Martin Roth, Harald Gross, Christian Hertweck. Imaging Mass Spectrometry and Genome Mining Reveal Highly Antifungal Virulence Factor of Mushroom Soft Rot Pathogen. Angewandte Chemie 2012, 124 (52) , 13350-13354. https://doi.org/10.1002/ange.201206658
    75. Xu Jin, Min Rao, Wei Wei, Mei Ge, Jiajia Liu, Daijie Chen, Yongheng Liang. Biosynthesis of new lipopentapeptides by an engineered strain of Streptomyces sp.. Biotechnology Letters 2012, 34 (12) , 2283-2289. https://doi.org/10.1007/s10529-012-1032-2
    76. Jos M. Raaijmakers, Mark Mazzola. Diversity and Natural Functions of Antibiotics Produced by Beneficial and Plant Pathogenic Bacteria. Annual Review of Phytopathology 2012, 50 (1) , 403-424. https://doi.org/10.1146/annurev-phyto-081211-172908
    77. David J. Gonzalez, Yuquan Xu, Yu-Liang Yang, Eduardo Esquenazi, Wei-Ting Liu, Anna Edlund, Tram Duong, Liangcheng Du, István Molnár, William H. Gerwick, Paul R. Jensen, Michael Fischbach, Chih-Chuang Liaw, Paul Straight, Victor Nizet, Pieter C. Dorrestein. Observing the invisible through imaging mass spectrometry, a window into the metabolic exchange patterns of microbes. Journal of Proteomics 2012, 75 (16) , 5069-5076. https://doi.org/10.1016/j.jprot.2012.05.036
    78. Robert A. Hill, Andrew Sutherland. Hot off the press. Natural Product Reports 2012, 29 (2) , 129. https://doi.org/10.1039/c1np90052h

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2011, 133, 45, 18010–18013
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja2040877
    Published October 14, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    3511

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.